Structural and functional disorders of the respiratory system in laboratory animals when intoxicated by pyrolysis products of chlorine-containing polymer materials

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Relevance. The widespread use of chlorine-containing polymer materials in the modern world is due to their various advantages over natural analogues. Given the continuing large number of fires, there is still a high risk of exposure to pyrolysis products of chlorine-containing polymer materials, primarily hydrogen chloride and carbon monoxide on the victims. The complexity of determining the toxic effect of pyrolysis products of chlorine-containing polymers makes it necessary to conduct toxicological experimental studies.

Intention. The goal is to evaluate the structural and functional disorders of the respiratory system in laboratory animals when intoxicated by pyrolysis products of chlorine-containing polymer materials.

Methodology. In an experimental study, pyrolysis of chlorine-containing polymer materials was performed. The study was performed on 96 male rats, in which vital function indicators, pulmonary coefficient, parameters of oxygenation and acid-base state of arterial blood were determined, and histological examination of tracheal and lung tissues was performed.

Results and Discussion. It was found that the pyrolysis of chlorinated paraffin (CP-70) with a mass of 7 g and sawdust with a mass of 3 g produces thermal degradation products containing hydrogen chloride at a concentration of 7325 ppm and carbon monoxide at a concentration of 1000 ppm. Exposure to pyrolysis products in laboratory animals resulted in a pronounced irritant effect during intoxication and in the early post-intoxication period. Microscopic examination of lung tissue 48 hours after exposure showed histological signs of interstitial phase of toxic pulmonary edema. We found a decrease in vital functions (heart rate, respiratory rate, rectal temperature) 24, 48 and 72 hours after exposure. Exposure to pyrolysis products led to a violation of gas exchange through the alveolar-capillary membrane, which was confirmed by a decrease in the index of oxygenation and saturation. Violation of the integrity of the alveolar-capillary membrane contributed to the penetration of fluid into the interstitial and alveolar space and the development of toxic pulmonary edema. An increase in the pulmonary coefficient (p < 0.05) was observed, after 24 and 48 hours, respectively.

Conclusion. As a result of the study, toxic pulmonary edema was simulated in laboratory animals by inhalation of pyrolysis products of chlorine-containing polymer materials, and structural and functional disorders of the respiratory system were determined. It was found that intoxication with pyrolysis products of chlorine-containing materials led to the development of inflammatory changes in the trachea and the manifestation of interstitial pulmonary edema. These changes were accompanied by the development of bradycardia, bradypnea, a decrease in body temperature, as well as an increase (p < 0.05) in the pulmonary coefficient, and the development of decompensated respiratory acidosis. The obtained results indicate that the formation of a toxic effect when exposed to pyrolysis products is due to the combined action of hydrogen chloride and carbon monoxide.

Full Text

Restricted Access

About the authors

P. K. Potapov

Military Medical Academy named after S.M. Kirov

Author for correspondence.
Email: Footballprospb@gmail.com
SPIN-code: 5979-4490

adjunct at the Department of Military Toxicology and Medical Protection

Russian Federation, Saint Petersburg, Russia

Yu. V. Dimitriev

State Scientific Research Testing Institute of Military Medicine, Saint Petersburg

Email: FORWARDspb@mail.ru
SPIN-code: 5979-4490

Deputy Head of the Department

Russian Federation, Saint Petersburg, Russia

P. G. Tolkach

Military Medical Academy named after S.M. Kirov

Email: pusher6@yandex.ru

Candidate of Medical Sciences, teacher at the Department of Military Toxicology and Medical Protection

Russian Federation, Saint Petersburg, Russia

References

  1. Ильина М.Е., Курочкин И.Н. Разработка полимерной композиции пониженной горючести на основе пластифицированного поливинилхлорида с использованием шламового отхода машиностроительного производства // Международный научно-исследовательский журнал. – 2019. – № 12-1. – С. 65–68. [Ilyina MЕ, Kurochkin IN. Development of polymer composition with reduced flammability based on plasticized polyvinyl chloride using sludge waste from engineering production. International research journal. 2019;(12-1):65-68. (In Russ.)]. https://doi.org/10.23670/IRJ.2019.90.12.013.
  2. Froneberg B, Johnson PL, Landrigan PJ. Respiratory illness caused by overheating of polyvinyl chloride. Br J Ind Med. 1982;39(3):239-243. https://doi.org/10.1136/oem.39.3.239.
  3. Ибрагимов Р.В., Коняева Ю.А., Черноусова Н.В. Влияние различных антипиренов на характеристики пожаробезопасности поливинилхлоридных композиций // Всероссийская научная студенческая конференция «Инновационное развитие легкой и текстильной промышленности (ИНТЕКС-2016)»: тезисы докладов. – М., 2016. – С. 110–112. [Ibragimov RV, Konyaeva YuA, Chernousova NV. Vliyanie razlichnykh antipirenov na kharakteristiki pozharobezopasnosti polivinilkhloridnykh kompozitsii. (Conference proceedings) Vserossiiskaya nauchnaya studencheskaya konferentsiya “Innovatsionnoe razvitie legkoi i tekstil’noi promyshlennosti (INTEKS-2016)”: tezisy dokladov. Moscow; 2016. Р. 110-112. (In Russ.)]
  4. Альмеева Л.Р., Тангатаров А.Ф. Хлорированные парафины как антипирены // Современные технологии обеспечения гражданской обороны и ликвидации последствий чрезвычайных ситуаций. – 2015. – № 1-1. – С. 50–53. [Al’meeva LR, Tangatarov AF. Khlorirovannye parafiny kak antipireny. Sovremennye tekhnologii obespecheniya grazhdanskoi oborony i likvidatsii posledstvii chrezvychainykh situatsii. 2015;(1-1):50-53. (In Russ.)]
  5. Wang C, Gao W, Liang Y, et al. Concentrations and congener profiles of chlorinated paraffins in domestic polymeric products in China. Environ Pollut. 2018;238:326-335. https://doi.org/10.1016/j.envpol.2018.02.078.
  6. Мадорский С.Л. Термическое разложение органических полимеров. – М.: Мир, 1967. – 328 с. [Madorskii SL. Termicheskoe razlozhenie organicheskikh polimerov. Moscow: Mir, 1967. 328 р. (In Russ.)]
  7. Сарманаев С.Х., Башарин В.А., Толкач П.Г., и др. Токсикохимическое поражение на пожаре // Medline.ru. Биомедицинский журнал. – 2015. – Т. 16. – № 2. – С. 434–442. [Sarmanaev SH, Basharin VA, Tolkach PG,et al. The toxic-chemical damage on fire. Medline.ru. 2015;16(2):434-442. (In Russ.)]
  8. Толкач П.Г., Башарин В.А., Чепур С.В. Экспериментальная модель токсического отека легких при ингаляции продуктов пиролиза хлорированного парафина // Токсикологический вестник. – 2018. – № 6. – С. 8–11. [Tolkach PG, Basharin VA, Chepur SV. Toxic pulmonary edema by inhalation of pyrolysis products of chlorinated paraffin-70 in rats. Toxicological review. 2018;(6):8-11. (In Russ.)]. https://doi.org/10.36946/0869-7922-2018-6-8-11.
  9. Торкунов П.А., Шабанов П.Д. Токсический отек легких: патогенез, моделирование, методология изучения // Обзоры по клинической фармакологии и лекарственной терапии. – 2009. – Т. 6. – № 2. – С. 3–54. [Torkunov PA, Shabanov PD. Pulmonary edema: pathogenesis, modeling, methodology for studying. Reviews on clinical pharmacology and drug therapy. 2009;6(2):3-54 (In Russ.)]
  10. Зобнин Ю.В. Отравление монооксидом углерода (угарным газом). – СПб., 2011. – 86 с. [Zobnin YuV. Otravlenie monooksidom ugleroda (ugarnym gazom). Saint Petersburg; 2011. 86 р. (In Russ.)]
  11. Prockop LD, Chichkova RI. Carbon monoxide intoxication: an updated review. J Neurol Sci. 2007;262(1-2):122-130. https://doi.org/10.1016/j.jns.2007.06.037.
  12. Директива 2010/63/EU Европейского парламента и Совета Европейского союза от 22 сентября 2010 г. по охране животных, используемых в научных целях. [Directive 2010/63/EU of the European Parliament and of the Council of the European Union on the protection of animals used for scientific purposes, dated 22 September 2010. (In Russ.)]. Доступно по: https://base.garant.ru/70350564/. Ссылка активна на 12.07.2020.
  13. Гланц С. Медико-биологическая статистика / пер. с англ. Ю.А. Данилова; под ред. Н.Е. Бузикашвили, Д.В. Самойлова. – М.: Практика, 1999. – 459 с. [Glants S. Mediko-biologicheskaya statistika. Translated from English Yu.A. Danilov, ed. by N.E. Buzikashvili, D.V. Samoilov. Moscow: Praktika; 1999. 459 р. (In Russ.)]
  14. DDE. Hazard summary [cited April 1992; updated January 2000]. Available from: https://www.epa.gov/sites/production/files/2016-09/documents/dde.pdf.
  15. Тиунов Л.А., Кустов В.В. Токсикология окиси углерода. – М.: Мир, 1980. – 285 с. [Tiunov LA, Kustov VV. Toksikologiya okisi ugleroda. Moscow: Mir; 1980. 285 рs. (In Russ.)]
  16. Боян Ю.К. Токсичность продуктов горения синтетических полимеров. – М.: НИИТЭХИМ, 1978. – 14 с. [Boyan YuK. Toksichnost’ produktov goreniya sinteticheskikh polimerov. Moscow: NIITEKHIM, 1978. 14 р. (In Russ.)]
  17. Литвицкий П.Ф. Клиническая патофизиология: учебник. – М.: СпецЛит, 2015. – 440 c. [Litvitskii PF. Klinicheskaya patofiziologiya: uchebnik. Moscow: SpetsLit; 2015. 440 р. (In Russ.)]
  18. Боброва В.И., Никифоров С.Н. Нарушение дыхания при патологии центральной нервной системы // Украинский неврологический журнал. – 2013. – № 2. – С. 20–27. [Bobrova VI, Nikiforov SN. Violation of breathing at pathology of the central nervous system. Ukrainian neurosurgical journal. 2013;(2):20-27. (In Russ.)]
  19. Маршак М.Е. Физиологическое значение углекислоты. – М.: Медицина, 1969. – 123 с. [Marshak ME. Fiziologicheskoe znachenie uglekisloty. Moscow: Meditsina; 1969. 123 р. (In Russ.)]
  20. White CV, Martin JG. Chlorine gas inhalation: human clinical evidence of toxicity an experience in animal models. Proc Am Thorac Soc. 2010;7(4):257-263. https://doi.org/10.1513/pats.201001-008SM.
  21. Alarie Y. Toxicity of fire smoke. Critical review toxicology. 2002;32(4):259-289. https://doi.org/10.1080/20024091064246.
  22. Чучалин А.Г. Отек легких: физиология легочного кровообращения и патофизиология отека легких // Пульмонология. – 2005. – № 4. – С. 9–18. [Chuchalin AG. Pulmonary oedema: physiology of lung circulation, pathophysiology of pulmonary oedema. Russian pulmonology journal. 2005;(4):9-18. (In Russ.)]. https://doi.org/10.18093/0869-0189-2005-0-4-9-18.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Potapov P.K., Dimitriev Y.V., Tolkach P.G.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 74760 от 29.12.2018 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies