The features of neuronal loss in the hippocampus during acute generalized seizure (experimental study)

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: Today, epilepsy is one of the most frequently diagnosed neurological diseases. Despite more than several centuries of research on epileptogenesis and the development of treatment protocols, the neurobiological basis of the disease remains poorly understood. It is reliably known that patients with epilepsy are found to have a reduced number of hippocampal neurons and gliosis: mesial temporal sclerosis (hippocampal sclerosis), but the causal relationship with seizures has not yet been established. It is of particular interest to evaluate the survival of hippocampal neurons against the background of acute epileptic seizures, which will allow to determine the mechanisms of degenerative changes in nervous tissue.

AIM: The aim of the study was to immunohistochemically assess the levels of NeuN and caspase-8 in the hippocampus during acute epileptic seizures.

MATERIALS AND METHODS: Male mice of the CBA population were used as models. The animals were divided into groups: 1st (n = 28) — simulated acute epileptic seizure by intraperitoneal injection of pentyltetrazole, 2nd (n = 20) — control. Histological and immunohistochemical studies were performed on hippocampal fragments, regions: CA1, CA3 and dentate gyrus.

RESULTS: Generalized epileptic seizures were noted in all animals of Group I. The weakest labeling of hippocampal pyramidal neurons with NeuN (light nuclei) was observed in CA3 region, which was observed 24 hours after pentyltetrazole injection. The same immunophenotypic pattern was observed in the CA3 region during reaction with caspase-8, which demonstrated an increase in the number of immunopositive hippocampal pyramidal neurons 24 hours after pentyltetrazole injection.

CONCLUSIONS: After a single injection of pentyltetrazole at a dose of 45 µg/kg, immunohistochemical evaluation of the distribution of NeuN- and caspase-8-positive pyramidal neurons of the hippocampus revealed: a decrease in the NeuN-positive neurons and an increase in caspase-8-positive neurons one day after the seizure with subsequent recovery of the studied markers by day 5.

Full Text

Restricted Access

About the authors

Grigory A. Demyashkin

National Medical Research Radiological Centre, A.F. Tsyba Medical Radiological Research Center; Sechenov First Moscow State Medical University

Email: dr.grigdem@gmail.com
ORCID iD: 0000-0001-8447-2600
Scopus Author ID: 57200415197

MD, Dr. Sci. (Med.), Head of the Department of Histology and Immunohistochemistry of Institute of Translation Medicine; Head of the Department of Pathomorphology

Russian Federation, Obninsk; Moscow

Migran S. Grigoryan

V.I. Vernadsky Crimean Federal University, S.I. Georgievsky Medical Academy

Email: scientpapers4@gmail.com
ORCID iD: 0000-0002-8417-9153

PhD Student, Neurologist

Russian Federation, Simferopol

Ivan V. Vetrov

Sechenov First Moscow State Medical University

Email: vanjojo@ya.ru
ORCID iD: 0000-0003-4256-224X

6th-year student of the N.V. Sklifosovskiy Institute of Clinical Medicine

Russian Federation, Moscow

Fedor V. Vetrov

Sechenov First Moscow State Medical University

Email: fedvan@bk.ru
ORCID iD: 0000-0002-8597-2241

6th-year student of the N.V. Sklifosovskiy Institute of Clinical Medicine

Russian Federation, Moscow

Valentina P. Rauzheva

Pirogov Russian National Research Medical University

Email: rauzhevav@mail.ru
ORCID iD: 0000-0001-8514-1934

6th-year medical student

Russian Federation, Moscow

Ilya A. Zorin

Sechenov First Moscow State Medical University

Author for correspondence.
Email: ilyazorin99@yandex.ru
ORCID iD: 0000-0002-1621-7015

6th-year student of the N.V. Sklifosovskiy Institute of Clinical Medicine

Russian Federation, Moscow

Elena Y. Shapovalova

V.I. Vernadsky Crimean Federal University, S.I. Georgievsky Medical Academy

Email: publscience7@gmail.com
ORCID iD: 0000-0003-2544-7696
ResearcherId: P-9943-2015

MD, Dr. Sci. (Med.), Professor, Head of the Department of Histology

Russian Federation, Simferopol

References

  1. Beghi E. The Epidemiology of Epilepsy. NED. 2020;54(2):185–191. doi: 10.1159/000503831
  2. Behr C, Goltzene MA, Kosmalski G, et al. Epidemiology of epilepsy. Rev Neurol. 2016;172(1):27–36. doi: 10.1016/j.neurol.2015.11.003
  3. Thom M. Review: Hippocampal sclerosis in epilepsy: a neuropathology review. Neuropathol Appl Neurobiol. 2014;40(5):520–543. doi: 10.1111/nan.12150
  4. Blümcke I, Thom M, Aronica E, et al. International consensus classification of hippocampal sclerosis in temporal lobe epilepsy: A Task Force report from the ILAE Commission on Diagnostic Methods. Epilepsia. 2013;54(7):1315–1329. doi: 10.1111/epi.12220
  5. Reddy D, Kuruba R. Experimental models of status epilepticus and neuronal injury for evaluation of therapeutic interventions. IJMS. 2013;14(9):18284–18318. doi: 10.3390/ijms140918284
  6. Grone BP, Baraban SC. Animal models in epilepsy research: legacies and new directions. Nat Neurosci. 2015;18(3):339–343. doi: 10.1038/nn.3934
  7. Kandratavicius L, Balista PA, Lopes-Aguiar C, et al. Animal models of epilepsy: Use and limitations. Neuropsychiatr Dis Treat. 2014;10:1693–1705. doi: 10.2147/NDT.S50371
  8. Löscher W. Animal models of seizures and epilepsy: Past, present, and future role for the discovery of antiseizure drugs. Neurochem Res. 2017;42(7):1873–1888. doi: 10.1007/s11064-017-2222-z
  9. Gusel’nikova VV, Korzhevskiy DE. NeuN as a neuronal nuclear antigen and neuron differentiation marker. Acta Naturae. 2015;7(2):42–47. doi: 10.32607/20758251-2015-7-2-42-47
  10. Wolf HK, Buslei R, Schmidt-Kastner R, et al. NeuN: A useful neuronal marker for diagnostic histopathology. J Histochem Cytochem. 1996;44(10):1167–1171. doi: 10.1177/44.10.8813082
  11. Chang LR, Liu JP, Song YZ, et al. Expression of caspase-8 and caspase-9 in rat hippocampus during postnatal development. Microsc Res Tech. 2011;74(2):153–158. doi: 10.1002/jemt.20886
  12. Liu JP, Chang LR, Gao XL, Wu Y. Different expression of caspase-3 in rat hippocampal subregions during postnatal development. Microsc Res Tech. 2008;71(9):633–638. doi: 10.1002/jemt.20600
  13. Basaranlar G, Derin N, Kencebay Manas C, et al. The effects of sulfite on cPLA2, caspase-3, oxidative stress and locomotor activity in rats. Food Chem Toxicol. 2019;123:453–458. doi: 10.1016/j.fct.2018.11.021
  14. Narkilahti S, Pitkänen A. Caspase 6 expression in the rat hippocampus during epileptogenesis and epilepsy. Neuroscience. 2005;131(4):887–897. doi: 10.1016/j.neuroscience.2004.12.013
  15. Tzeng TT, Tsay HJ, Chang L, et al. Caspase 3 involves in neuroplasticity, microglial activation and neurogenesis in the mice hippocampus after intracerebral injection of kainic acid. J Biomed Sci. 2013;20(1):90. doi: 10.1186/1423-0127-20-90
  16. Engel T, Henshall DC. Apoptosis, Bcl-2 family proteins and caspases: the ABCs of seizure-damage and epileptogenesis? Int J Physiol Pathophysiol Pharmacol. 2009;1(2):97–115.
  17. Nguyen TTM, Gillet G, Popgeorgiev N. Caspases in the developing central nervous system: Apoptosis and beyond. Front Cell Dev Biol. 2021;9:702404. doi: 10.3389/fcell.2021.702404
  18. Sharangpani A, Takanohashi A, Bell MJ. Caspase activation in fetal rat brain following experimental intrauterine inflammation. Brain Res. 2008;1200:138–145. doi: 10.1016/j.brainres.2008.01.045
  19. Henshall DC, Bonislawski DP, Skradski SL, et al. Cleavage of bid may amplify caspase-8-induced neuronal death following focally evoked limbic seizures. Neurobiol Dis. 2001;8(4):568–580. doi: 10.1006/nbdi.2001.0415
  20. Yuskaitis CJ, Rossitto LA, Groff KJ, et al. Factors influencing the acute pentylenetetrazole-induced seizure paradigm and a literature review. Ann Clin Transl Neurol. 2021;8(7):1388–1397. doi: 10.1002/acn3.51375
  21. Van Erum J, Van Dam D, De Deyn PP. PTZ-induced seizures in mice require a revised Racine scale. Epilepsy Behav. 2019;95:51–55. doi: 10.1016/j.yebeh.2019.02.029
  22. Korzhevskii DE, Gilerovich EG, Zin’kova NN, et al. Immunocytochemical detection of brain neurons using the selective marker NeuN. Neurosci Behav Physiol. 2006;36(8):857–859. doi: 10.1007/s11055-006-0098-5
  23. Shimada T, Yamagata K. Pentylenetetrazole-induced kindling mouse model. J Vis Exp. 2018;(136):56573. doi: 10.3791/56573
  24. Löscher W. Critical review of current animal models of seizures and epilepsy used in the discovery and development of new antiepileptic drugs. Seizure. 2011;20(5):359–368. doi: 10.1016/j.seizure.2011.01.003
  25. Lopim GM, Vannucci Campos D, Gomes da Silva S, et al. Relationship between seizure frequency and number of neuronal and non-neuronal cells in the hippocampus throughout the life of rats with epilepsy. Brain Res. 2016;1634:179–186. doi: 10.1016/j.brainres.2015.12.055
  26. Zhang L, Guo Y, Hu H, et al. FDG-PET and NeuN-GFAP immunohistochemistry of hippocampus at different phases of the pilocarpine model of temporal lobe epilepsy. Int J Med Sci. 2015;12(3):288–294. doi: 10.7150/ijms.10527
  27. Yan BC, Xu P, Gao M, et al. Changes in the blood-brain barrier function are associated with hippocampal neuron death in a kainic acid mouse model of epilepsy. Front Neurol. 2018;9:775. doi: 10.3389/fneur.2018.00775
  28. Viswanatha GL, Shylaja H, Kishore DV, et al. Acteoside isolated from Colebrookea oppositifolia Smith Attenuates Epilepsy in mice via modulation of gamma-aminobutyric acid pathways. Neurotox Res. 2020;38(4):1010–1023. doi: 10.1007/s12640-020-00267-0
  29. Hansen SL, Sperling BB, Sánchez C. Anticonvulsant and antiepileptogenic effects of GABAA receptor ligands in pentylenetetrazole-kindled mice. Prog Neuropsychopharmacol Biol Psychiatry. 2004;28(1):105–113. doi: 10.1016/j.pnpbp.2003.09.026
  30. Unal-Cevik I, Kilinç M, Gürsoy-Ozdemir Y, et al. Loss of NeuN immunoreactivity after cerebral ischemia does not indicate neuronal cell loss: a cautionary note. Brain Res. 2004;1015(1–2):169–174. doi: 10.1016/j.brainres.2004.04.032
  31. Lee TK, Lee JC, Kim DW, et al. Ischemia-reperfusion under hyperthermia increases heme oxygenase-1 in pyramidal neurons and astrocytes with accelerating neuronal loss in gerbil hippocampus. Int J Mol Sci. 2021;22(8):3963. doi: 10.3390/ijms22083963
  32. Zimatkin SM, Bon’ EI. Dark neurons of the brain. Neurosci Behav Physiol. 2018;48(8):908–912. doi: 10.1007/s11055-018-0648-7
  33. Ahmadpour S, Behrad A, Vega IF. Dark Neurons: A protective mechanism or a mode of death. J Med Histol. 2019;3(2):125–131. doi: 10.21608/jmh.2020.40221.1081
  34. Krajewska M, You Z, Rong J, et al. Neuronal deletion of caspase 8 protects against brain injury in mouse models of controlled cortical impact and kainic acid-induced excitotoxicity. PLOS One. 2011;6(9):e24341. doi: 10.1371/journal.pone.0024341
  35. Baculis BC, Weiss AC, Pang W, et al. Prolonged seizure activity causes caspase dependent cleavage and dysfunction of G-protein activated inwardly rectifying potassium channels. Sci Rep. 2017;7(1):12313. doi: 10.1038/s41598-017-12508-y
  36. Meller R, Clayton C, Torrey DJ, et al. Activation of the caspase 8 pathway mediates seizure-induced cell death in cultured hippocampal neurons. Epilepsy Res. 2006;70(1):3–14. doi: 10.1016/j.eplepsyres.2006.02.002

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Morphological picture of the hippocampus 1 day after the attack. Staining: a — Nissl, ×100; b — Nissl, ×400; c — hematoxylin and eosin, ×100. Disintegration of “dark” neurons with signs of pycnosis, without demarcation between cytoplasm and nucleus

Download (404KB)
3. Fig. 2. NeuN+ cells in the hippocampus, ×200

Download (510KB)
4. Fig. 3. Hippocampus, CA3 region 24 hours after injection in the control and experimental groups. Immunohistochemical study with antibodies to caspase-8, ×200

Download (377KB)
5. Fig. 4. Ratio of caspase-8- and NeuN-positive cells in the CA3 region of the hippocampus

Download (138KB)

Copyright (c) 2023 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 74760 от 29.12.2018 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies