Epileptic activity or eeg similar to epileptic activity. How to recognize? Review
- Authors: Guseva N.L.1, Suvorov N.B.1, Agapova E.A.1, Sergeev T.V.2, Filatov A.Y.3, Shichkina Y.A.3, Kupriyanov M.S.3
-
Affiliations:
- Institute of Experimental Medicine
- Institute of Experimental Medicine, Saint Petersburg, Russia
- Saint Petersburg Electrotechnical University “LETI”
- Issue: Vol 24, No 1 (2024)
- Pages: 5-22
- Section: Analytical reviews
- Published: 11.09.2024
- URL: https://journals.eco-vector.com/MAJ/article/view/623191
- DOI: https://doi.org/10.17816/MAJ623191
- ID: 623191
Cite item
Abstract
The review examines the recently accumulated clinical and experimental data on the mechanisms of epileptogenesis, and the most appropriate methods for recording an electroencephalogram to detect epileptiform activity. A description of epi-patterns is provided, as well as artifacts – graph elements similar to epi-patterns. All descriptions are supported by appropriate illustrations. In order to identify possible epi-activity, the need for preliminary registration of electroencephalogram with functional tests in the form of rhythmic photostimulation and hyperventilation for a person participating as a subject in studies related to physical and postural loads is emphasized.
Keywords
Full Text

About the authors
Nadezhda L. Guseva
Institute of Experimental Medicine
Email: guseva_nad@mail.ru
ORCID iD: 0000-0002-4660-3873
SPIN-code: 3322-0668
Scopus Author ID: 56711691000
Cand. Sci. (Biol.), Leading Research associate of the Department of Ecological Physiology
Russian Federation, 12 Academician Pavlov St., Saint Petersburg, 197022
Nikolay B. Suvorov
Institute of Experimental Medicine
Email: nbsuvorov@yandex.ru
ORCID iD: 0000-0003-2363-6012
SPIN-code: 6164-5994
Scopus Author ID: 16521673300
Professor, Dr. Sci. (Biol.), Leading Research associate of the Department of Ecological Physiology
Russian Federation, 12 Academician Pavlov St., Saint Petersburg, 197022Elizaveta A. Agapova
Institute of Experimental Medicine
Author for correspondence.
Email: agapova.ea@iemspb.ru
ORCID iD: 0000-0002-0767-2120
SPIN-code: 3383-9600
Scopus Author ID: 57215663447
Researcher Associate of the Department of Ecological Physiology
Russian Federation, 12 Academician Pavlov St., Saint Petersburg, 197022Timofey V. Sergeev
Institute of Experimental Medicine, Saint Petersburg, Russia
Email: stim9@yandex.ru
ORCID iD: 0000-0001-9088-0619
SPIN-code: 4952-5143
Scopus Author ID: 57201501819
Cand. Sei. (Biol.), Head of the Biofeetback Physiology Laboratory of the Department of Ecological Physiology
Russian Federation, St.-Peterburg, Akademika Pavlova st., 12Anton Yu. Filatov
Saint Petersburg Electrotechnical University “LETI”
Email: aifilatov@etu.ru
ORCID iD: 0000-0003-4298-8523
SPIN-code: 5926-7391
Scopus Author ID: 57194078312
Cand. Sci. (Engr.), Assistant Professor of Department of Software Engineering and Computer Applications
Russian Federation, 5, Professora Popova str. 197022 Saint PetersburgYulia A. Shichkina
Saint Petersburg Electrotechnical University “LETI”
Email: shichkina@co-evolution.ai
ORCID iD: 0000-0001-7140-1686
SPIN-code: 5634-7858
Scopus Author ID: 57144627300
ResearcherId: K-6530-2017
Dr. Sci. (Engr.), Professor, Head Of Department “Technologies of Artificial Intelligence in Physiology and Medicine”
Russian Federation, 5, Professora Popova str. 197022 Saint PetersburgMikhail S. Kupriyanov
Saint Petersburg Electrotechnical University “LETI”
Email: mskupriyanov@mail.ru
ORCID iD: 0000-0003-4695-4507
SPIN-code: 3937-5770
Scopus Author ID: 56785609900
Dr. Sci. (Engr.), Professor; Head of Department of Computer Science and Engineering
Russian Federation, 5, Professora Popova str. 197022 Saint PetersburgReferences
- Shmidt RF, Lang F, Khekmann M, editors. Human physiology with the basics of pathophysiology. In 2 vol. Vol. 1. Transl. from German. Moscow: Laboratoriya znanii; 2019. 537 p. (In Russ.)
- Zenkov LR. Clinical electroencephalography (with elements of epileptology). Guide for doctors. 9th ed. Moscow: MEDpress-inform; 2018. 360 p. (In Russ.)
- Nerobkova LN, Tkachenko SB. Clinical electroencephalography: textbook. Moscow: RMAPO; 2016. 213 p. (In Russ.)
- Daly DD, Pedley A. Current Practice of Clinical Electroencephalography. 2nd ed. Lippincott Williams and Wilkins; 1990. 848 p.
- Jadhav C, Kamble P, Mundewadi S, et al. Clinical applications of EEG as an excellent tool for event related potentials in psychiatric and neurotic disorders. Int J Physiol Pathophysiol Pharmacol. 2022;14(2):73–83.
- Guseva NL, Svyatogor IA, Sofronov GA, Sirbiladze KT. Dynamics of background and jet EEG patterns of children with minimum brain dysfunctions before and after sessions of transcranial direct current stimulation. Medical Academic Journal. 2015;15(1):47–53. EDN: TOPRIV
- Hashemi A, Pino LJ, Moffat G, et al. Characterizing population EEG dynamics throughout adulthood. eNeuro. 2016;3(6):ENEURO.0275- 16.2016. doi: 10.1523/ENEURO.0275-16.2016
- Tatum WO, Rubboli G, Kaplan PW, et al. Clinical utility of EEG in diagnosing and monitoring epilepsy in adults. Clin Neurophysiol. 2018;129(5):1056–1082. doi: 10.1016/j.clinph.2018.01.019
- Jasper HH. The ten twenty electrode system of the international federation. Electroencephalogr Clin Neurophysiol. 1957;28:173–179.
- Mukhin KYu, Petrukhin AS, Glukhova LYu. Epilepsy: atlas of electro-clinical diagnostics. Moscow: Alvarez Publishing; 2004. 439 p. (In Russ.)
- Luder H, Noachtar S. Atlas and Classification of Electroencephalography. Philadelphia: WB Saunders; 2000. 203 р.
- Svyatogor IA, Dick OE, Nozdrachev AD, Guseva NL. Analysis of changes in EEG patterns in response to rhythmic photic stimulation under various disruptions of the functional state of the central nervous system. Fiziologiya cheloveka. 2015;41(3):261–268. EDN: TQQVYX doi: 10.7868/S0131164615030170
- Britton JW, Frey LC, Hopp JL, et al. Electroencephalography (EEG): An introductory text and atlas of normal and abnormal findings in adults, children, and infants [Internet]. Chicago: American Epilepsy Society; 2016 [cited 08.11.2023]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK390354/
- Kolyagin VV. Epilepsy. Irkutsk: IGMAPO; 2013. 232 p. (In Russ.) EDN: TUCJCR
- Svyatogor IA, Dick OE, Guseva NL, Mokhovikova IA. Neurophysiological correlates of maladaptive disorders. Saint Petersburg: Politekh-Press; 2022. 199 p. (In Russ.)
- Goldberg EM, Coulter DA. Mechanisms of epileptogenesis: a convergence on neural circuit dysfunction. Nat Rev Neurosci. 2013;14(5):337–349. doi: 10.1038/nrn3482
- Sinkin MV, Kvaskova NE, Brutyan AG, et al. Russian glossary of terms used in clinical electroencephalography. Nervnye bolezni. 2021;(1):83–88. EDN: UBAMSW doi: 10.24412/2226-0757-2021-12312
- Emmady PD, Anilkumar AC. EEG Abnormal Waveforms. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 [cited 08.11.2023]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK557655/
- Kasteleijn-Nolst Trenité D, Rubboli G, Hirsch E, et al. Methodology of photic stimulation revisited: updated European algorithm for visual stimulation in the EEG laboratory. Epilepsia. 2012;53(1):16–24. doi: 10.1111/j.1528-1167.2011.03319.x
- Puglia JF, Brenner RP, Soso MJ. Relationship between prolonged and self-limited photoparoxysmal responses and seizure incidence: study and review. J Clin Neurophysiol. 1992;9(1):137–144. doi: 10.1097/00004691-199201000-00015
- Waltz S, Christen HJ, Doose H. The different patterns of the photoparoxysmal response – a genetic study. Electroencephalogr Clin Neurophysiol. 1992;83(2):138–145. doi: 10.1016/0013-4694(92)90027-f
- Kasteleijn-Nolst Trenite DG, Guerrini R, Binnie CD, Genton P. Visual sensitivity and epilepsy: a proposed terminology and classification for clinical and EEG phenomenology. Epilepsia. 2001;42(5):692–701. doi: 10.1046/j.1528-1157.2001.30600.x
- Gulyaev SA, Arkhipenko IV. Artifacts of electroencephalographic research: their identification and differential diagnosis RMJ. 2013;21(10):486–491. (In Russ.) EDN: QZYXPV
- Grubov VV, Runnova AE, Hramov AE. Adaptive filtration of physiological artifacts in EEG signals in humans using empirical mode decomposition. Technical Physics. 2018;63(5):759–767. EDN: YUUYNM doi: 10.21883/JTF.2018.05.45908.2304
- Mari-Acevedo J, Yelvington K, Tatum WO. Normal EEG variants. Handb Clin Neurol. 2019;160:143–160. doi: 10.1016/B978-0-444-64032-1.00009-6
- Peltola J, Surges R, Voges B, von Oertzen TJ. Expert opinion on diagnosis and management of epilepsy-associated comorbidities. Epilepsia Open. 2024;9(1):15–32. doi: 10.1002/epi4.12851
- Lucke-Wold BP, Nguyen L, Turner RC, et al. Traumatic brain injury and epilepsy: underlying mechanisms leading to seizure. 2015. Seizure. 2015;33:13–23. doi: 10.1016/j.seizure.2015.10.002
- Christian CA, Reddy DS, Maguire J, Forcelli PA. Sex differences in the epilepsies and associated comorbidities: implications for use and development of pharmacotherapies. Pharmacol Rev. 2020;72(4):767–800. doi: 10.1124/pr.119.017392
- McHugh JC, Delanty N. Epidemiology and classification of epilepsy: gender comparisons. Int Rev Neurobiol. 2008;83:11–26. doi: 10.1016/S0074-7742(08)00002-0
- Ramantani G, Holthausen H. Epilepsy after cerebral infection: review of the literature and the potential for surgery. Epileptic Disord. 2017;19(2):117–136. doi: 10.1684/epd.2017.0916
- Fisher RS, Acevedo C, Arzimanoglou A, et al. ILAE official report: a practical clinical definition of epilepsy. Epilepsia. 2014;55:475–482. doi: 10.1111/epi.12550
- Fiest KM, Sauro KM, Wiebe S, et al. Prevalence and incidence of epilepsy. A systematic review and meta-analysis of international studies. Neurology. 2017;88:296–303. doi: 10.1212/WNL.0000000000003509
- Beghi E, Giussani G, Sander JW. The natural history and prognosis of epilepsy. Epileptic Disord. 2015;17:243–253. doi: 10.1684/epd.2015.0751
- Beghi E. The epidemiology of epilepsy. Neuroepidemiology. 2020;54(2):185–191. doi: 10.1159/000503831
- Åndell E, Tomson T, Åmark P, et al. Childhood-onset seizures: A long-term cohort study of use of antiepileptic drugs, and drugs for neuropsychiatric conditions. Epilepsy Res. 2020;168:106489. doi: 10.1016/j.eplepsyres.2020.106489
- Reddy DS. Brain structural and neuroendocrine basis of sex differences in epilepsy. Handb Clin Neurol. 2020;175:223–233. doi: 10.1016/B978-0-444-64123-6.00016-3
- Zöllner JP, Schmitt FC, Rosenow F, et al. Seizures and epilepsy in patients with ischaemic stroke. Neurol Res Pract. 2021;3(1):63. doi: 10.1186/s42466-021-00161-w
- Gregory RP, Oates T, Merry R.T. Electroencephalogram epileptiform abnormalities in candidates for aircrew training. Electroencephalogr Clin Neurophysiol. 1993;86:75–77. doi: 10.1016/0013-4694(93)90069-8
- Boutros N, Mirolo HA, Struve F. Normative data for the unquantified EEG: examination of adequacy for neuropsychiatric research. J Neuropsychiatry Clin Neurosci. 2005;17(1):84–90. doi: 10.1176/jnp.17.1.84
- Shelley BP, Trimble MR, Boutros NN. Electroencephalographic cerebral dysrhythmic abnormalities in the trinity of nonepileptic general population, neuropsychiatric, and neurobehavioral disorders. J Neuropsychiatry Clin Neurosci. 2008;20:7–22. doi: 10.1176/jnp.2008.20.1.7
- Verrotti A, Matricardi S, Rinaldi VE, et al. Neuropsychological impairment in childhood absence epilepsy: review of the literature. J Neurol Sci. 2015;359(1–2):59–66. doi: 10.1016/j.jns.2015.10.035
- Gil-Nagel A, Abou-Khalil B. Physiological monitoring during V-EEG. Handb Clin Neurol. 2012;107:343–345. doi: 10.1016/B978-0-444-52898-8.00020-3
- Mukherjee S, Arisi GM, Mims K, et al. Neuroinflammatory mechanisms of posttraumatic epilepsy. J Neuroinflammation. 2020;17:193. doi: 10.1186/s12974-020-01854-w
- Salazar AM, Grafman J. Post-traumatic epilepsy: clinical clues to pathogenesis and paths to prevention. Handb Clin Neurol. 2015;128:525–538. doi: 10.1016/B978-0-444-63521-1.00033-9
- Strauss KI, Elisevich KV. Brain region and epilepsy-associated differences in inflammatory mediator levels in medically refractory mesial temporal lobe epilepsy. J Neuroinflammation. 2016;13(1):270. doi: 10.1186/s12974-016-0727-z
- Coulthard LG, Hawksworth OA, Woodruff TM. Complement: The emerging architect of the developing brain. Trends Neurosci. 2018;41(6):373–384. doi: 10.1016/j.tins.2018.03.009
- Webster KM, Sun M, Crack P, et al. Inflammation in epileptogenesis after traumatic brain injury. J Neuroinflammation. 2017;14(1):10. doi: 10.1186/s12974-016-0786-1
- Dadas A, Janigro D. Breakdown of blood brain barrier as a mechanism of post-traumatic epilepsy. Neurobiol Dis. 2019;123:20–26. doi: 10.1016/j.nbd.2018.06.022
- van Vliet EA, Aronica E, Gorter JA. Blood-brain barrier dysfunction, seizures and epilepsy. Semin Cell Dev Biol. 2015;38:26–34. doi: 10.1016/j.semcdb.2014.10.003
- Bazhanova ED, Kozlov AA, Litovchenko AV. Mechanisms of drug resistance in the pathogenesis of epilepsy: role of neuroinflammation. A literature review. Brain Sci. 2021;11:663. doi: 10.3390/brainsci11050663
- Lipatova LV, Serebryanaya NB, Sivakova NA. The role of neuroinflammation in the pathogenesis of epilepsy. Neurology, neuropsychiatry, psychosomatics. 2018;10(S1):38–45. EDN: VBGRZG doi: 10.14412/2074-2711-2018-1S-38-45
- Sharma R, Leung WL, Zamani AJ, et al. Neuroinflammation in post-traumatic epilepsy: Pathophysiology and tractable therapeutic targets. Brain Sci. 2019;9(11):318. doi: 10.3390/brainsci9110318
- Uludag IF, Bilgin S, Zorlu Y, et al. Interleukin-6, interleukin-1 beta and interleukin-1 receptor antagonist levels in epileptic seizures. Seizure. 2013;22(6):457–461. doi: 10.1016/j.seizure.2013.03.004
- Barker-Haliski ML, Löscher W, White HS, Galanopoulou AS. Neuroinflammation in epileptogenesis: Insights and translational perspectives from new models of epilepsy. Epilepsia. 2017;58 Suppl 3(Suppl 3):39–47. doi: 10.1111/epi.13785
- Rana A, Musto AE. The role of inflammation in the development of epilepsy. J Neuroinflammation. 2018;15(1):144. doi: 10.1186/s12974-018-1192-7
- Wofford KL, Harris JP, Browne KD, et al. Rapid neuroinflammatory response localized to injured neurons after diffuse traumatic brain injury in swine. Exp Neurol. 2017;290:85–94. doi: 10.1016/j.expneurol.2017.01.004
- Yong HYF, Rawji KS, Ghorbani S, et al. The benefits of neuroinflammation for the repair of the injured central nervous system. Cell Mol Immunol. 2019;16(6):540–546. doi: 10.1038/s41423-019-0223-3
- Scheffer IE, French J, Hirsch E, et al. Classification of the epilepsies: New concepts for discussion and debate – special report of the ILAE Classification Task Force of the Commission for Classification and Terminology. Epilepsia Open. 2016;1(1–2):37–44. doi: 10.1002/epi4.5
- Feyissa AM, Tatum WO. Adult EEG. Handb Clin Neurol. 2019;160:103–124. doi: 10.1016/B978-0-444-64032-1.00007-2
- Seneviratne U, D’Souza WJ. Ambulatory EEG. Handb Clin Neurol. 2019;160:161–170. doi: 10.1016/B978-0-444-64032-1.00010-2
- Kotov AS. Epilepsy and sleep. S.S. Korsakov Journal of Neurology and Psychiatry. 2013;113(7):4–10. EDN: QZUPLH
- Delil S, Senel GB, Demiray DY, Yeni N. The role of sleep electroencephalography in patient with new onset epilepsy. Seizure. 2015;31:80–83. doi: 10.1016/j.seizure.2015.07.011
- Shnayder NA. Video monitoring of electroencephalography at epilepsy. Siberian medical review. 2016;(2(98)):93–106. EDN: WEFKKN
- Aivazyan SO. Non epileptic paroxysmal events imitating epilepsy in children. Epilepsy and Paroxysmal Conditions. 2016;8(4):23. EDN: YJCHEX doi: 10.17749/2077-8333.2016.8.4.023-033
- Kozhokaru АB, Karlov VА, Vlasov PN, Orlova АS. Video-EEG monitoring in diagnostics and treatment efficacy evaluation in newly-diagnosed generalized epilepsy in adults. Epilepsy and Paroxysmal Conditions. 2021;13(1):21–32. EDN: ZNCUWF doi: 17749/2077-8333/epi.par.con.2021.046
- Jain SV, Dye T, Kedia P. Value of combined video EEG and polysomnography in clinical management of children with epilepsy and daytime or nocturnal spells. Seizure. 2019;65:1–5. doi: 10.1016/j.seizure.2018.12.009
- Bergmann M, Brandauer E, Stefani A, et al. The additional diagnostic benefits of performing both video-polysomnography and prolonged video-EEG-monitoring: When and why. Clin Neurophysiol Pract. 2022;7:98–102. doi: 10.1016/j.cnp.2022.02.002
- Pensel MC, Nass RD, Tauboll E, et al. Prevention of sudden unexpected death in epilepsy: current status and future perspectives. Expert Rev Neurother. 2020;20(5):497–508. doi: 10.1080/14737175.2020.1754195
- Moore JL, Carvalho DZ, St Louis EK, Bazil C. Sleep and epilepsy: a focused review of pathophysiology, clinical syndromes, co-morbidities, and therapy. Neurotherapeutics. 2021;18(1):170–180. doi: 10.1007/s13311-021-01021-w
- Fountain NB, Kim JS, Lee SI. Sleep deprivation activates epileptiform discharges independent of the activating effects of sleep. J Clin Neurophysiol. 1998;15(1):69–75. doi: 10.1097/00004691-199801000-00009
- Guerrero-Aranda A, Enríquez-Zaragoza A, López-Jiménez K, González-Garrido AA. Yield of sleep deprivation EEG in suspected epilepsy. A retrospective study. Clin EEG Neurosci. 2024;55(2):235–240. doi: 10.1177/15500594221142397
- Dell’Aquila JT, Soti V. Sleep deprivation: a risk for epileptic seizures. Sleep Sci. 2022;15(2):245–249. doi: 10.5935/1984-0063.20220046
- Liu X, Fu Z. A novel recognition strategy for epilepsy EEG signals based on conditional entropy of ordinal patterns. Entropy (Basel). 2020;22(10):1092. doi: 10.3390/e22101092
- Supriya S, Siuly S, Wang H, Zhang Y. Automated epilepsy detection techniques from electroencephalogram signals: a review study. Health Inf Sci Syst. 2020;8(1):33. doi: 10.1007/s13755-020-00129-1
- Kim T, Nguyen P, Pham N, et al. Epileptic seizure detection and experimental treatment: a review. Front Neurol. 2020;11:701. doi: 10.3389/fneur.2020.00701
- Baldini S, Pittau F, Birot G, et al. Detection of epileptic activity in presumably normal EEG. Brain Commun. 2020;2(2):fcaa104. doi: 10.1093/braincomms/fcaa104
- Zhou1 D, Li X. Epilepsy EEG signal classification algorithm based on improved RBF. Front Neurosci. 2020;14:606. doi: 10.3389/fnins.2020.00606
- Ma M, Cheng Y, Wei X, et al. Research on epileptic EEG recognition based on improved residual networks of 1-D CNN and indRNN. BMC Med Inform Decis Mak. 2021;21(Suppl 2):100. doi: 10.1186/s12911-021-01438-5
- Najafi T, Jaafar R, Remli R, et al. A classification model of EEG signals based on RNN-LSTM for diagnosing focal and generalized epilepsy. Sensors (Basel). 2022;22(19):7269. doi: 10.3390/s22197269
- Parveen S, Siva Kumar SA, Jabakumar K, et al. Design of a dense layered network model for epileptic seizures prediction with feature representation. IJACSA. 2022;13(10):218–223. doi: 10.14569/IJACSA.2022.0131027
- Al-Salman W, Li Y, Wen P, et al. Extracting epileptic features in EEGs using a dual-tree complex wavelet transform coupled with a classification algorithm. Brain Res. 2022;1779:147777. doi: 10.1016/j.brainres.2022.147777
- Wang Z, Mengoni P. Seizure classification with selected frequency bands and EEG montages: a natural language processing approach. Brain Inform. 2022;9(1):11. doi: 10.1186/s40708-022-00159-3
- Lee K, Jeong H, Kim S, et al. Real-time seizure detection using EEG: a comprehensive comparison of recent approaches under a realistic setting. Proceedings of Machine Learning Research LEAVE UNSET:1-20, 2022. P. 1–26.
Supplementary files
