The study of the spectrum of pharmacological activity of the new original NT-3 mimetic dipeptide GTS-302

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: The association of the pathogenesis of neurodegenerative diseases, depression, anxiety, and cognitive disorders with the deficit of neurotrophin-3 determines the prospect of creating drugs with a similar mechanism of action. Since the use of full-size neurotrophin-3 is limited by unsatisfactory pharmacokinetic properties, it is relevant to create low-molecular-weight mimetics of neurotrophin-3 that are active when administered systemically. A dimeric dipeptide mimetic of the 4th loop of neurotrophin-3, hexamethylenediamide bis(N-γ-oxibutyryl-L-glutamyl-L-asparagine) GTS-302, which activates TrkC and TrkB receptors, has been developed at the V.V. Zakusov Research Institute of Pharmacology.

AIM: The aim of this study was to investigate the spectrum of pharmacological activity of GTS-302.

MATERIALS AND МETHODS: The pharmacological effects of GTS-302 were investigated following its intraperitoneal administration. The antidepressant-like activity of GTS-302 was studied in the forced swim test in mice after acute and 7-day administration. The anxiolytic and cognitive activity of the dipeptide were studied in the elevated plus maze test in mice and the novel object recognition test in rats after acute administration, respectively. The effect of GTS-302 on pain sensitivity was studied in the hot plate test in mice after acute administration.

RESULTS: It was found that GTS-302 exhibits antidepressant-like activity after acute administration at doses of 0.5, 1.0, 5.0 and 10 mg/kg. After 7-day administration, the antidepressant-like activity of GTS-302 was more pronounced in terms of effect size and statistical significance. The dipeptide GTS-302 at doses of 1.0, 5.0 and 10.0 mg/kg showed anxiolytic and cognitive activity and did not affect pain sensitivity.

CONCLUSIONS: The pharmacological spectrum of the low-molecular-weight mimetic of neurotrophin-3, dipeptide GTS-302, revealed upon systemic administration includes a number of neuropsychotropic effects characteristic of the full-sized neurotrophin. This allows us to consider GTS-302 as a potential neuropsychotropic drug.

Full Text

Restricted Access

About the authors

Dmitrii M. Nikiforov

Zakusov Research Institute of Pharmacology

Email: mrdmwriter@gmail.com
ORCID iD: 0000-0002-8901-3101
SPIN-code: 7028-8335

Junior Reseаrch Associate at the Laboratory of Peptide Bioregulators of the Department of Medicinal Chemistry

Russian Federation, Moscow

Polina Y. Povarnina

Zakusov Research Institute of Pharmacology

Author for correspondence.
Email: povarnina@gmail.com
ORCID iD: 0000-0003-3278-8915
SPIN-code: 5498-6724

Cand. Sci. (Biol.), Senior Reseаrch Associate at the Laboratory of Peptide Bioregulators of the Department of Medicinal Chemistry

Russian Federation, Moscow

Tatiana A. Gudasheva

Zakusov Research Institute of Pharmacology

Email: tata-sosnovka@mail.ru
ORCID iD: 0000-0002-5185-4474
SPIN-code: 4970-0006
Scopus Author ID: 7003604408

Dr. Sci. (Biol.), Professor, Corresponding Member of the Russian Academy of Sciences, Head of the Department of Medicinal Chemistry

Russian Federation, Moscow

Anna V. Nadorova

Zakusov Research Institute of Pharmacology

Email: av-nadorova@mail.ru
ORCID iD: 0000-0002-0463-2190
ResearcherId: R-5731-2018

Reseаrch Associate at the Laboratory of Pharmacological Regulation of Addiction States

Russian Federation, Moscow

Larisa G. Kolik

Zakusov Research Institute of Pharmacology

Email: lgkolik@mail.ru
ORCID iD: 0000-0002-9847-8058
SPIN-code: 9126-6922

Dr. Sci. (Biol.), Professor of the Russian Academy of Sciences, Head of the Laboratory of Pharmacological Regulation of Addiction States

Russian Federation, Moscow

Elena A. Valdman

Zakusov Research Institute of Pharmacology

Email: evaldman@mail.ru
ORCID iD: 0000-0001-9716-499X
SPIN-code: 6806-3799

MD, Dr. Sci. (Med.), Professor, Leading Research Associate at the Laboratory of Psychopharmacology

Russian Federation, Moscow

Julia V. Vakhitova

Zakusov Research Institute of Pharmacology, , Russia

Email: juvv73@gmail.com
ORCID iD: 0000-0002-7062-8261
SPIN-code: 1391-4533

Dr. Sci. (Biol.), Corresponding Member of the Russian Academy of Sciences, Director

Russian Federation, Moscow

Sergey B. Seredenin

Zakusov Research Institute of Pharmacology

Email: seredeninpharm@mail.ru
ORCID iD: 0000-0003-4482-9331
SPIN-code: 3896-4655

MD, Dr. Sсi. (Med.), Professor, Academician of the Russian Academy of Sciences, Head of the Department of Pharmacogenetics

Russian Federation, Moscow

References

  1. Huang EJ, Wilkinson GA, Fariñas I, et al. Expression of Trk receptors in the developing mouse trigeminal ganglion: in vivo evidence for NT-3 activation of TrkA and TrkB in addition to TrkC. Development. 1999;126(10):2191–2203. doi: 10.1242/dev.126.10.2191
  2. Seidah NG, Benjannet S, Pareek S, et al. Cellular processing of the neurotrophin precursors of NT3 and BDNF by the mammalian proprotein convertases. FEBS Lett. 1996;379(3):247–250. doi: 10.1016/0014-5793(95)01520-5
  3. Sandell JH, Baker LS Jr, Davidov T. The distribution of neurotrophin receptor TrkC-like immunoreactive fibers and varicosities in the rhesus monkey brain. Neuroscience. 1998;86(4):1181–1194. doi: 10.1016/S0306-4522(98)00069-4
  4. Wysokiński A. Serum levels of brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) in depressed patients with schizophrenia. Nord J Psychiatry. 2016;70(4):267–271. doi: 10.3109/08039488.2015.1087592
  5. Fernandes BS, Gama CS, Walz JC, et al. Increased neurotrophin-3 in drug-free subjects with bipolar disorder during manic and depressive episodes. J Psychiatr Res. 2010;44(9):561–565. doi: 10.1016/j.jpsychires.2009.11.020
  6. Zhang J, Shi Q, Yang P, et al. Neuroprotection of neurotrophin-3 against focal cerebral ischemia/reperfusion injury is regulated by hypoxia-responsive element in rats. Neuroscience. 2012;222:1–9. doi: 10.1016/j.neuroscience.2012.07.023
  7. Shirayama Y, Chen AC, Nakagawa S, et al. Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J Neurosci. 2002;22(8):3251–3261. doi: 10.1523/JNEUROSCI.22-08-03251.2002
  8. D’Amico D, Gener T, de Lagrán MM, et al. Infralimbic neurotrophin-3 infusion rescues fear extinction impairment in a mouse model of pathological fear. Neuropsychopharmacology. 2017;42(2):462–472. doi: 10.1038/npp.2016.154
  9. Yan Z, Shi X, Wang H, et al. Neurotrophin-3 promotes the neuronal differentiation of BMSCs and improves cognitive function in a rat model of Alzheimer’s disease. Front Cell Neurosci. 2021;15:629356. doi: 10.3389/fncel.2021.629356
  10. Poduslo JF, Curran GL. Permeability at the blood-brain and blood-nerve barriers of the neurotrophic factors: NGF, CNTF, NT-3, BDNF. Brain Res Mol Brain Res. 1996;36(2):280–286. doi: 10.1016/0169-328x(95)00250-v
  11. Malcangio M, Garrett NE, Cruwys S, Tomlinson DR. Nerve growth factor- and neurotrophin-3-induced changes in nociceptive threshold and the release of substance P from the rat isolated spinal cord. J Neurosci. 1997;17(21):8459–8467. doi: 10.1523/JNEUROSCI.17-21-08459.1997
  12. White DM. Contribution of neurotrophin-3 to the neuropeptide Y-induced increase in neurite outgrowth of rat dorsal root ganglion cells. Neuroscience. 1998;86(1):257–263. doi: 10.1016/S0306-4522(98)00034-7
  13. Chen D, Brahimi F, Angell Y, et al. Bivalent peptidomimetic ligands of TrkC are biased agonists and selectively induce neuritogenesis or potentiate neurotrophin-3 trophic signals. ACS Chem Biol. 2009;4(9):769–781. doi: 10.1021/cb9001415
  14. Naletova I, Grasso GI, Satriano C, et al. Copper complexes of synthetic peptides mimicking neurotrophin-3 enhance neurite outgrowth and CREB phosphorylation. Metallomics. 2019;11(9):1567–1578. doi: 10.1039/c9mt00045c
  15. Pattarawarapan M, Zaccaro MC, Saragovi UH, et al. New templates for syntheses of ring-fused, C(10) beta-turn peptidomimetics leading to the first reported small-molecule mimic of neurotrophin-3. J Med Chem. 2002;45(20):4387–4390. doi: 10.1021/jm0255421
  16. Wan G, Gómez-Casati ME, Gigliello AR, et al. Neurotrophin-3 regulates ribbon synapse density in the cochlea and induces synapse regeneration after acoustic trauma. Elife. 2014;3:e03564. doi: 10.7554/eLife.03564
  17. Gudasheva TA, Antipova TA, Seredenin SB. Novel low-molecular-weight mimetics of the nerve growth factor. Doklady Biochemistry and Biophysics. 2010;434(1):262–265. doi: 10.1134/S160767291005011X
  18. Gudasheva TA, Povarnina PY, Antipova TA, et al. Dimeric dipeptide mimetics of the nerve growth factor Loop 4 and Loop 1 activate TRKA with different patterns of intracellular signal transduction. J Biomed Sci. 2015;22:106. doi: 10.1186/s12929-015-0198-z
  19. Gudasheva TA, Povarnina PY, Tarasiuk AV, Seredenin SB. Low-molecular mimetics of nerve growth factor and brain-derived neurotrophic factor: Design and pharmacological properties. Med Res Rev. 2021;41(5):2746–2774. doi: 10.1002/med.21721
  20. Gudasheva TA, Sazonova NM, Tarasiuk AV, et al. The first dipeptide mimetic of neurotrofin-3: design and pharmacological properties. Doklady Biochemistry and Biophysics. 2022;505(1):160–165. doi: 10.1134/s1607672922040032
  21. Porsolt RD, Anton G, Blavet N, et al. Behavioural despair in rats: a new model sensitive to antidepressant treatments. Eur J Pharmacol. 1978;47(4):379–391. doi: 10.1016/0014-2999(78)90118-8
  22. Carr GV, Lucki I. Chapter 4.2 - The role of serotonin in depression. In: Handbook of Behavioral Neuroscience. 2010;21:493–505. doi: 10.1016/S1569-7339(10)70098-9
  23. Pellow S, Chopin P, File SE, et al. Validation of open: closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods. 1985;14(3):149–167. doi: 10.1016/0165-0270(85)90031-7
  24. Lister RG. The use of a plus-maze to measure anxiety in the mouse. Psychopharmacology (Berl). 1987;92(2):180–185. doi: 10.1007/BF00177912
  25. Handley SL, Mithani S. Effects of alpha-adrenoceptor agonists and antagonists in a maze-exploration model of ‘fear’-motivated behaviour. Naunyn Schmiedebergs Arch Pharmacol. 1984;327(1):1–5. doi: 10.1007/bf00504983
  26. Montgomery KC. The relation between fear induced by novel stimulation and exploratory behavior. J Comp Physiol Psychol. 1955;48(4):254–260. doi: 10.1037/h0043788
  27. Walf AA, Frye CA. The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nat Protoc. 2007;2(2):322–328. doi: 10.1038/nprot.2007.44
  28. Ennaceur A, Delacour J. A new one-trial test for neurobiological studies of memory in rats. 1: Behavioral data. Behav Brain Res. 1988;31(1):47–59. doi: 10.1016/0166-4328(88)90157-X
  29. Antunes M, Biala G. The novel object recognition memory: neurobiology, test procedure, and its modifications. Cogn Process. 2012;13(2):93–110. doi: 10.1007/s10339-011-0430-z
  30. Kastin AJ, Pan W. Peptides and hormesis. Crit Rev Toxicol. 2008;38(7):629–631. doi: 10.1080/10408440802026372
  31. De Miranda AS, de Barros JLVM, Teixeira AL. Is neurotrophin-3 (NT-3): a potential therapeutic target for depression and anxiety? Expert Opin Ther Targets. 2020;24(12):1225–1238. doi: 10.1080/14728222.2020.1846720
  32. Martin-Iverson MT, Todd KG, Altar CA. Brain-derived neurotrophic factor and neurotrophin-3 activate striatal dopamine and serotonin metabolism and related behaviors: interactions with amphetamine. J Neurosci. 1994;14(3 Pt 1):1262–1270. doi: 10.1523/jneurosci.14-03-01262.1994
  33. Shimazu K, Zhao M, Sakata K, et al. NT-3 facilitates hippocampal plasticity and learning and memory by regulating neurogenesis. Learn Mem. 2006;13(3):307–315. doi: 10.1101/lm.76006
  34. Hernández-Echeagaray E. Neurotrophin-3 modulates synaptic transmission. Vitam Horm. 2020;114:71–89. doi: 10.1016/bs.vh.2020.04.008
  35. Ogłodek EA, Just MJ, Szromek AR, et al. Melatonin and neurotrophins NT-3, BDNF, NGF in patients with varying levels of depression severity. Pharmacol Rep. 2016;68(5):945–951. doi: 10.1016/j.pharep.2016.04.003
  36. Fox AS, Souaiaia T, Oler JA, et al. Dorsal amygdala neurotrophin-3 decreases anxious temperament in primates. Biol Psychiatry. 2019;86(12):881–889. doi: 10.1016/j.biopsych. 2019.06.022
  37. Armengol L, Gratacòs M, Pujana MA, et al. 5’ UTR-region SNP in the NTRK3 gene is associated with panic disorder. Mol Psychiatry. 2002;7(9):928–930. doi: 10.1038/sj.mp.4001134
  38. Muiños-Gimeno M, Guidi M, Kagerbauer B, et al. Allele variants in functional MicroRNA target sites of the neurotrophin-3 receptor gene (NTRK3) as susceptibility factors for anxiety disorders. Hum Mutat. 2009;30(7):1062–1071. doi: 10.1002/humu.21005
  39. Liu DB, Yang JS, Lu QB, et al. Effect of NT-3 on infection-induced memory impairment of neonatal rats. Eur Rev Med Pharmacol Sci. 2019;23(5):2182–2187. doi: 10.26355/eurrev_201903_17264
  40. Ramos-Languren LE, Escobar ML. Plasticity and metaplasticity of adult rat hippocampal mossy fibers induced by neurotrophin-3. Eur J Neurosci. 2013;37(8):1248–1259. doi: 10.1111/ejn.12141
  41. Siuciak JA, Altar CA, Wiegand SJ, et al. Antinociceptive effect of brain-derived neurotrophic factor and neurotrophin-3. Brain Res. 1994;633(1–2):326–330. doi: 10.1016/0006-8993(94)91556-3

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure. Studying effect of dipeptide GTS-302 on locomotor activity of BALB/c mice; c. u. — conventional units. Data are presented as means and standard errors of the mean

Download (50KB)

Copyright (c) 2023 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 74760 от 29.12.2018 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies