Assessment of fetal resistance to hypoxia using the Stange test as an adjunct to Apgar scale assessment of neonatal health status

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

It has been established that the cause of biological death of fetuses in stillbirths and the cause of neonatal encephalopathies in live births is hypoxic brain cell damage in fetuses. Timely cesarean section remains the most effective way to preserve fetal life and health in the face of lethal intrauterine hypoxia. However, there is no universally recognized methodology for assessing fetal adaptation reserves to hypoxia and no methodology for selecting the type of delivery in order to perform a timely cesarean section if necessary. The Apgar score, which has been used since 1952, allows assessment of neonatal health at 1 and 5 minutes after birth, but this assessment is made without taking into account the health of the fetus before delivery. In recent years, it has been established that the outcome of fetal hypoxia is determined not only by its duration, but also by the amount of adaptive reserves available in the fetus to hypoxia. It was found that the duration of fetal immobility during apnea of a pregnant woman is an indicator of fetal resistance to hypoxia. In 2011, a method of assessing fetal resistance to intrauterine hypoxia based on the Stange test was developed in Russia. It has been found that the maximum duration of fetal immobility during maternal apnea is normally more than 30 seconds, while in the presence of fetal signs of fetoplacental insufficiency it does not reach 30 seconds, and in the presence of signs of severe fetoplacental insufficiency it does not reach 10 seconds. Therefore, it was proposed to consider good fetal resistance to hypoxia as an indication for vaginal delivery, and poor fetal resistance to hypoxia as an indication for cesarean section. A technique for assessing fetal resistance to hypoxia is described that has been developed for independent use by every pregnant woman. It is shown that it is sufficient for her to have a stopwatch and to be able to record the maximum period of fetal immobility during voluntary apnea. It is hoped that a measure of fetal resistance to hypoxia could be a meaningful complement to the Apgar score of neonatal health. It is envisioned that the use of a modified Stange test could help physicians prevent stillbirths and neonatal encephalopathies.

Full Text

Restricted Access

About the authors

Petr D. Shabanov

Institue of Experimental Medicine

Email: pdshabanov@mail.ru
ORCID iD: 0000-0003-1464-1127
SPIN-code: 8974-7477

MD, Dr. Sсi. (Med.), Professor, Head of the Anichkov Department of Neuropharmacology

Russian Federation, Saint Petersburg

Aleksandr L. Urakov

Izhevsk State Medical Academy

Email: urakoval@live.ru
ORCID iD: 0000-0002-9829-9463
SPIN-code: 1613-9660

MD, Dr. Sсi. (Med.), Professor, Head of the Department of General and Clinical Pharmacology

Russian Federation, Izhevsk

Natalya A. Urakova

Izhevsk State Medical Academy

Author for correspondence.
Email: urakovanatal@mail.ru

MD, Cand. Sсi. (Med.), Assistant Professor of the Department of Obstetrics and Gynecology

Russian Federation, Izhevsk

References

  1. Jóźwiak J, Kotowska IE. Decreasing birth rates in Europe: reasons and remedies. European View. 2008;7:225–236. doi: 10.1007/s12290-008-0062-6
  2. Aminu M, Unkels R, Mdegela M, et al. Causes of and factors associated with stillbirth in low- and middle-income countries: a systematic literature review. BJOG. 2014;121(Suppl. 4):141–153. doi: 10.1111/1471-0528.12995
  3. Heazell AE, Hayes DJ, Whitworth M, et al. Biochemical tests of placental function versus ultrasound assessment of fetal size for stillbirth and small-for-gestational-age infants. Cochrane Database Syst Rev. 2019;5(5):CD012245. doi: 10.1002/14651858.CD012245.pub2
  4. Reinebrant HE, Leisher SH, Coory M, et al. Making stillbirths visible: a systematic review of globally reported causes of stillbirth. BJOG. 2018;125(2):212–224. doi: 10.1111/1471-0528.14971
  5. Heazell AE, Whitworth M, Duley L, Thornton JG. Use of biochemical tests of placental function for improving pregnancy outcome. Cochrane Database Syst Rev. 2015;2015(11):CD011202. doi: 10.1002/14651858.CD011202.pub2
  6. Alfirevic Z, Devane D, Gyte GM, Cuthbert A. Continuous cardiotocography (CTG) as a form of electronic fetal monitoring (EFM) for fetal assessment during labour. Cochrane Database Syst Rev. 2017;2(2):CD006066. doi: 10.1002/14651858.CD006066.pub3
  7. Boo YY, Gwacham-Anisiobi U, Thakrar DB, et al. Facility-based stillbirth review processes used in different countries across the world: a systematic review. EClinicalMedicine. 2023;59:101976. doi: 10.1016/j.eclinm.2023.101976
  8. Razaz N, Norman M, Alfvén T, Cnattingius S. Low Apgar score and asphyxia complications at birth and risk of longer-term cardiovascular disease: a nationwide population-based study of term infants. Lancet Reg Health Eur. 2023;24:100532. doi: 10.1016/j.lanepe.2022.100532
  9. Røhder K, Væver MS, Aarestrup AK, et al. Maternal-fetal bonding among pregnant women at psychosocial risk: The roles of adult attachment style, prenatal parental reflective functioning, and depressive symptoms. PLoS One. 2020;15(9):e0239208. doi: 10.1371/journal.pone.0239208
  10. Li Z, Kong Y, Chen S, et al. Independent and cumulative effects of risk factors associated with stillbirths in 50 low- and middle-income countries: A multi-country cross-sectional study. EClinicalMedicine. 2022;54:101706. doi: 10.1016/j.eclinm.2022.101706
  11. Urakova NA, Urakov AL. Natural periods of fetal hypoxia during vaginal childbirth are a unique physiological phenomenon. Why women should know about it. Acta Scientific Women’s Health. 2023;5(4):66–71. doi: 10.31080/ASWH.2023.05.0492
  12. Urakov AL, Urakova NA. Intrauterine hypoxia: Causes, mechanisms, symptoms, diagnosis, compensation, prevention. J Obstet Gynecol Probl: JOGP. 2020;2(1):100015.
  13. Stock SJ, Bricker L, Norman JE, West HM. Immediate versus deferred delivery of the preterm baby with suspected fetal compromise for improving outcomes. Cochrane Database Syst Rev. 2016;7(7):CD008968. doi: 10.1002/14651858.CD008968.pub3
  14. Surkan PJ, Stephansson O, Dickman PW, Cnattingius S. Previous preterm and small-for-gestational-age births and the subsequent risk of stillbirth. N Engl J Med. 2004;350(8):777–785. doi: 10.1056/NEJMoa031587
  15. Edmunds SF, Silver RM. Stillbirth reduction efforts and impact on early births. Clin Perinatol. 2013;40(4):611–628. doi: 10.1016/j.clp.2013.07.002
  16. Ryan M, Lacaze-Masmonteil T, Mohammad K. Neuroprotection from acute brain injury in preterm infants. Pediatr Child Health. 2019;24(4):276–290. doi: 10.1093/pch/pxz056
  17. Murthy P, Zein H, Thomas S, et al. Neuroprotection care bundle implementation to decrease acute brain injury in preterm infants. Pediatr Neurol. 2020;110:42–48. doi: 10.1016/j.pediatrneurol.2020.04.016
  18. Berger R, Söder S. Neuroprotection in preterm infants. Biomed Res Int. 2015;2015:257139. doi: 10.1155/2015/257139
  19. Mitra S, Gardner CE, MacLellan A, et al. Prophylactic cyclo-oxygenase inhibitor drugs for the prevention of morbidity and mortality in preterm infants: a network meta-analysis. Cochrane Database Syst Rev. 2022;4(4):CD013846. doi: 10.1002/14651858.CD013846.pub2
  20. Jonsdotter A, Rocha-Ferreira E, Hagberg H, Carlsson Y. Maternal and fetal serum concentrations of magnesium after administration of a 6-g bolus dose of magnesium sulfate (MgSO4) to women with imminent preterm delivery. Acta Obstet Gynecol Scand. 2022;101(8):856–861. doi: 10.1111/aogs.14372
  21. Shepherd E, Salam RA, Middleton P, et al. Antenatal and intrapartum interventions for preventing cerebral palsy: an overview of Cochrane systematic reviews. Cochrane Database Syst Rev. 2017;8(8):CD012077. doi: 10.1002/14651858.CD012077.pub2
  22. Posod A, Wegleiter K, Neubauer V, et al. Short-, mid-, and long-term effect of granulocyte colony-stimulating factor/stem cell factor and fms-related tyrosine kinase 3 ligand evaluated in an in vivo model of hypoxic-hyperoxic ischemic neonatal brain injury. Biomed Res Int. 2019;2019:5935279. doi: 10.1155/2019/5935279
  23. Chin EM, Gwynn HE, Robinson S, Hoon AH Jr. Principles of medical and surgical treatment of cerebral palsy. Neurol Clin. 2020;38(2):397–416. doi: 10.1016/j.ncl.2020.01.009
  24. Dumbuya JS, Chen L, Wu JY, Wang B. The role of G-CSF neuroprotective effects in neonatal hypoxic-ischemic encephalopathy (HIE): current status. J Neuroinflammation. 2021;18(1):55. doi: 10.1186/s12974-021-02084-4
  25. Coates D, Makris A, Catling C, et al. A systematic scoping review of clinical indications for induction of labour. PLoS One. 2020;15(1):e0228196. doi: 10.1371/journal.pone.0228196
  26. Tsai HJ, Su CF. Retrospective analysis of stillbirth and induced termination of pregnancies: Factors affecting determination. Taiwan J Obstet Gynecol. 2022;61(6):1098. doi: 10.1016/j.tjog.2022.05.002
  27. Pařízek A, Drška V, Říhová M. Prague 1337, the first successful caesarean section in which both mother and child survived may have occurred in the court of John of Luxembourg, King of Bohemia. Ceska Gynekol. 2016;81(4):321–330.
  28. Zethof S, Christou A, Benova L, et al. Out of sight, out of mind? Evidence from cross-sectional surveys on hidden caesarean sections among women with stillbirths in Ghana, 2007 and 2017. BMJ Glob Health. 2023;8(6):e011591. doi: 10.1136/bmjgh-2022-011591
  29. Martis R, Emilia O, Nurdiati DS, Brown J. Intermittent auscultation (IA) of fetal heart rate in labour for fetal well-being. Cochrane Database Syst Rev. 2017;2(2):CD008680. doi: 10.1002/14651858.CD008680.pub2
  30. Ekblom A, Målqvist M, Gurung R, et al. Factors associated with poor adherence to intrapartum fetal heart monitoring in relationship to intrapartum related death: A prospective cohort study. PLOS Glob Public Health. 2022;2(5):e0000289. doi: 10.1371/journal.pgph.0000289
  31. Kc A, Wrammert J, Clark RB, et al. Inadequate fetal heart rate monitoring and poor use of partogram associated with intrapartum stillbirth: a case-referent study in Nepal. BMC Pregnancy Childbirth. 2016;16:233. doi: 10.1186/s12884-016-1034-5
  32. Sarin E, Bajpayee D, Kumar A, et al. Intrapartum fetal heart monitoring practices in selected facilities in aspirational districts of Jharkhand, Odisha and Uttarakhand. J Obstet Gynaecol India. 2021;71(2):143–149. doi: 10.1007/s13224-020-01403-8
  33. Bajpayee D, Sarin E, Dastidar SG, et al. Strengthening fetal heart rate monitoring during labor with a standard handheld Doppler – implementation experience from India. Indian J Community Med. 2022;47(3):405–409. doi: 10.4103/ijcm.ijcm_818_21
  34. Byaruhanga R, Bassani DG, Jagau A, et al. Use of wind-up fetal Doppler versus Pinard for fetal heart rate intermittent monitoring in labour: a randomised clinical trial. BMJ Open. 2015;5(1):e006867. doi: 10.1136/bmjopen-2014-006867
  35. Kamala BA, Kidanto HL, Wangwe PJ, et al. Intrapartum fetal heart rate monitoring using a handheld Doppler versus Pinard stethoscope: a randomized controlled study in Dar es Salaam. Int J Womens Health. 2018;10:341–348. doi: 10.2147/IJWH.S160675
  36. Plotkin M, George J, Bundala F, et al. Scale-up of Doppler to improve intrapartum fetal heart rate monitoring in Tanzania: A qualitative assessment of national and regional/district level implementation factors. Int J Environ Res Public Health. 2020;17(6):1931. doi: 10.3390/ijerph17061931
  37. Malacova E, Regan A, Nassar N, et al. Risk of stillbirth, preterm delivery, and fetal growth restriction following exposure in a previous birth: systematic review and meta-analysis. BJOG. 2018;125(2):183–192. doi: 10.1111/1471-0528.14906
  38. Ota E, da Silva Lopes K, Middleton P, et al. Antenatal interventions for preventing stillbirth, fetal loss and perinatal death: an overview of Cochrane systematic reviews. Cochrane Database Syst Rev. 2020;12(12):CD009599. doi: 10.1002/14651858.CD009599.pub2
  39. Skytte TB, Holm-Hansen CC, Ali SM, et al. Risk factors of stillbirths in four district hospitals on Pemba Island, Tanzania: a prospective cohort study. BMC Pregnancy Childbirth. 2023;23(1):288. doi: 10.1186/s12884-023-05613-6
  40. Fikre R, Gubbels J, Teklesilasie W, Gerards S. Effectiveness of midwifery-led care on pregnancy outcomes in low- and middle-income countries: a systematic review and meta-analysis. BMC Pregnancy Childbirth. 2023;23(1):386. doi: 10.1186/s12884-023-05664-9
  41. Al Wattar BH, Honess E, Bunnewell S, et al. Effectiveness of intrapartum fetal surveillance to improve maternal and neonatal outcomes: a systematic review and network meta-analysis. CMAJ. 2021;193(14):E468–E477. doi: 10.1503/cmaj.202538
  42. Ben M’Barek I, Jauvion G, Ceccaldi PF. Computerized cardiotocography analysis during labor – A state-of-the-art review. Acta Obstet Gynecol Scand. 2023;102(2):130–137. doi: 10.1111/aogs.14498
  43. Ben M’Barek I, Jauvion G, Vitrou J, et al. DeepCTG® 1.0: an interpretable model to detect fetal hypoxia from cardiotocography data during labor and delivery. Front Pediatr. 2023;11:1190441. doi: 10.3389/fped.2023.1190441
  44. Moore MC, Costa CM. Cesarean section: Understanding and celebrating your baby’s birth. In: A Johns Hopkins Press Health Book; 2004.
  45. Rainaldi MA, Perlman JM. Pathophysiology of birth asphyxia. Clin Perinatol. 2016;43(3):409–422. doi: 10.1016/j.clp.2016.04.002
  46. Jugović D, Tumbri J, Medić M, et al. New Doppler index for prediction of perinatal brain damage in growth-restricted and hypoxic fetuses. Ultrasound Obstet Gynecol. 2007;30(3):303–311. doi: 10.1002/uog.4094
  47. Gebregziabher GT, Hadgu FB, Abebe HT. Prevalence and associated factors of perinatal asphyxia in neonates admitted to Ayder comprehensive specialized hospital, Northern Ethiopia: A cross-sectional study. Int J Pediatr. 2020;2020:4367248. doi: 10.1155/2020/4367248
  48. Schneider H. Birth asphyxia – an unsolved problem of perinatal medicine. Z Geburtshilfe Neonatol. 2001;205(6):205–212. (In German). doi: 10.1055/s-2001-19051
  49. Urakova NA, Urakov AL, Stolyarenko AP. What is the disadvantage of the apgar score? What is the advantage of the obstetric stange test? Acta Scientific Women’s Health. 2022;4(10):1–2.
  50. Urakov A, Urakova N. A drowning fetus sends a distress signal, which is an indication for a Caesarean section. Indian J Obstet Gynecol Res. 2020;7(4):461–466. doi: 10.18231/j.ijogr.2020.100
  51. Molina G, Weiser TG, Lipsitz SR, et al. Relationship between Cesarean delivery rate and maternal and neonatal mortality. JAMA. 2015;314(21):2263–2270. doi: 10.1001/jama.2015.15553
  52. Urakov A, Urakova N. Modified Stange test gives new gynecological criteria and recommendations for choosing caesarean section childbirth. Bioimpacts. 2022;12(5):477–478. doi: 10.34172/bi.2022.23995
  53. Chugh A, Lal S, Nijhawan T, Biradar P. Evaluation of primary caesarean section and neonatal outcomes in a tertiary care hospital and impact on current obstetric practice. Eur J Obstet Gynecol Reprod Biol X. 2023;19:100213. doi: 10.1016/j.eurox.2023.100213
  54. Maskey S, Bajracharya M, Bhandari S. Prevalence of Cesarean section and its indications in a Tertiary Care Hospital. JNMA J Nepal Med Assoc. 2019;57(216):70–73. doi: 10.31729/jnma.4282
  55. Raju TN. The birth of Caesar and the cesarean misnomer. Am J Perinatol. 2007;24(10):567–568. doi: 10.1055/s-2007-986693
  56. Mauri F, Schumacher F, Weber M, et al. Clinicians’ views regarding caesarean section rates in Switzerland: A cross-sectional web-based survey. Eur J Obstet Gynecol Reprod Biol X. 2023;17:100182. doi: 10.1016/j.eurox.2023.100182
  57. Liu Y, Xuan R, He Y, et al. Computation of fetal kicking in various fetal health examinations: A systematic review. Int J Environ Res Public Health. 2022;19(7):4366. doi: 10.3390/ijerph19074366
  58. Salihagić-Kadić A, Medić M, Jugović D, et al. Fetal cerebrovascular response to chronic hypoxia – implications for the prevention of brain damage. J Matern Fetal Neonatal Med. 2006;19(7):387–396. doi: 10.1080/14767050600637861
  59. Wolf H, Stampalija T, Lees CC; TRUFFLE Study Group. Fetal cerebral blood-flow redistribution: analysis of Doppler reference charts and association of different thresholds with adverse perinatal outcome. Ultrasound Obstet Gynecol. 2021;58(5):705–715. doi: 10.1002/uog.23615
  60. Rizzo G, Mappa I, Bitsadze V, et al. Role of Doppler ultrasound at time of diagnosis of late-onset fetal growth restriction in predicting adverse perinatal outcome: prospective cohort study. Ultrasound Obstet Gynecol. 2020;55(6):793–798. doi: 10.1002/uog.20406
  61. Tercanli S, Prüfer F. Fetal neurosonogaphy: ultrasound and magnetic resonance imaging in competition. Ultraschall Med. 2016;37(6):555–557. doi: 10.1055/s-0042-117142
  62. Sadovsky E, Yaffe H. Daily fetal movement recording and fetal prognosis. Obstet Gynecol. 1973;41:845–850.
  63. Urakova NA. Complex ultrasound and infrared diagnostics of fetal hypoxia during pregnancy and childbirth. Problems of Expertise in Medicine. 2013;3(51):26–29. (In Russ.)
  64. Urakova N, Urakov A, Gausknekht M. Russian innovative ultrasonic method of assessing the sustainability of the fetus to hypoxia as the opportunity of forecasting of asphyxia, perinatal outcomes and the choice of the method and term of delivery. J Perinat Med. 2013;41:183.
  65. Urakova N, Urakov A, Gausknekht M. The prediction of the future for your child? It is possible! The methodology of the functional test of the stability of the fetus to hypoxia. J Perinat Med. 2013;4:247.
  66. Strange VA. Prognosis in general anesthesia. J Am Med Assoc. 1914;62:1132.
  67. Urakov AL, Urakova NA, Gauskneht MJu, Chernova LV. Diagnostic symptoms of hypoxia of the fetus in the womb, and the fish in the water. International Research Journal. 2013;11(18):53–54. (In Russ.)
  68. Urakov AL. Hydrogen peroxide can replace oxygen gas, keeping fish alive in hypoxic conditions. International Research Journal. 2017;5(59):106–108. doi: 10.23670/IRJ.2017.59.109
  69. Nalivaeva NN, Turner AJ, Zhuravin IA. Role of prenatal hypoxia in brain development, cognitive functions, and neurodegeneration. Front Neurosci. 2018;12:825. doi: 10.3389/fnins.2018.00825
  70. Sutin J, Vyas R, Feldman HA, et al. Association of cerebral metabolic rate following therapeutic hypothermia with 18-month neurodevelopmental outcomes after neonatal hypoxic ischemic encephalopathy. EBioMedicine. 2023;94:104673. doi: 10.1016/j.ebiom.2023.104673
  71. Lanciotti L, Sica R, Penta L, et al. Minipuberty assessment in newborns with hypoxic ischemic encephalopathy treated with therapeutic hypothermia: a single-center case-control study. Front Pediatr. 2023;11:1201668. doi: 10.3389/fped.2023.1201668
  72. Kremsky I, Ma Q, Li B, et al. Fetal hypoxia results in sex- and cell type-specific alterations in neonatal transcription in rat oligodendrocyte precursor cells, microglia, neurons, and oligodendrocytes. Cell Biosci. 2023;13(1):58. doi: 10.1186/s13578-023-01012-8
  73. Caspi B, Lancet M, Kessler I. Sinusoidal pattern of uterine contractions in abruptio placentae. Int J Gynaecol Obstet. 1980;17(6):615–616. doi: 10.1002/j.1879-3479.1980.tb00221.x
  74. Murphy NC, Burke N, Dicker P, et al. Reducing emergency cesarean delivery and improving the primiparous experience: Findings of the RECIPE study. Eur J Obstet Gynecol Reprod Biol. 2020;255:13–19. doi: 10.1016/j.ejogrb.2020.09.035
  75. Murphy NC, Burke N, Dicker P, et al. The RECIPE study: reducing emergency Caesareans and improving the Primiparous experience: a blinded, prospective, observational study. BMC Pregnancy and Childbirth. 2020;20(1):431. doi: 10.1186/s12884-020-03112-6
  76. Tran HT, Murray JCS, Sobel HL, et al. Early essential newborn care is associated with improved newborn outcomes following caesarean section births in a tertiary hospital in Da Nang, Vietnam: a pre/post-intervention study. BMJ Open Qual. 2021;10(3):e001089. doi: 10.1136/bmjoq-2020-001089

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 74760 от 29.12.2018 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies