Analysis of methods for modeling deep defects of the skin and articular cartilage on laboratory animals in the experiment

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The creation and implementation of new methods and means of local treatment of wounds occurs in stages, however, a number of difficulties arise at each stage. The article discusses one of the main problems that arise at the preclinical stage when modeling deep defects of the skin and articular cartilage – the difficulty of accurately reproducing full-layer defects of the skin and articular tissue. Various factors influencing the success of such modeling also investigated, including the type of animal, the size of the defect and its location.

Full Text

Restricted Access

About the authors

Daulet D. Izbulatov

Military Innovative Technopolis “ERA”

Email: izbulatov98@mail.ru

senior operator of 3rd scientific company

Russian Federation, Anapa

Natalia V. Varlamova

Military Innovative Technopolis “ERA”

Email: varlamova@tpu.ru
ORCID iD: 0000-0002-6100-2427
SPIN-code: 9139-6019

Cand. Sci. (Technol.), Senior Research Associate

Russian Federation, Anapa

Vladimir E. Mikhailov

Military Innovative Technopolis “ERA”

Email: mikhaylov.ve@yandex.ru

senior operator of 3rd scientific company

Russian Federation, Anapa

Ilya V. Markin

Military Innovative Technopolis “ERA”

Email: ilya.markin.92@bk.ru
ORCID iD: 0000-0002-9334-910X
SPIN-code: 6021-7645

Cand. Sci. (Technol.), Senior Research Associate

Russian Federation, Anapa

Artur L. Erdniev

Military Innovative Technopolis “ERA”

Email: arti-erd@mail.ru

senior operator of 3rd scientific company

Russian Federation, Anapa

Petr K. Potapov

Military Innovative Technopolis “ERA”

Email: forwardspb@mail.ru
SPIN-code: 5979-4490

MD, Cand. Sci. (Med.), Deputy Head of Department of Biomedical Research

Russian Federation, Anapa

Yurii A. Utkin

Ural Research Institute of Composite Materials

Author for correspondence.
Email: uautkin@yandex.ru

Deputy General Director for Medical Direction

Russian Federation, Perm

References

  1. Dovnar RI. Modeling of skin wounds on laboratory animal. Novosti Khirurgii. 2021;29(4):480–489. (In Russ.) doi: 10.18484/2305-0047.2021.4.480
  2. Shchelkunova EI, Voropaeva AA, Rusova TV, Shtopis I.C. The use of experimental modeling in the application of the pathogenesis of osteoarthritis (literature review). Siberian Scientific Medical Journal. 2019;39(2):27–39. (In Russ.) doi: 10.15372/SSMJ20190203
  3. Mironov AN, Bunatyan ND, Vasil’ev AN. Rukovodstvo po provedeniyu doklinicheskikh issledovanii lekarstvennykh sredstv. Part one. Moscow: Grif i K; 2012. 944 p. (In Russ.)
  4. Gumenyuk SE, Gaivoronskaya TV, Gumenyuk AS, et al. Simulation of wound process in experimental surgery. Kuban Scientific Medical Bulletin. 2019;26(2):18–25. (In Russ.) doi: 10.25207/1608-6228-2019-26-2-18-25
  5. Farmoudeh A, Akbari J, Saeedi M, et al. Methylene blue-loaded niosome: preparation, physicochemical characterization, and in vivo wound healing assessment. Drug Deliv Transl Res. 2020;10(5):1428–1441. doi: 10.1007/s13346-020-00715-6
  6. Ren Y, Yu X, Li Z, et al. Fabrication of pH-responsive TA-keratin bio-composited hydrogels encapsulated with photoluminescent GO quantum dots for improved bacterial inhibition and healing efficacy in wound care management: In vivo wound evaluations. J Photochem Photobiol B. 2020;202:111676. doi: 10.1016/j.jphotobiol.2019.111676
  7. Chekmareva IA, Legonkova OA, Korotaeva AI, et al. Study of the effect of cerium compounds on a post-burn scar in an in vivo experiment by transmission electron microscopy. Biotechnology. 2020;36;(4):99–105. (In Russ.) doi: 10.21519/0234-2758-2020-36-4-99-105
  8. Lozhkomoev AS, Kirilova NV, Bakina OV. Modern dressing based on polymeric microfibers with aluminum oxyhydroxide: properties and mechanism of wound healing action. Wounds and wound infections. The prof. B.M. Kostyuchenok journal. 2020;7(1):46–57. (In Russ.) doi: 10.25199/2408-9613-2020-7-1-46-57
  9. Sim P., Strudwick X.L., Song YM et al. Influence of acidic pH on wound healing in vivo: A novel perspective for wound treatment // International journal of molecular sciences. 2022. Vol. 23, No 21. P. 13655. doi: 10.3390/ijms232113655
  10. Dudanov IP, Vinogradov VV, Krishtop VV, Nikonorova VG. Comparative characteristics of the wound healing effect of a xerogel based on neutral titanium dioxide hydrosol for the treatment of burn wounds. Research and practice in medicine. 2021;8(1):30–39. (In Russ.) doi: 10.17709/2409-2231-2021-8-1-3
  11. Wei Q, Wang Y, Ma K, et al. Extracellular vesicles from human umbilical cord mesenchymal stem cells facilitate diabetic wound healing through MiR-17-5p-mediated enhancement of angiogenesis. Stem Cell Rev Rep. 2022;18;(3):1025–1040. doi: 10.1007/s12015-021-10176-0
  12. Borkhunova EN, Nadezhdin DV. Peculiarities of healing of a skin wound defect under the influence of autologous cellular products of multipotent mesenchymal stromal cells and stromal-vascular fraction. Veterinary Medicine of the Kuban. 2021;1:30–32. (In Russ.) doi: 10.33861/2071-8020-2021-1-30-32
  13. Teng L, Maqsood M, Zhu M, et al. Exosomes derived from human umbilical cord mesenchymal stem cells accelerate diabetic wound healing via promoting M2 macrophage polarization, angiogenesis, and collagen deposition. Int J Mol Sci. 2022;23(18):10421. doi: 10.3390/ijms231810421
  14. Lebedeva SA, Galenko-Yaroshevsky Jr PA, Melnik SI, et al. Wound-healing effect of the organometallic zinc complex on the model of a planar skin wound in rats. Research Results in Biomedicine. 2022;8(1):71–81. (In Russ.) doi: 10.18413/2658-6533-2022-8-1-0-5
  15. Sobin FV, Pulina NA, Chashchina SV. Wound healing activity of experimental gels based on hetarylamides of 4-R-2-hydroxy-4-oxo-2-butenoic acids. Bashkortostan Medical Journal. 2022;17(5(101)):70–73. (In Russ.)
  16. Olimov MA, Sharofova MU, Khodzhaeva FM, et al. In vivo study of the wound healing activity of a polysaccharide gel with encapsulated sea buckthorn oil (Hippophae rhamnoides). Avicenna Bulletin. 2023;25(1):84–93. (In Russ.) doi: 10.25005/2074-0581-2023-25-l-84-107
  17. Airapetov GA, Zagorodniy NV, Vorotnikov A.A. Experimental method of replacement of osteochondral joint defects (early results). Medical Bulletin of the South of Russia. 2019;(2):71–76. (In Russ.) doi: 10.21886/2219-8075-2019-10-2-71-76
  18. Kabalyk MA. Molekulyarnye mekhanizmy regeneratsii khryashcha i subkhondral’noi kosti pri vnutrisustavnom vvedenii khondroitina sul’fata natriya na ehksperimental’noi modeli osteoartrita. Opinion Leader. 2019;(3(21)):76–84. (In Russ.)
  19. Kalyuzhnaya LI, Khominets VV, Chebotarev SV, et al. The use of human umbilical cord biomaterial for the restoration of damage to the articular cartilage. Preventive and Clinical Medicine. 2019;(4(73)):45–52. (In Russ.)
  20. Li Y, Xu Y, Liu Y, et al. Decellularized cartilage matrix scaffolds with laser-machined micropores for cartilage regeneration and articular cartilage repair. Mater Sci Eng C Mater Biol Appl. 2019;105:110139. doi: 10.1016/j.msec.2019.110139
  21. Boopalan R, Varghese VD, Sathishkumar S, et al. Similar regeneration of articular cartilage defects with autologous and allogenic chondrocytes in a rabbit model. Indian J Med Res. 2019;149(5):650–655. doi: 10.4103/ijmr.ijmr_1233_17
  22. Kotelnikov GP, Dolgushkin DA, Lazarev VA, Selter PN. The use of computed tomography to assess the density of tissue regenerate after chondroplasty in an experiment in rabbits. Bulletin of the Medical Institute “Reaviz”: rehabilitation, doctor and health. 2020;(5(47)):28–35. (In Russ.) doi: 10.20340/vmi-rvz.2020.5.2
  23. Lavrik AA, Ali SG, Moskalev VB, et al. Recovery properties of «UltraCell-Dog» peptide drug in case of knee trauma injuries (experimental study). Veterinary, Zootechnics and Biotechnology. 2020;(5):6–19. (In Russ.) doi: 10.26155/vet.zoo.bio.202005001
  24. Popkov AV, Popkov DA, Kobyzev AE, et al. Positive experience of full-layer replacement of an articular cartilage defect using a degradable implant with a bioactive surface in combination with platelet-rich plasma (experimental study). Genij Ortopedii. 2020;26(3):392–397. (In Russ.) doi: 10.18019/1028-4427-2020-26-3-392-397
  25. Belova SV, Zubavlenko RA, Ulyanov VYu. Reorganization of skeletal connective tissues in animals with a model of post-traumatic osteoarthritis. Polytrauma. 2021;(3):75–81. (In Russ.) doi: 10.24412/1819-1495-2021-3-75-81
  26. Gladkova EV. Surgical approaches to the formation of experimental post-traumatic osteoarthritis of the knee joints and its structural and metabolic patterns. Bulletin of new medical technologies. 2021;28(1):35–40. (In Russ.) doi: 10.24412/1609-2163-2021-1-35-40
  27. Presnyakov EV, Rochev ES, Cerceil VV, et al. Chondrogenesis induced in vivo by gene-activated hydrogel based on hyaluronic acid and plasmid DNA encoding VEGF. Genes and cells. 2021;16(2):47–53. (In Russ.) doi: 10.23868/202107005
  28. Lukanina SN, Sakharov AV, Prosenko OI. Morphofunctional characteristics of post-traumatic regenerate of rat articular cartilage in normal conditions and when the defect is filled with a matrix of tissue engineering structure based on chitosan. Proceedings of the Conference “Borodino Readings”; Novosibirsk, March 22, 2022. Novosibirsk; 2022. P. 301–306. (In Russ.)
  29. Taufik SA, Dirja BT, Utomo DN, et al. Double membrane platelet-rich fibrin (PRF)-Synovium succeeds in regenerating cartilage defect at the knee: An experimental study on rabbit. Helion. 2023;9(2):e13139. doi: 10.1016/j.heliyon.2023.e13139
  30. Belyakov VI, Inyushkina EM, Gromov DS, et al. Laboratornye krysy: soderzhanie, razvedenie i bioehticheskie aspekty ispol’zovaniya v ehksperimentakh po fiziologii povedeniya: textbook. Samara: Samara University Press; 2021. 96 p. (In Russ.)

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Macroscopic characteristics of skin defects: a — infliction of a skin wound on a rat; b — rat skin wound model after surgery; с — skin wounds treated with prepared medicine after 2 days

Download (50KB)
3. Fig. 2. Macroscopic characteristics of skin defects: а — skin wound model in diabetic mice; b — wound model in smooth-haired guinea pigs; c — full-thickness dorsal wound in diabetic rats; d — planar wound in rats

Download (65KB)
4. Fig. 3. Defects in the surface of the joint: a — full-layer defect of the loaded surface of the knee joint of a sheep; b — defect of the right knee joint of a white rabbit; с — computed tomography of the intact rabbit knee joint; d — computed tomography of the joint after chondroplasty (2 round defects on the patellar surface of the femur are well visualized)

Download (89KB)
5. Fig. 4. Defects in the surface of the joint: а — the area of surgical intervention after the formation of a full-thickness perforated defect on the patellar surface of the femoral condyle; b — the process of making cartilage defects; с — the process of making cartilage microfractures

Download (56KB)

Copyright (c) 2023 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 74760 от 29.12.2018 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies