Gap junction protein connexin-43 and its distribution in different tissues

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Connexins is the family of proteins which in vertebrates form gap junctions – intercellular contacts allowing the passage of small molecules between cells. Connexin-43 is the most abundant member of connexin family in human. Its cellular functions are diverse, and its localization in the human body is the most wide across all connexins. Most intensive research is devoted to the investigation of соnnexin-43 role in intercellular communication and its functional features in the vital organs — heart and brain. Due to high abundance in different tissues, at the moment there is the large amount of various experimental data, which are hard to assemble into global picture. This work aims to present generalized information about the distribution and functions of соnnexin-43 in various tissues and further prospects for studying this protein using the currently available literature data.

Full Text

Restricted Access

About the authors

Mikhail S. Filippov

Institute of Experimental Medicine

Email: msfilippov@mail.ru
SPIN-code: 7789-7219

Research Laboratory Assistant, Laboratory of Functional Morphology of the Central and Peripheral Nervous System, Department of General and Special Morphology

Russian Federation, Saint Petersburg

Dmitrii E. Korzhevskii

Institute of Experimental Medicine

Author for correspondence.
Email: DEK2@yandex.ru
ORCID iD: 0000-0002-2456-8165
SPIN-code: 3252-3029

MD, Dr. Sci. (Med.), Professor of the Russian Academy of Sciences, Head of the Laboratory of Functional Morphology of the Central and Peripheral Nervous System, Department of General and Special Morphology

Russian Federation, Saint Petersburg

References

  1. Beyer EC, Berthoud VM. The family of connexin genes. Connexins. 2009:3–26. doi: 10.1007/978-1-59745-489-6_1
  2. Laird DW. Life cycle of connexins in health and disease. Biochem J. 2006;394(Pt 3):527–543. doi: 10.1042/BJ20051922
  3. Pfeifer I, Anderson C, Werner R, Oltra E. Redefining the structure of the mouse connexin43 gene: selective promoter usage and alternative splicing mechanisms yield transcripts with different translational efficiencies. Nucleic Acids Res. 2004;32(15):4550–4562. doi: 10.1093/nar/gkh792
  4. Beyer EC, Paul DL, Goodenough DA. Connexin43: a protein from rat heart homologous to a gap junction protein from liver. J Cell Biol. 1987;105(6 Pt 1):2621–2629. doi: 10.1083/jcb.105.6.2621
  5. Schiavi A, Hudder A, Werner R. Connexin43 mRNA contains a functional internal ribosome entry site. FEBS Lett. 1999;464(3):118–122. doi: 10.1016/s0014-5793(99)01699-3
  6. Laird DW. Syndromic and non-syndromic disease-linked Cx43 mutations. FEBS Lett. 2014;588(8):1339–1348. doi: 10.1016/j.febslet.2013.12.022
  7. Leithe E, Mesnil M, Aasen T. The connexin 43 C-terminus: A tail of many tales. Biochim Biophys Acta Biomembr. 2018;1860(1):48–64. doi: 10.1016/j.bbamem.2017.05.008
  8. Chatterjee B, Chin AJ, Valdimarsson G, et al. Developmental regulation and expression of the zebrafish connexin43 gene. Dev Dyn. 2005;233(3):890–906. doi: 10.1002/dvdy.20426
  9. Laird DW, Puranam KL, Revel JP. Turnover and phosphorylation dynamics of connexin43 gap junction protein in cultured cardiac myocytes. Biochem J. 1991;273(1):67–72. doi: 10.1042/bj2730067
  10. Maeda S, Nakagawa S, Suga M, et al. Structure of the connexin 26 gap junction channel at 3.5 A resolution. Nature. 2009;458(7238):597–602. doi: 10.1038/nature07869
  11. Lee HJ, Cha HJ, Jeong H, et al. Conformational changes in the human Cx43/GJA1 gap junction channel visualized using cryo-EM. Nat Commun. 2023;14(1):931. doi: 10.1038/s41467-023-36593-y
  12. Goodenough DA, Goliger JA, Paul DL. Connexins, connexons, and intercellular communication. Annu Rev Biochem. 1996;65:475–502. doi: 10.1146/annurev.bi.65.070196.002355
  13. Goodenough DA, Paul DL. Gap junctions. Cold Spring Harb Perspect Biol. 2009;1(1):a002576. doi: 10.1101/cshperspect.a002576
  14. Dhein S, Salameh A. Remodeling of cardiac gap junctional cell-cell coupling. Cells. 2021;10(9):2422. doi: 10.3390/cells10092422
  15. Thévenin AF, Kowal TJ, Fong JT, et al. Proteins and mechanisms regulating gap-junction assembly, internalization, and degradation. Physiology (Bethesda). 2013;28(2):93–116. doi: 10.1152/physiol.00038.2012
  16. Kehat I, Gepstein A, Spira A, et al. High-resolution electrophysiological assessment of human embryonic stem cell-derived cardiomyocytes: a novel in vitro model for the study of conduction. Circ Res. 2002;91(8):659–661. doi: 10.1161/01.res.0000039084.30342.9b
  17. Carmeliet E. Conduction in cardiac tissue. Historical reflections. Physiol Rep. 2019;7(1):e13860. doi: 10.14814/phy2.13860
  18. Delmar M, Makita N. Cardiac connexins, mutations and arrhythmias. Curr Opin Cardiol. 2012;27(3):236–241. doi: 10.1097/HCO.0b013e328352220e
  19. De Mello WC. Exchange of chemical signals between cardiac cells. Fundamental role on cell communication and metabolic cooperation. Exp Cell Res. 2016;346(1):130–136. doi: 10.1016/j.yexcr.2016.05.009
  20. Jansen JA, Noorman M, Musa H, et al. Reduced heterogeneous expression of Cx43 results in decreased Nav1.5 expression and reduced sodium current that accounts for arrhythmia vulnerability in conditional Cx43 knockout mice. Heart Rhythm. 2012;9(4):600–607. doi: 10.1016/j.hrthm.2011.11.025
  21. Yang BF, Shi JZ, Li J, et al. Expression of Cx43 and Cx45 in cardiomyocytes of an overworked rat model. Fa Yi Xue Za Zhi. 2019;35(5):567–571. doi: 10.12116/j.issn.1004-5619.2019.05.010
  22. Duffy HS. The molecular mechanisms of gap junction remodeling. Heart Rhythm. 2012;9(8):1331–1334. doi: 10.1016/j.hrthm.2011.11.048
  23. Mezache L, Nuovo GJ, Suster D, et al. Histologic, viral, and molecular correlates of heart disease in fatal COVID-19. Ann Diagn Pathol. 2022;60:151983. doi: 10.1016/j.anndiagpath.2022.151983
  24. Wahl CM, Schmidt C, Hecker M, Ullrich ND. Distress-mediated remodeling of cardiac connexin-43 in a novel cell model for arrhythmogenic heart diseases. Int J Mol Sci. 2022;23(17):10174. doi: 10.3390/ijms231710174
  25. Michela P, Velia V, Aldo P, Ada P. Role of connexin 43 in cardiovascular diseases. Eur J Pharmacol. 2015;768:71–76. doi: 10.1016/j.ejphar.2015.10.030
  26. Dhein S. Gap junction channels in the cardiovascular system: pharmacological and physiological modulation. Trends Pharmacol Sci. 1998;19(6):229–241. doi: 10.1016/s0165-6147(98)01192-4
  27. Eloff BC, Gilat E, Wan X, Rosenbaum DS. Pharmacological modulation of cardiac gap junctions to enhance cardiac conduction: evidence supporting a novel target for antiarrhythmic therapy. Circulation. 2003;108(25):3157–3163. doi: 10.1161/01.CIR.0000101926.43759.10
  28. De Vuyst E, Boengler K, Antoons G, et al. Pharmacological modulation of connexin-formed channels in cardiac pathophysiology. Br J Pharmacol. 2011;163(3):469–483. doi: 10.1111/j.1476-5381.2011.01244.x
  29. Sufieva DA, Kirik OV, Korzhevskii DE. Astrocyte markers in the tanycytes of the third brain ventricle in postnatal development and aging in rats. Russ J Dev Biol. 2019;50(3):146–153. doi: 10.1134/S1062360419030068
  30. Yamamoto T, Ochalski A, Hertzberg EL, Nagy JI. On the organization of astrocytic gap junctions in rat brain as suggested by LM and EM immunohistochemistry of connexin43 expression. J Comp Neurol. 1990;302(4):853–883. doi: 10.1002/cne.903020414
  31. Rash JE, Yasumura T, Dudek FE, Nagy JI. Cell-specific expression of connexins and evidence of restricted gap junctional coupling between glial cells and between neurons. J Neurosci. 2001;21(6):1983–2000. doi: 10.1523/JNEUROSCI.21-06-01983.2001
  32. Nagy JI, Patel D, Ochalski PA, Stelmack GL. Connexin30 in rodent, cat and human brain: selective expression in gray matter astrocytes, co-localization with connexin43 at gap junctions and late developmental appearance. Neuroscience. 1999;88(2):447–468. doi: 10.1016/s0306-4522(98)00191-2
  33. Orthmann-Murphy JL, Abrams CK, Scherer SS. Gap junctions couple astrocytes and oligodendrocytes. J Mol Neurosci. 2008;35(1):101–116. doi: 10.1007/s12031-007-9027-5
  34. Magnotti LM, Goodenough DA, Paul DL. Functional heterotypic interactions between astrocyte and oligodendrocyte connexins. Glia. 2011;59(1):26–34. doi: 10.1002/glia.21073
  35. Wasseff SK, Scherer SS. Cx32 and Cx47 mediate oligodendrocyte:astrocyte and oligodendrocyte:oligodendrocyte gap junction coupling. Neurobiol Dis. 2011;42(3):506–513. doi: 10.1016/j.nbd.2011.03.003
  36. Connors BW, Long MA. Electrical synapses in the mammalian brain. Annu Rev Neurosci. 2004;27:393–418. doi: 10.1146/annurev.neuro.26.041002.131128
  37. Rash JE, Yasumura T, Davidson KG, et al. Identification of cells expressing Cx43, Cx30, Cx26, Cx32 and Cx36 in gap junctions of rat brain and spinal cord. Cell Commun Adhes. 2001;8(4–6):315–320. doi: 10.3109/15419060109080745
  38. Jiménez AJ, Domínguez-Pinos MD, Guerra MM, et al. Structure and function of the ependymal barrier and diseases associated with ependyma disruption. Tissue Barriers. 2014;2:e28426. doi: 10.4161/tisb.28426
  39. Zhang J, Chandrasekaran G, Li W, et al. Wnt-PLC-IP3-Connexin-Ca2+ axis maintains ependymal motile cilia in zebrafish spinal cord. Nat Commun. 2020;11(1):1860. doi: 10.1038/s41467-020-15248-2
  40. Liu X, Bolteus AJ, Balkin DM, et al. GFAP-expressing cells in the postnatal subventricular zone display a unique glial phenotype intermediate between radial glia and astrocytes. Glia. 2006;54(5):394–410. doi: 10.1002/glia.20392
  41. Roales-Buján R, Páez P, Guerra M, et al. Astrocytes acquire morphological and functional characteristics of ependymal cells following disruption of ependyma in hydrocephalus. Acta Neuropathol. 2012;124(4):531–546. doi: 10.1007/s00401-012-0992-6
  42. Mambetisaeva ET, Gire V, Evans WH. Multiple connexin expression in peripheral nerve, Schwann cells, and Schwannoma cells. J Neurosci Res. 1999;57(2):166–175. doi: 10.1002/(SICI)1097-4547(19990715)57:2<166::AID-JNR2>3.0.CO;2-Y
  43. Yoshimura T, Satake M, Kobayashi T. Connexin43 is another gap junction protein in the peripheral nervous system. J Neurochem. 1996;67(3):1252–1258. doi: 10.1046/j.1471-4159.1996.67031252.x
  44. Procacci P, Magnaghi V, Pannese E. Perineuronal satellite cells in mouse spinal ganglia express the gap junction protein connexin43 throughout life with decline in old age. Brain Res Bull. 2008;75(5):562–569. doi: 10.1016/j.brainresbull.2007.09.007
  45. Risley MS, Tan IP, Roy C, Sáez JC. Cell-, age- and stage-dependent distribution of connexin43 gap junctions in testes. J Cell Sci. 1992;103(1):81–96. doi: 10.1242/jcs.103.1.81
  46. Steger K, Tetens F, Bergmann M. Expression of connexin 43 in human testis. Histochem Cell Biol. 1999;112(3):215–220. doi: 10.1007/s004180050409
  47. Knapczyk-Stwora K, Durlej-Grzesiak M, Duda M, Slomczynska M. Expression of connexin 43 in the porcine foetal gonads during development. Reprod Domest Anim. 2013;48(2):272–277. doi: 10.1111/j.1439-0531.2012.02144.x
  48. Pérez-Armendariz EM, Lamoyi E, Mason JI, et al. Developmental regulation of connexin 43 expression in fetal mouse testicular cells. Anat Rec. 2001;264(3):237–246. doi: 10.1002/ar.1164
  49. Almeida J, Conley AJ, Mathewson L, Ball BA. Expression of anti-Müllerian hormone, cyclin-dependent kinase inhibitor (CDKN1B), androgen receptor, and connexin 43 in equine testes during puberty. Theriogenology. 2012;77(5):847–857. doi: 10.1016/j.theriogenology.2011.09.007
  50. Rüttinger C, Bergmann M, Fink L, et al. Expression of connexin 43 in normal canine testes and canine testicular tumors. Histochem Cell Biol. 2008;130(3):537–548. doi: 10.1007/s00418-008-0432-9
  51. Ahmed N, Yang P, Chen H, et al. Characterization of inter-Sertoli cell tight and gap junctions in the testis of turtle: Protect the developing germ cells from an immune response. Microb Pathog. 2018;123:60–67. doi: 10.1016/j.micpath.2018.06.037
  52. Izzo G, d’Istria M, Ferrara D, et al. Connexin 43 expression in the testis of the frog Rana esculenta. Zygote. 2006;14(4):349–357. doi: 10.1017/S096719940600390X
  53. Kotula-Balak M, Hejmej A, Sadowska J, Bilinska B. Connexin 43 expression in human and mouse testes with impaired spermatogenesis. Eur J Histochem. 2007;51(4):261–268. doi: 10.4081/1150
  54. Rode K, Weider K, Damm OS, et al. Loss of connexin 43 in Sertoli cells provokes postnatal spermatogonial arrest, reduced germ cell numbers and impaired spermatogenesis. Reprod Biol. 2018;18(4):456–466. doi: 10.1016/j.repbio.2018.08.001
  55. Günther S, Fietz D, Weider K, et al. Effects of a murine germ cell-specific knockout of Connexin 43 on Connexin expression in testis and fertility. Transgenic Res. 2013;22(3):631–641. doi: 10.1007/s11248-012-9668-1
  56. Haverfield JT, Meachem SJ, O’Bryan MK, et al. Claudin-11 and connexin-43 display altered spatial patterns of organization in men with primary seminiferous tubule failure compared with controls. Fertil Steril. 2013;100(3):658–666. doi: 10.1016/j.fertnstert.2013.04.034
  57. Lee NP, Leung KW, Wo JY, et al. Blockage of testicular connexins induced apoptosis in rat seminiferous epithelium. Apoptosis. 2006;11(7):1215–1229. doi: 10.1007/s10495-006-6981-2
  58. Pointis G, Segretain D. Role of connexin-based gap junction channels in testis. Trends Endocrinol Metab. 2005;16(7):300–306. doi: 10.1016/j.tem.2005.07.001
  59. Sridharan S, Brehm R, Bergmann M, Cooke PS. Role of connexin 43 in Sertoli cells of testis. Ann NY Acad Sci. 2007;1120:131–143. doi: 10.1196/annals.1411.004
  60. Gilleron J, Carette D, Durand P, et al. Connexin 43 a potential regulator of cell proliferation and apoptosis within the seminiferous epithelium. Int J Biochem Cell Biol. 2009;41(6):1381–1390. doi: 10.1016/j.biocel.2008.12.008
  61. Chojnacka K, Brehm R, Weider K, et al. Expression of the androgen receptor in the testis of mice with a Sertoli cell specific knock-out of the connexin 43 gene (SCCx43KO(-/-)). Reprod Biol. 2012;12(4):341–346. doi: 10.1016/j.repbio.2012.10.007
  62. Rode K, Weider K, Damm OS, et al. Loss of connexin 43 in Sertoli cells provokes postnatal spermatogonial arrest, reduced germ cell numbers and impaired spermatogenesis. Reprod Biol. 2018;18(4):456–466. doi: 10.1016/j.repbio.2018.08.001
  63. Gerber J, Heinrich J, Brehm R. Blood-testis barrier and Sertoli cell function: lessons from SCCx43KO mice. Reproduction. 2016;151(2):R15–R27. doi: 10.1530/REP-15-0366
  64. Chevallier D, Carette D, Gilleron J, et al. The emerging role of connexin 43 in testis pathogenesis. Curr Mol Med. 2013;13(8):1331–1344. doi: 10.2174/15665240113139990066
  65. Alves LA, Campos de Carvalho AC, Cirne Lima EO, et al. Functional gap junctions in thymic epithelial cells are formed by connexin 43. Eur J Immunol. 1995;25(2):431–437. doi: 10.1002/eji.1830250219
  66. Dorshkind K, Green L, Godwin A, Fletcher WH. Connexin-43-type gap junctions mediate communication between bone marrow stromal cells. Blood. 1993;82(1):38–45. doi: 10.1182/blood.v82.1.38.bloodjournal82138
  67. Montecino-Rodriguez E, Dorshkind K. Regulation of hematopoiesis by gap junction-mediated intercellular communication. J Leukoc Biol. 2001;70(3):341–347. doi: 10.1189/jlb.70.3.341
  68. Krenács T, Rosendaal M. Immunohistological detection of gap junctions in human lymphoid tissue: connexin43 in follicular dendritic and lymphoendothelial cells. J Histochem Cytochem. 1995;43(11):1125–1137. doi: 10.1177/43.11.7560895
  69. Taniguchi Ishikawa E, Gonzalez-Nieto D, Ghiaur G, et al. Connexin-43 prevents hematopoietic stem cell senescence through transfer of reactive oxygen species to bone marrow stromal cells. Proc Natl Acad Sci USA. 2012;109(23):9071–9076. doi: 10.1073/pnas.1120358109
  70. Oviedo-Orta E, Howard Evans W. Gap junctions and connexin-mediated communication in the immune system. Biochim Biophys Acta. 2004;1662(1–2):102–112. doi: 10.1016/j.bbamem.2003.10.021
  71. Wilgenbus KK, Kirkpatrick CJ, Knuechel R, et al. Expression of Cx26, Cx32 and Cx43 gap junction proteins in normal and neoplastic human tissues. Int J Cancer. 1992;51(4):522–529. doi: 10.1002/ijc.2910510404
  72. Salomon D, Masgrau E, Vischer S, et al. Topography of mammalian connexins in human skin. J Invest Dermatol. 1994;103(2):240–247. doi: 10.1111/1523-1747.ep12393218
  73. Butterweck A, Elfgang C, Willecke K, Traub O. Differential expression of the gap junction proteins connexin45, -43, -40, -31, and -26 in mouse skin. Eur J Cell Biol. 1994;65(1):152–163.
  74. Tan MLL, Kwong HL, Ang CC, et al. Changes in connexin 43 in inflammatory skin disorders: Eczema, psoriasis, and Steven-Johnson syndrome/toxic epidermal necrolysis. Health Sci Rep. 2021;4(1):e247. doi: 10.1002/hsr2.247
  75. Little TL, Beyer EC, Duling BR. Connexin 43 and connexin 40 gap junctional proteins are present in arteriolar smooth muscle and endothelium in vivo. Am J Physiol. 1995;268(2):H729–739. doi: 10.1152/ajpheart.1995.268.2.H729
  76. Sedovy MW, Leng X, Leaf MR, et al. Connexin 43 across the vasculature: gap junctions and beyond. J Vasc Res. 2023;60(2):101–113. doi: 10.1159/000527469
  77. Wang YF, Daniel EE. Gap junctions in gastrointestinal muscle contain multiple connexins. Am J Physiol Gastrointest Liver Physiol. 2001;281(2):G533–G543. doi: 10.1152/ajpgi.2001.281.2.G533
  78. Neuhaus J, Weimann A, Stolzenburg JU, et al. Smooth muscle cells from human urinary bladder express connexin 43 in vivo and in vitro. World J Urol. 2002;20(4):250–254. doi: 10.1007/s00345-002-0289-9
  79. Sakai N, Tabb T, Garfield RE. Studies of connexin 43 and cell-to-cell coupling in cultured human uterine smooth muscle. Am J Obstet Gynecol. 1992;167(5):1267–1277. doi: 10.1016/s0002-9378(11)91699-8
  80. Chumasov EI, Petrova ES, Korzhevskii DE. Peculiarities of the innervation of epicardial adipose tissue in a rat with aging (immunohistochemical study). Adv Gerontol. 2022;12(3):312–318. doi: 10.1134/S2079057022030055
  81. Yeganeh A, Stelmack GL, Fandrich RR, et al. Connexin 43 phosphorylation and degradation are required for adipogenesis. Biochim Biophys Acta. 2012;1823(10):1731–1744. doi: 10.1016/j.bbamcr.2012.06.009
  82. Kim SN, Kwon HJ, Im SW, et al. Connexin 43 is required for the maintenance of mitochondrial integrity in brown adipose tissue. Sci Rep. 2017;7(1):7159. doi: 10.1038/s41598-017-07658-y
  83. Turovsky EA, Varlamova EG, Turovskaya MV. Activation of Cx43 hemichannels induces the generation of Ca2+ oscillations in white adipocytes and stimulates lipolysis. Int J Mol Sci. 2021;22(15):8095. doi: 10.3390/ijms22158095
  84. Burke S, Nagajyothi F, Thi MM, et al. Adipocytes in both brown and white adipose tissue of adult mice are functionally connected via gap junctions: implications for Chagas disease. Microbes Infect. 2014;16(11):893–901. doi: 10.1016/j.micinf.2014.08.006
  85. González-Casanova JE, Durán-Agüero S, Caro-Fuentes NJ, et al. New insights on the role of connexins and gap junctions channels in adipose tissue and obesity. Int J Mol Sci. 2021;22(22):12145. doi: 10.3390/ijms222212145
  86. Cascio M, Kumar NM, Safarik R, Gilula NB. Physical characterization of gap junction membrane connexons (hemi-channels) isolated from rat liver. J Biol Chem. 1995;270(31):18643–18648. doi: 10.1074/jbc.270.31.18643
  87. Berthoud VM, Iwanij V, Garcia AM, Sáez JC. Connexins and glucagon receptors during development of rat hepatic acinus. Am J Physiol. 1992;263(5 Pt 1):G650–G658. doi: 10.1152/ajpgi.1992.263.5.G650
  88. Bode HP, Wang L, Cassio D, et al. Expression and regulation of gap junctions in rat cholangiocytes. Hepatology. 2002;36(3):631–640. doi: 10.1053/jhep.2002.35274
  89. Greenwel P, Rubin J, Schwartz M, et al. Liver fat-storing cell clones obtained from a CCl4-cirrhotic rat are heterogeneous with regard to proliferation, expression of extracellular matrix components, interleukin-6, and connexin 43. Lab Invest. 1993;69(2):210–216.
  90. Saez CG, Eugenin E, Hertzberg EL, Saez JC. Regulation of gap junctions in rat liver during acute and chronic CCl4-induced liver injury. In: From Ion Channels to Cell-to-Cell Conversations. Series of the Centro de Estudios Científicos de Santiago. Springer, Boston, MA; 1997. P. 367–380. doi: 10.1007/978-1-4899-1795-9_21
  91. Willebrords J, Crespo Yanguas S, Maes M, et al. Structure, regulation and function of gap junctions in liver. Cell Commun Adhes. 2015;22(2–6):29–37. doi: 10.3109/15419061.2016.1151875
  92. Marconi P, Tamura M, Moriuchi S, et al. Connexin 43-enhanced suicide gene therapy using herpesviral vectors. Mol Ther. 2000;1(1):71–81. doi: 10.1006/mthe.1999.0008
  93. Pitts JD. Cancer gene therapy: a bystander effect using the gap junctional pathway. Mol Carcinog. 1994;11(3):127–130. doi: 10.1002/mc.2940110302
  94. Colombo BM, Benedetti S, Ottolenghi S, et al. The “bystander effect”: association of U-87 cell death with ganciclovir-mediated apoptosis of nearby cells and lack of effect in athymic mice. Hum Gene Ther. 1995;6(6):763–772. doi: 10.1089/hum.1995.6.6-763
  95. Shinoura N, Chen L, Wani MA, et al. Protein and messenger RNA expression of connexin43 in astrocytomas: implications in brain tumor gene therapy. J Neurosurg. 1996;84(5):839–846. doi: 10.3171/jns.1996.84.5.0839
  96. Bonacquisti EE, Nguyen J. Connexin 43 (Cx43) in cancer: Implications for therapeutic approaches via gap junctions. Cancer Lett. 2019;442:439–444. doi: 10.1016/j.canlet.2018.10.043
  97. Matono S, Tanaka T, Sueyoshi S, et al. Bystander effect in suicide gene therapy is directly proportional to the degree of gap junctional intercellular communication in esophageal cancer. Int J Oncol. 2003;23(5):1309–1315. doi: 10.3892/ijo.23.5.1309
  98. Kandouz M, Batist G. Gap junctions and connexins as therapeutic targets in cancer. Expert Opin Ther Targets. 2010;14(7):681–692. doi: 10.1517/14728222.2010.487866
  99. McCutcheon S, Spray DC. Glioblastoma-astrocyte connexin 43 gap junctions promote tumor invasion. Mol Cancer Res. 2022;20(2):319–331. doi: 10.1158/1541-7786.MCR-21-0199

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure. Detection of intercalated discs in human heart cardiomyocytes using the reaction of Cx43 (specimen from the archives of the Department of General and Special Morphology of the Institute of Experimental Medicine). Cardiomyocyte nuclei are stained with SYTOX Green dye, Cx43 is detected by antibodies visualized with Cy3 fluorochrome

Download (335KB)

Copyright (c) 2023 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 74760 от 29.12.2018 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies