Experimental evaluation of the effect of beta-D-glucan on the survival of irradiated mice

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The relevance is determined by the need to develop new means of antiradiation protection, which could be used for irradiating people in case of emergency situations or for medical use of ionizing radiation for diagnostic or therapeutic purposes.

Aim: to evaluate the prospects of beta-D-glucan as a candidate drug for the development of a pharmacological means to reduce the toxic effects of radiation exposure.

Materials and methods. In experiments on male mice the protective effect of beta-D-glucan derived from Pleurotus ostreatus mushroom on the parameters of 30-day survival of irradiated rodents exposed to lethal doses of X-ray radiation was studied. Beta-D-glucan was administered intragastrically in different doses in preventive or therapeutic regimens.

Results. It was shown that intragastric administration of beta-D-glucan at a dose of 500 mg/kg 1 h after 7.5 Gy X-Ray irradiation protected from the death of irradiated mice. There was a 27% increase in the 30-day survival rate of mice compared to the control group (47% and 20%, respectively). This dose of the drug also increased the 30-day survival rate of mice by 26% when administered 0.5 h before or 2 hours after 8 Gy irradiation. The good tolerance of intragastric administration of beta-D-glucan in mice at a dose of 500 mg/kg was shown. There were no negative effects of the drug during 3 weeks of follow-up.

Conclusion. The results can indicate that beta-D-glucan derived from Pleurotus ostreatus has an antiradiation potential in the oral route of administration, having a protective effect on the survival of lethally irradiated animals, and shows the properties of a radiomitigator and radioprotector, but the identified effect requires further study.

Full Text

Restricted Access

About the authors

Elena V. Murzina

S.M. Kirov Military Medical Academy of the Ministry of Defense of Russian Federation; Institute of Experimental Medicine

Author for correspondence.
Email: elenmurzina@mail.ru
ORCID iD: 0000-0001-7052-3665
SPIN-code: 5188-0797

PhD in Biology, senior researcher of Research Laboratory of Medicinal and Environmental Toxicology, Research Center

Russian Federation, Saint Petersburg

Genrikh A. Sofronov

S.M. Kirov Military Medical Academy of the Ministry of Defense of Russian Federation; Institute of Experimental Medicine

Email: gasofronov@mail.ru
ORCID iD: 0000-0002-8587-1328
SPIN-code: 7334-4881
Scopus Author ID: 7003953555
ResearcherId: G-4791-2015

MD, PhD, Professor, Member of the RAS, Head of the Research Laboratory of Medicinal and Environmental Toxicology, Research Center

Russian Federation, Saint Petersburg

Andrei S. Simbirtsev

Institute of Experimental Medicine

Email: simbirtsev@hpb-spb.com
ORCID iD: 0000-0002-8228-4240
SPIN-code: 2064-7584
Scopus Author ID: 7003758888
ResearcherId: K-5061-2014

PhD in Biology, Professor, Corresponding Member RAS, Head of the Department of Medical Biotechnology and Immunopharmacology

Russian Federation, Saint Petersburg

Natalia V. Aksenova

S.M. Kirov Military Medical Academy of the Ministry of Defense of Russian Federation

Email: vmeda-nio@mil.ru
SPIN-code: 6821-6887

MD, PhD, Research Fellow of Research Department (All-Army Register of the Ministry of Defense of the Russian Federation)

Russian Federation, Saint Petersburg

Olga M. Veselova

S.M. Kirov Military Medical Academy of the Ministry of Defense of Russian Federation

Email: vmeda-nio@mil.ru

research fellow of Research Laboratory of Medicinal and Environmental Toxicology, Research Center

Russian Federation, Saint Petersburg

Aleksandr V. Zavirskiy

S.M. Kirov Military Medical Academy of the Ministry of Defense of Russian Federation

Email: vtmz@vmeda.org
SPIN-code: 3935-3233

PhD student of the Department of Military Toxicology and Medical Protection

Russian Federation, Saint Petersburg

Tat’yana G. Krylova

S.M. Kirov Military Medical Academy of the Ministry of Defense of Russian Federation

Email: vmeda-nio@mil.ru
SPIN-code: 5188-0797

PhD in Biology, junior researcher of Research Laboratory of Medicinal and Environmental Toxicology, Research Center

Russian Federation, Saint Petersburg

Mark M. Shamtsyan

Saint Petersburg State Institute of Technology

Email: mark.shamtsyan@yandex.ru
SPIN-code: 2609-1909

PhD, Associate Professor of Department of Technology of Microbiological Synthesis

Russian Federation, Saint Petersburg

References

  1. Singh VK, Hanlon BK, Santiago PT, Seed TM. A review of radiation countermeasures focusing on injury-specific medicinals and regulatory approval status: Part III. Countermeasures under early stages of development along with ‘Standard of Care’ Medicinal and procedures not requiring regulatory approval for use. Int J Radiat Biol. 2017;93(9):885-906. https://doi.org/10.1080/09553002.2017.1332440.
  2. Singh VK, Seed TM. Pharmacological management of ionizing radiation injuries: current and prospective agents and targeted organ systems. Expert Opin Pharmacother. 2020;21(3):317-337. https://doi.org/10.1080/14656566.2019.1702968.
  3. Cho K, Imaoka T, Klokov D, et al. Funding for radiation research: past, present and future. Int J Radiat Biol. 2019;95(7):816-840. https://doi.org/10.1080/09553002. 2018.1558303.
  4. Легеза В.И., Гребенюк А.Н., Драчев И.С. Радиомитигаторы: классификация, фармакологические свойства, перспективы применения // Радиационная биология. Радиоэкология. – 2019. – Т. 59. – № 2. – С. 161–169. [Legeza VI, Grebenyuk AN, Drachev IS. Radiomitigatory: klassifikaciya, farmakologicheskie svojstva, perspektivy primeneniya. Radiats Biol Radioecol. 2019;59(2):161-169. (In Russ.)]. https://doi.org/10.1134/S0869803119020097.
  5. Рождественский Л.М. Проблемные вопросы разработки противолучевых средств // Радиационная биология. Радиоэкология. – 2019. – Т. 59. – № 2. – С. 117–126. [Rozhdestvenskij LM. Problemnye voprosy razrabotki protivoluchevyh sredstv. Radiats Biol Radioecol. 2019;59(2):117-126. (In Russ.)]. https://doi.org/10.1134/S0869803119020139.
  6. Hofer M, Hoferova Z, Falk M. Pharmacological modulation of radiation damage. does it exist a chance for other substances than hematopoietic growth factors and cytokines? Int J Mol Sci. 2017;18(7):1385. https://doi.org/10.3390/ijms18071385.
  7. Mishra KN, Moftan BA, Alsbeih GA. Appraisal of mechanisms of radioprotection and therapeutic approaches of radiation countermeasures. Biomed Pharmacother. 2018;106:610-617. https://doi.org/10.1016/j.biopha.2018. 06.150.
  8. Bashir KM, Choi JS. Clinical and physiological perspectives of β-glucans: the past, present, and future. Int J Mol Sci. 2017;18(9):1906. https://doi.org/10.3390/ijms1809 1906.
  9. Vetvicka V, Vannucci L, Sima P, Richter J. Beta glucan: supplement or drug? From laboratory to clinical trials. Molecules. 2019;24(7):1251. https://doi.org/10.3390/ molecules24071251.
  10. Pospísil M, Jarý J, Netíková J, Marek M. Glucan-induced enhancement of hemopoietic recovery in gamma-irradiated mice. Experientia. 1982;38(10):1232-1234. https://doi.org/ 10.1007/BF01959759.
  11. Patchen ML, MacVittie TJ. Dose-dependent responses of murine pluripotent stem cells and myeloid and erythroid progenitor cells following administration of the immunomodulating agent glucan. Immunopharmacology. 1983;5(4):303-313. https://doi.org/10.1016/0162-3109(83)90046-2.
  12. Patchen ML, D’Alesandro MM, Brook I, et al. Glucan: mechanisms involved in its “radioprotective” effect. J Leukoc Biol. 1987;42(2):95-105. https://doi.org/10.1002/jlb.42.2.95.
  13. Hofer M, Pospisil M. Glucan as stimulator of hematopoiesis in normal and gamma-irradiated mice. A survey of the authors’ results. Int J Immunopharmacol. 1997;19(9-10):607-609. https://doi.org/10.1016/s0192-0561(97)00057-x.
  14. Wang W, Xue C, Mao X. Radioprotective effects and mechanisms of animal, plant and microbial polysaccharides. Int J Biol Macromol. 2020;153:373-384. https://doi.org/10.1016/j.ijbiomac.2020.02.203.
  15. Директива 2010/63/EU Европейского парламента и Совета Европейского союза по охране животных, используемых в научных целях. – СПб.: Rus-LASA «НП объединение специалистов по работе с лабораторными животными», 2012. – 48 с. [Direktiva 2010/63/EU Evropejskogo parlamenta i soveta evropejskogo soyuza po ohrane zhivotnyh, ispol’zuemyh v nauchnyh celyah. Saint Petersburg: Rus-LASA “NP ob”edinenie specialistov po rabote s laboratornymi zhivotnymi”, 2012. 48 p. (In Russ.)]
  16. Шамцян М.М., Воробейчиков Е.В., Конусова В.Г., Симбирцев А.С. Иммуномодулирующие свойства высших базидиальных грибов // Цитокины и воспаление. 2012;11(1):26-32. [Shamtsyan MM. Vorobeichikov EV, Konusova VG, Simbirtsev AS. Immunomoduliruyschie svoistva vysshih basidialnyh gribov Cytokines Inflammation. 2012;11(1):26-32. (In Russ.)]
  17. Боровиков В.П. Популярное введение в современный анализ данных в системе Statistica. – M.: Горячая линия – Телеком, 2013. [Borovikov VP. Populyarnoe vvedenie v sovremennyy analiz dannykh v sisteme STATISTICA. Moscow: Goryachaya liniya – Telekom; 2013. (In Russ.)]
  18. Cramer DE, Allendorf DJ, Baran JT, et al. Beta-glucan enhances complement-mediated hematopoietic recovery after bone marrow injury. Blood. 2006;107(2):835-840. https://doi.org/10.1182/blood-2005-07-2705.
  19. Pillai TG, Devi PU. Mushroom b-glucan: potential candidate for post irradiation protection. Mutat Res. 2013;751(2):109-115. https://doi.org/10.1016/j.mrgentox. 2012.12.005.
  20. Li X, Wang L, Wang Z. Radioprotective activity of neutral polysaccharides isolated from the fruiting bodies of Hohenbuehelia Serotina. Phys Med. 2015;31(4):352-359. https://doi.org/10.1016/j.ejmp.2015.02.004.
  21. Liu F, Wang Z, Liu J, Li W. Radioprotective effect of orally administered beta-D-glucan derived from Saccharomyces cerevisiae. Int J Biol Macromol. 2018;115:572-579. https://doi.org/10.1016/j.ijbiomac.2018.04.098.
  22. Du J, Zhang P, Zhao H, et al. The mechanism for the radioprotective effects of zymosan-A in mice. J Cell Mol Med. 2018;22(4):2413-2421. https://doi.org/10.1111/jcmm. 13538.
  23. Vetvicka VC. [Beta]-glucans as natural biological response modifiers. New York, NY, USA: Nova Science Publishers, Inc.; 2013.
  24. Tang Q, Huang G, Zhao F, et al. The antioxidant activities of six (1→3)-β-D-glucan derivatives prepared from yeast cell wall. Int J Biol Macromol. 2017;98:216-221. https://doi.org/10.1016/j.ijbiomac.2017.01.132.
  25. Du B, Meenu M, Liu H., Xu B. A concise review on the molecular structure and function relationship of β-glucan. Int J Mol Sci. 2019; 20(16):E4032. https://doi.org/10.3390/ijms20164032.
  26. Liu Y, Ma Sh, Fu Q, et al. Effect of lentinan on membrane-bound protein expression in splenic lymphocytes under chronic low-dose radiation. Int Immunopharmacol. 2014;22(2):505-514. https://doi.org/10.1016/j.intimp. 2014.07.027.
  27. Wang L, Li X. Radioprotective effect of Hohenbuehelia serotina polysaccharides through mediation of ER apoptosis pathway in vivo. Int J Biol Macromol. 2019;127:18-26. https://doi.org/10.1016/j.ijbiomac.2018.12.267.
  28. Hofer M, Pospíšil M. Modulation of animal and human hematopoiesis by β-glucans: a review. Molecules. 2011;16(9):7969-7979. https://doi.org/10.3390/molecules 16097969.
  29. Liu F, Wang Z, Liu J, et al. The mechanisms for the radioprotective effect of beta-D-glucan on high linear-energy-transfer carbon ion irradiated mice. Int J Biol Macromol. 2019;131:282-292. https://doi.org/10.1016/j.ijbiomac.2019. 03.073.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Survival curves of mice after a total 7.5 Gy X-rays (K) and intragastric administration of beta-D-glucan (BG) in doses of 50, 250 or 500 mg/kg: а — using beta-D-glucan 1 h before irradiation; b — using beta-D-glucan 1 h after irradiation

Download (194KB)
3. Fig. 2. 30-day survival rate of mice exposed to X-ray radiation at a dose of 8 Gy and intragastric administration of beta-D-glucan (BG) in doses of 250, 500 or 1000 mg/kg

Download (107KB)
4. Fig. 3. Weight coefficients of organs of intact mice (K) or 21 days after a single intragastric administration of beta-D-glucan (BG, 500 mg/kg)

Download (88KB)
5. Fig. 1. Survival curves of mice after a total 7.5 Gy X-rays (K) and intragastric administration of beta-D-glucan (BG) in doses of 50, 250 or 500 mg/kg: а — using beta-D-glucan 1 h before irradiation; b — using beta-D-glucan 1 h after irradiation

Download (194KB)
6. Fig. 2. 30-day survival rate of mice exposed to X-ray radiation at a dose of 8 Gy and intragastric administration of beta-D-glucan (BG) in doses of 250, 500 or 1000 mg/kg

Download (107KB)
7. Fig. 3. Weight coefficients of organs of intact mice (K) or 21 days after a single intragastric administration of beta-D-glucan (BG, 500 mg/kg)

Download (88KB)

Copyright (c) 2020 Murzina E.V., Sofronov G.A., Simbirtsev A.S., Aksenova N.V., Veselova O.M., Zavirskiy A.V., Krylova T.G., Shamtsyan M.M.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 74760 от 29.12.2018 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies