Neutrophilic granulocytes: phagocytes and more

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract


Neutrophilic granulocytes are one of the key cellular factors of innate immunity. The review presents data on the morphology, migration and utilization of neutrophilic granulocytes, phagocytosis and degranulation processes, neutrophilic extracellular traps, plasticity of neutrophils, their role in systemic inflammatory reactions and regulation of adaptive immunity.


Full Text

Restricted Access

About the authors

Galina M. Aleshina

Institute of Experimental Medicine

Author for correspondence.
Email: aleshina.gm@iemspb.ru
ORCID iD: 0000-0003-2886-7389
SPIN-code: 4479-0630
Scopus Author ID: 6603793844
ResearcherId: C-5020-2012

Russian Federation, Saint Petersburg

Doctor of Biological Sciences, Associate Professor, Head of the Laboratory of General Pathology of the Department of General Pathology and Pathological Physiology

References

  1. Мечников И.И. Невосприимчивость в инфекционных заболеваниях. – СПб.: Издание К.Л. Риккера, 1903. [Metchnikoff E. Nevospriimchivost’ v infektsionnykh zabolevaniyakh. Saint Petersburg: K.L. Rikker; 1903. (In Russ.)]
  2. Пигаревский В.Е. Зернистые лейкоциты и их свойства. – М.: Медицина, 1978. [Pigarevsky VE. Zernistye leykotsity i ikh svoystva. Moscow: Meditsina; 1978. (In Russ.)]
  3. Klebanoff SJ, Clark RA. The neutrophil: function and clinical disorders. Amsterdam: Elsevier; 1978.
  4. Маянский А.Н., Маянский Д.Н. Очерки о нейтрофиле и макрофаге. – 2-е изд. – Новосибирск: Наука, 1989. [Mayanskii AN, Mayanskii DN. Ocherki o neytrofile i makrofage. 2nd ed. Novosibirsk: Nauka; 1989. (In Russ.)]
  5. Shah B, Burg N, Pillinger MH. Chapter — Neutrophils. In: Kelley and Firestein’s textbook of rheumatology (tenth edition). Ed. by G.S. Firestein, R.C. Budd, S.E. Gabriel, I.B. McInnes. Elsevier; 2017. P. 169–188.e3. https://doi.org/10.1016/B978-0-323-31696-5.00011-5.
  6. Lord BI, Bronchud MH, Owens S, et al. The kinetics of human granulopoiesis following treatment with granulocyte colonystimulating factor in vivo. Proc Natl Acad Sci U S A. 1989;86(23):9499–9503. https://doi.org/10.1073/pnas.86.23.9499.
  7. Bainton DF, Ullyot JL, Farquhar MG. The development of neutrophilic polymorphonuclear leukocytes in human bone marrow. J Exp Med. 1971;134(4):907–934. https://doi.org/10.1084/jem.134.4.907.
  8. Faurschou M, Borregaard N. Neutrophil granules and secretory vesicles in inflammation. Microbes Infect. 2003;5(14):1317–1327. https://doi.org/10.1016/j.micinf. 2003.09.008.
  9. Nauseef WM, McCormick S, Yi H. Roles of heme insertion and the mannose-6-phosphate receptor in processing of the human myeloid lysosomal enzyme, myeloperoxidase. Blood. 1992;80(10):2622–2633.
  10. Bainton DF, Farquhar MG. Origin of granules in polymorphonuclear leukocytes. Two types derived from opposite faces of the Golgi complex in developing granulocytes. J Cell Biol. 1966;28(2):277–301. https://doi.org/10.1083/jcb.28.2.277.
  11. Пигаревский В.Е. О секреторной активности полиморфноядерных лейкоцитов // Архив патологии. – 1982. – Т. 44. – № 5. – С. 3–12. [Pigarevsky VE. Secretory activity of polymorphonuclear leukocytes. Archives of pathology. 1982;44(5):3–12. (In Russ.)]
  12. Borregaard N, Lollike K, Kjeldsen L, et al. Human neutrophil granules and secretory vesicles. Eur J Haematol. 1993;51(4): 187–198. https://doi.org/10.1111/j.1600-0609.1993.tb00629.x.
  13. Owen CA, Campbell EJ. The cell biology of leukocyte-mediated proteolysis. J Leukoc Biol. 1999;65(2):137–150. https://doi.org/10.1002/jlb.65.2.137.
  14. Borregaard N, Sørensen O, Theilgaard-Mönch K. Neutrophil granules: A library of innate immunity proteins. TRENDS in Immunology. 2007;28(8):340–345. https://doi.org/10.1016/j.it.2007.06.002.
  15. Weiss L. Transmural cellular passage in vascular sinuses of rat bone marrow. Blood. 1970;36(2):189–208.
  16. Murray J, Barbara JA, Dunkley SA, et al. Regulation of neutrophil apoptosis by tumor necrosis factor-alpha: requirement for TNFR55 and TNFR75 for induction of apoptosis in vitro. Blood. 1997;90(7):2772–2783.
  17. Tortorella C, Piazzolla G, Spaccavento F, et al. Spontaneous and Fas-induced apoptotic cell death in aged neutrophils. J Clin Immunol. 1998;18(5):321–329. https://doi.org/10.1023/a:1023286831246.
  18. Martin C, Burdon PC, Bridger G, et al. Chemokines acting via CXCR2 and CXCR4 control the release of neutrophils from the bone marrow and their return following senescence. Immunity. 2003;19(4):583–593. https://doi.org/10.1016/s1074-7613(03)00263-2.
  19. Uchida T, Nemoto T, Yui T, et al. Use of technetium-99m as a radioactive label to study migratory patterns of leukocytes. J Nucl Med. 1979;20(11):1197–1200.
  20. Kubes P. The enigmatic neutrophil: what we do not know. Cell Tissue Res. 2018;371:399–406. https://doi.org/10.1007/s00441-018-2790-5.
  21. Landzberg M, Doering H, Aboodi GM, et al. Quantifying oral inflammatory load: oral neutrophil counts in periodontal health and disease. J Periodontal Res. 2015;50(3):330–336. https://doi.org/10.1111/jre.12211.
  22. Casanova-Acebes M, Nicolás-Ávila JA, Li JL, et al. Neutrophils instruct homeostatic and pathological states in naive tissues. J Exp Med. 2018;215(11):2778–2795. https://doi.org/10.1084/jem.20181468.
  23. Kubes P, Hunter J, Granger DN. Ischemia/reperfusion-induced feline intestinal dysfunction: importance of granulocyte recruitment. Gastroenterology. 1992;103(3):807–812. https://doi.org/10.1016/0016-5085(92)90010-v.
  24. Borregaard N. Neutrophils, from marrow to microbes. Immunity. 2010;33(5):657–670. https://doi.org/10.1016/j.immuni. 2010.11.011.
  25. Bruehl RE, Moore KL, Loran DE, et al. Leukocyte activation induces surface redistribution of P-selectin glycoprotein ligand-1. J Leukoc Biol. 1997;61(4):489–499. https://doi.org/10.1002/jlb.61.4.489.
  26. Steegmaier M, Borges E, Berger J, et al. The E-selectin-ligand ESL-1 is located in the Golgi as well as on microvilli on the cell surface. J Cell Sci. 1997;110(Pt6):687–694.
  27. Buscher K, Riese SB, Shakibaei M, et al. The transmembrane domains of L-selectin and CD44 regulate receptor cell surface positioning and leukocyte adhesion under flow. J Biol Chem. 2010;285(18):13490–13497. https://doi.org/10.1074/jbc.M110.102640.
  28. Filippi MD. Neutrophil transendothelial migration: updates and new perspectives. Blood. 2019;133(20):2149–2158. https://doi.org/10.1182/blood-2018-12-844605.
  29. Dale DC, Boxer L, Liles WC. The phagocytes: neutrophils and monocytes. Blood. 2008;112(4):935–945. https://doi.org/10.1182/blood-2007-12-077917.
  30. Kruger P, Saffarzadeh M, Weber ANR, et al. Neutrophils: between host defence, immune modulation, and tissue injury. PLoS Pathog. 2015;11(3):e1004651. https://doi.org/10.1371/journal.ppat.1004651.
  31. Segal AW. How neutrophils kill microbes. Annu Rev Immunol. 2005;23:197–223. https://doi.org/10.1146/annurev.immunol.23.021704.115653.
  32. Buvelot H, Posfay-Barbe KM, Linder P, et al. Staphylococcus aureus, phagocyte NADPH oxidase and chronic granulomatous disease. FEMS Microbiol Rev. 2017;41(2):139–157. https://doi.org/10.1093/femsre/fuw042.
  33. Kobayashi SD, Braughton KR, Whitney AR, et al. Bacterial pathogens modulate an apoptosis differentiation program in human neutrophils. Proc Natl Acad Sci USA. 2003;100(19):10948–10953. https://doi.org/10.1073/pnas.1833375100.
  34. Kobayashi SD, Voyich JM, Braughton KR, DeLeo FR. Down-regulation of proinflammatory capacity during apoptosis in human polymorphonuclear leukocytes. J Immunol. 2003;170(6):3357–3368. https://doi.org/10.4049/jimmunol. 170.6.3357.
  35. Kobayashi SD, DeLeo FR. An apoptosis differentiation programme in human polymorphonuclear leucocytes. Biochem Soc Trans. 2004;32(Pt3):474–476. https://doi.org/10.1042/BST0320474.
  36. Пигаревский В.Е. Роль гранулоцитов и макрофагов в неспецифической резистентности организма (морфологические аспекты проблемы) // Морфофункциональные аспекты неспецифической резистентности и демиелинизирующих заболеваний. Клеточно-тканевые факторы неспецифической резистентности. – Л., 1981. – С. 3–17. [Pigarevsky VE. Rol’ granulotsitov i makrofagov v nespetsificheskoy rezistentnosti organizma (morfologicheskie aspekty problemy). In: Morfofunktsional’nye aspekty nespetsificheskoy rezistentnosti i demieliniziruyushchikh zabolevaniy. Kletochno-tkanevye faktory nespetsificheskoy rezistentnosti. Leningrad; 1981. P. 3–17. (In Russ.)]
  37. Долгушин И.И., Андреева Ю.С., Савочкина А.Ю. Нейтрофильные внеклеточные ловушки и методы оценки функционального статуса нейтрофилов. – М.: РАМН, 2009. [Dolgushin II, Andreeva YuS, Savochkina AYu. Neytrofil’nye vnekletochnye lovushki i metody otsenki funktsional’nogo statusa neytrofilov. Moscow: RAMN; 2009. (In Russ.)]
  38. Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303(5663):1532–1535. https://doi.org/10.1126/science.1092385.
  39. Fuchs TA, Abed U, Goosmann C, et al. Novel cell death program leads to neutrophil extracellular traps. J Cell Biol. 2007;176(2):231–241. https://doi.org/10.1083/jcb.200606027.
  40. Papayannopoulos V, Metzler KD, Hakkim A, Zychlinsky A. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J Cell Biol. 2010;191(3):677–691. https://doi.org/10.1083/jcb. 201006052.
  41. Metzler KD, Fuchs TA, Nauseef WM, et al. Myeloperoxidase is required for neutrophil extracellular trap formation: implications for innate immunity. Blood. 2011;117(3):953–959. https://doi.org/10.1182/blood-2010-06-290171.
  42. Hakkim A, Fuchs TA, Martinez NE, et al. Activation of the Raf-MEK-ERK pathway is required for neutrophil extracellular trap formation. Nat Chem Biol. 2011;7(2):75–77. https://doi.org/10.1038/nchembio.496.
  43. Bianchi M, Hakkim A, Brinkmann V, et al. Restoration of NET formation by gene therapy in CGD controls aspergillosis. Blood. 2009;114(13):2619–2622. https://doi.org/10.1182/blood-2009-05-221606.
  44. Nauseef WM, Borregaard N. Neutrophils at work. Nat Immunol. 2014;15(7):602–611. https://doi.org/10.1038/ni.2921.
  45. Haneke E. The Papillon-Lefevre syndrome: keratosis palmoplantaris with periodontopathy. Report of a case and review of the cases in the literature. Hum Genet. 1979;51(1):1–35. https://doi.org/10.1007/BF00278288.
  46. McDonald B, Urrutia R, Yipp BG, et al. Intravascular neutrophil extracellular traps capture bacteria from the bloodstream during sepsis. Cell Host Microbe. 2012;12(3):324–333. https://doi.org/10.1016/j.chom.2012.06.011.
  47. Urban CF, Reichard U, Brinkmann V, Zychlinsky A. Neutrophil extracellular traps capture and kill Candida albicans yeast and hyphal forms. Cell Microbiol. 2006;8:668–676. https://doi.org/10.1111/j.1462-5822.2005.00659.x.
  48. Jenne CN, Wong CH, Zemp FJ, et al. Neutrophils recruited to sites of infection protect from virus challenge by releasing neutrophil extracellular traps. Cell Host Microbe. 2013;13(2): 169–180. https://doi.org/10.1016/j.chom.2013.01.005.
  49. Saitoh T, Komano J, Saitoh Y, et al. Neutrophil extracellular traps mediate a host defense response to human immunodeficiency virus-1. Cell Host Microbe. 2012;12(1):109–116. https://doi.org/10.1016/j.chom.2012.05.015.
  50. Menegazzi R, Decleva E, Dri P. Killing by neutrophil extracellular traps: Fact or folklore? Blood. 2012;119(5):1214–1216. https://doi.org/10.1182/blood-2011-07-364604.
  51. Sangaletti S, Tripodo C, Chiodoni C, et al. Neutrophil extracellular traps mediate transfer of cytoplasmic neutrophil antigens to myeloid dendritic cells toward ANCA induction and associated autoimmunity. Blood. 2012;120(15):3007–3018. https://doi.org/10.1182/blood-2012-03-416156.
  52. Galkina SI, Fedorova NV, Golenkina EA, et al. Cytonemes versus neutrophil extracellular traps in the fight of neutrophils with microbes. Int J Mol Sci. 2020;21(2):586. https://doi.org/10.3390/ijms21020586.
  53. Reddy RC, Standiford TJ. Effects of sepsis on neutrophil chemotaxis. Curr Opin Hematol. 2010;17(1):18–24. https://doi.org/10.1097/MOH.0b013e32833338f3.
  54. Козлов В.К. Сепсис: этиология, иммунопатогенез, концепция современной иммунотерапии. – СПб.: Диалект, 2008. [Kozlov VK. Sepsis: etiologiya, immunopatogenez, kontseptsiya sovremennoy immunoterapii. Saint Petersburg: Dialekt; 2008. (In Russ.)]
  55. Van der Poll T, van de Veerdonk FL, Scicluna BP, Netea MG. The immunopathology of sepsis and potential therapeutic targets. Nat Rev Immunol. 2017;17(7):407–420. https://doi.org/10.1038/nri.2017.36.
  56. Гусев Е.Ю., Черешнев В.А., Юрченко Л.Н. Системное воспаление с позиции теории типового патологического процесса // Цитокины и воспаление. – 2007. – Т. 6. – № 4. – С. 9–21. [Gusev EY, Chereshnev VA, Yurchenko LN. Systemic inflammation from the standpoint of the theory of a typical pathological process. Cytokines and inflammation. 2007;6(4):9–21. (In Russ.)]
  57. Черешнев В.А., Гусев Е.Ю. Иммунологические и патофизиологические механизмы системного воспаления // Медицинская иммунология. – 2012. – Т. 14. – № 1-2. – С. 9–20. [Chereshnev VA, Gusev EYu. Immunological and pathophysiological mechanisms of systemic inflammation. Medical immunology. 2012;14(1-2):9–20. (In Russ.)]. https://doi.org/10.15789/1563-0625-2012-1-2-9-20.
  58. Daviaud F, Grimaldi D, Dechartres A, et al. Timing and causes of death in septic shock. Ann Intensive Care. 2015;5(1):16. https://doi.org/10.1186/s13613-015-0058-8.
  59. Cummings CJ, Martin TR, Frevert CW, et al. Expression and function of the chemokine receptors CXCR1 and CXCR2 in sepsis. J Immunol. 1999;162(4):2341–2346.
  60. Fink MP. Animal models of sepsis. Virulence. 2014;5(1): 143–153. https://doi.org/10.4161/viru.26083.
  61. Liew PX, Kubes P. The neutrophil’s role during health and disease. Physiol Rev. 2019;99(2):1223–1248. https://doi.org/10.1152/physrev.00012.2018.
  62. Нестерова И.В., Колесникова Н.В., Чудилова Г.А. и др. Нейтрофильные гранулоциты: новый взгляд на «старых игроков» на иммунологическом поле // Иммунология. – 2015. – Т. 36. – № 4. – С. 257–265. [Nesterova IV, Kolesnikova NV, Chudilova GA, et al. Neutrophilic granulocytes: a new look at the “old players” in the immunological field. Immunology. 2015;36(4):257–265. (In Russ.)]
  63. Нестерова И.В., Колесникова Н.В., Чудилова Г.А. и др. Новый взгляд на нейтрофильные гранулоциты: переосмысление старых догм. Часть 2 // Инфекция и иммунитет. – 2018. – Т. 8. – № 1. – С. 7–18. [Nesterova IV, Kolesnikova NV, Chudilova GA, et al. Neutrophilic granulocytes: a new look at the “old players” on the immunological field. Part 2. Infection and immunity. 2018;8(1):7–18. (In Russ.)]. https://doi.org/10.15789/2220-7619-2018-1-7-18.
  64. Kamp VM, Pillay J, Lammers JW, et al. Human suppressive neutrophils CD16bright/CD62Ldim exhibit decreased adhesion. J Leukoc Biol. 2012;92(5):1011–1020. https://doi.org/10.1189/jlb.0612273.
  65. Pillay J, Ramakers BP, Kamp VM, et al. Functional heterogeneity and differential priming of circulating neutrophils in human experimental endotoxemia. J Leukoc Biol. 2010;88(1):211–220. https://doi.org/10.1189/jlb.1209793.
  66. Tsuda Y, Takahashi H, Kobayashi M, et al. Three different neutrophil subsets exhibited in mice with different susceptibilities to infection by methicillin-resistant Staphylococcus aureus. Immunity. 2004;21(2):215–226. https://doi.org/10.1016/j.immuni.2004.07.006.
  67. Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas. J Clin Invest. 2012;122(3):787–795. https://doi.org/10.1172/JCI59643.
  68. Fridlender ZG, Sun J, Kim S, et al. Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell. 2009;16(3):183–194. https://doi.org/10.1016/j.ccr.2009.06.017.
  69. Pillay J, Kamp VM, van Hoffen E, et al. A subset of neutrophils in human systemic inflammation inhibits T cell responses through Mac-1. J Clin Invest. 2012;122(1): 327–336. https://doi.org/10.1172/JCI57990.
  70. Johnston B, Burns AR, Suematsu M, et al. Chronic inflammation upregulates chemokine receptors and induces neutrophil migration to monocyte chemoattractant protein-1. J Clin Invest. 1999;103(9):1269–1276. https://doi.org/10.1172/JCI5208.
  71. Tosello Boari J, Amezcua Vesely MC, Bermejo DA, et al. IL-17RA signaling reduces inflammation and mortality during Trypanosoma cruzi infection by recruiting suppressive IL-10-producing neutrophils. PLoS Pathog. 2012;8(4):e1002658. https://doi.org/10.1371/journal.ppat. 1002658.
  72. De Santo C, Arscott R, Booth S, et al. Invariant NKT cells modulate the suppressive activity of IL-10-secreting neutrophils differentiated with serum amyloid A. Nat Immunol. 2010;11(11):1039–1046. https://doi.org/10.1038/ni.1942.
  73. Lee WY, Moriarty TJ, Wong CH, et al. An intravascular immune response to Borrelia burgdorferi involves Kupffer cells and iNKT cells. Nat Immunol. 2010;1(4):295–302. https://doi.org/10.1038/ni.1855.
  74. Liew PX, Lee WY, Kubes P. iNKT cells orchestrate a switch from inflammation to resolution of sterile liver injury. Immunity. 2017;47(4):752–765.e5. https://doi.org/10.1016/j.immuni.2017.09.016.
  75. Долгушин И.И. Взаимодействие нейтрофилов с иммунокомпетентными клетками // Моделирование и клиническая характеристика фагоцитарных реакций: сб. науч. трудов / под ред. А.Н. Маянского. – Горький, 1989. – С. 74–81. [Dolgushin II. Vzaimodeystvie neytrofilov s immunokompetentnymi kletkami. In: Modelirovanie i klinicheskaya kharakteristika fagotsitarnykh reaktsiy. Ed. by A.N. Mayanskii. Gor’kiy; 1989. P. 74–81. (In Russ.)]
  76. Scapini P, Bazzoni F, Cassatella MA. Regulation of B-cell-activating factor (BAFF)/B lymphocyte stimulator (BLyS) expression in human neutrophils. Immunol Lett. 2008;116(1):1–6. https://doi.org/10.1016/j.imlet.2007.11.009.
  77. Puga I, Cols M, Barra CM, et al. B cell-helper neutrophils stimulate the diversification and production of immunoglobulin in the marginal zone of the spleen. Nat Immunol. 2011;13(2):170–180. https://doi.org/10.1038/ni.2194.
  78. Abi Abdallah DS, Egan CE, Butcher BA, Denkers EY. Mouse neutrophils are professional antigen-presenting cells programmed to instruct Th1 and Th17 T-cell differentiation. Int Immunol. 2011;23(5):317–326. https://doi.org/10.1093/intimm/dxr007.
  79. Долгушин И.И., Мезенцева Е.А., Савочкина А.Ю., Кузнецова Е.К. Нейтрофил как «многофункциональное устройство» иммунной системы // Инфекция и иммунитет. – 2019. – Т. 9. – № 1. – С. 9–38. [Dolgushin II, Mezentseva EA, Savochkina AYu, Kuznetsova EK. Neutrophil as a multifunctional relay in immune system. Infection and immunity. 2019;9(1):9–38. (In Russ.)]. https://doi.org/10.15789/2220-7619-2019-1-9-38.
  80. Treffers LW, Hiemstra IH, Kuijpers TW, et al. Neutrophils in cancer. Immunol Rev. 2016;273(1):312–328. https://doi.org/10.1111/imr.12444.
  81. Soehnlein O, Steffens S, Hidalgo A, Weber C. Neutrophils as protagonists and targets in chronic inflammation. Nat Rev Immunol. 2017;17(4):248–261. https://doi.org/10.1038/nri.2017.10.
  82. Кокряков В.Н., Алешина Г.М., Шамова О.В., и др. Современная концепция об антимикробных пептидах как молекулярных факторах иммунитета // Медицинский академический журнал. – 2010. – Т. 10. – № 4. – С. 149–160. [Kokryakov VN, Aleshina GM, Shamova OV, et al. Modern concept of antimicrobial peptides as molecular factors of the immunity. Medical Academic Journal. 2010;10(4):149–160. (In Russ.)]
  83. Шамова О.В., Орлов Д.С., Кокряков В.Н., Корнева Е.А. Антимикробные пептиды в реализации различных защитных функций организма // Медицинский академический журнал. – 2013. – Т. 13. – № 3. – С. 42–52. [Shamova OV, Orlov DS, Kokryakov VN, Kornerva EA. Antimicrobial peptides in the reaization of varied host defense reactions. Medical Academic Journal. 2013;13(3):42–52. (In Russ.)]
  84. Алешина Г.М. Лактоферрин — эндогенный регулятор защитных функций организма // Медицинский академический журнал. – 2019. – Т. 19, № 1. – С. 35-44. [Aleshina GM. Lactoferrin — an endogenous regulator of the protective functions of the organism. Medical Academic Journal. 2019;19(1): 35–44. (In Russ.)]. https://doi.org/10.17816/MAJ19135-44.
  85. Елизарова А.Ю., Костевич В.А., Войнова И.В., Соколов А.В. Лактоферрин как перспективное средство в терапии метаболического синдрома: от молекулярных механизмов до клинических испытаний // Медицинский академический журнал. – 2019. – Т. 19. – № 1. – С. 45–64. [Elizarova AYu, Kostevich VA, Voynova IV, Sokolov AV. Lactoferrin as a promising remedy for metabolic syndrome therapy: from molecular mechanisms to clinical trials. Medical Academic Journal. 2019;19(1):45–64. (In Russ.)]. https://doi.org/10.17816/MAJ19145-64.
  86. Arnhold J. The dual role of myeloperoxidase in immune response. Int J Mol Sci. 2020;21(21):8057. https://doi.org/10.3390/ijms21218057.

Supplementary files

Supplementary Files Action
1.
The sequence of the granulogenesis process and the synthesis of granular proteins at distinct stages of myeloid cell development [8]. MB — myeloblast; PM — promyelocyte; MC — myelocyte; MM — metamyelocyte; BC — band cell; PMN — polymorphonuclear neutrophil. Granule proteins: MPO — myeloperoxidase; PR-3 — proteinase 3; NE — neutrophil elastase; LF — lactoferrin; TC-I — transcobalamin I; CRISP-3 — cysteine-rich secretory protein-3

Download (277KB) Indexing metadata

Statistics

Views

Abstract - 23

PDF (Russian) - 4

PDF (English) - 0

Cited-By


Article Metrics

Metrics Loading ...

PlumX

Dimensions

Refbacks

  • There are currently no refbacks.

Copyright (c) 2021 Aleshina G.M.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies