Comparative analysis of MxA, OAS1, PKR gene expression levels in leukocytes of patients with influenza and coronavirus infection

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: The innate immune response, particularly the interferon system, plays a crucial role in defending the host against viral pathogens. Interferon signaling induces the expression of specific antiviral proteins known as interferon-stimulated genes, which inhibit viral replication through various mechanisms.

AIM: This study aimed to develop a quantitative PCR system to assess the molecular regulation of human interferon-stimulated genes MxA, OAS1, and PKR, and to determine their expression in blood leukocytes in response to RNA-containing viruses.

MATERIALS AND METHODS: Leukocytes were isolated from patients with laboratory-confirmed influenza and COVID-19 infections 3–4 days after symptom onset. Ex vivo viral infection was induced using influenza viruses A/California/07/09pdm (H1N1pdm09), B/Malaysia/2506/04 (Vic), strain A2 respiratory syncytial virus, and SARS-CoV-2 HCoV-19/Russia/SPE-RII-3524V/2020.

RESULTS: A multiplex qPCR assay was developed for analyzing human MxA, OAS1, and PKR gene expression, with high amplification efficiency. The test system was used to study the molecular regulation of these genes in leukocytes in influenza and COVID-19 patients. The expression levels of MxA, OAS1, and PKR genes were significantly increased in blood leukocytes of hospitalized patients 3–4 days after symptom onset. Stimulation of leukocytes by influenza A, influenza B, and respiratory syncytial virus led to increased mRNA levels of these genes, while stimulation by SARS-CoV-2 did not result in changes in gene expression.

CONCLUSIONS: The multiplex test system can be used to characterize the expression of antiviral effector interferon-stimulated genes, aiding in the study of virus evasion from the innate immune response.

Full Text

Restricted Access

About the authors

Sergey A. Klotchenko

Smorodintsev Research Institute of Influenza

Email: fosfatik@mail.ru
ORCID iD: 0000-0003-0289-6560
SPIN-code: 2632-6195

Cand. Sci. (Biol.), Senior Research Associate at the Influenza Vaccine Laboratory

Russian Federation, Saint Petersburg

Ekaterina A. Romanovskaya-Romanko

Smorodintsev Research Institute of Influenza

Email: ekaterina.romanovskaya@influenza.spb.ru
ORCID iD: 0000-0001-7560-398X
SPIN-code: 1012-8043

Cand. Sci. (Biol.), Leading Research Associate at the Vector Vaccine Laboratory

Russian Federation, Saint Petersburg

Veronika A. Oleynik

Smorodintsev Research Institute of Influenza; Saint Petersburg State Institute of Technology (Technical University)

Email: working.lyutik@gmail.com

Research Laboratory Assistant at the Influenza Vaccine Laboratory, student

Russian Federation, Saint Petersburg; Saint Petersburg

Marya A. Egorova

Smorodintsev Research Institute of Influenza

Email: sci-work_maria@mail.ru
ORCID iD: 0000-0003-1408-8413
SPIN-code: 6055-1423

Research Associate at the Systemic Virology Laboratory

Russian Federation, Saint Petersburg

Varvara S. Monakhova

Smorodintsev Research Institute of Influenza

Email: varvara.bio@gmail.com
SPIN-code: 2111-8493

Research Associate at the Laboratory of Genetic Engineering and Expression of Recombinant Proteins

Russian Federation, Saint Petersburg

Evgeny V. Venev

Smorodintsev Research Institute of Influenza; Botkin Clinical Infectious Diseases Hospital

Email: imberbis@gmail.com

Senior Lecturer, infectious disease doctor

Russian Federation, Saint Petersburg; Saint Petersburg

Marina A. Plotnikova

Smorodintsev Research Institute of Influenza

Author for correspondence.
Email: biomalinka@mail.ru
ORCID iD: 0000-0001-8196-3156
SPIN-code: 2986-9850

Cand. Sci. (Biol.), Senior Research Associate at the Vector Vaccine Laboratory

Russian Federation, Saint Petersburg

References

  1. Yang E, Li MM. All about the RNA: interferon-stimulated genes that interfere with viral RNA processes. Front Immunol. 2020;11:605024. doi: 10.3389/fimmu.2020.605024
  2. Schneider WM, Chevillotte MD, Rice CM. Interferon-stimulated genes: a complex web of host defenses. Annu Rev Immunol. 2014;32:513–545. doi: 10.1146/annurev-immunol-032713-120231
  3. Verhelst J, Hulpiau P, Saelens X. Mx proteins: antiviral gatekeepers that restrain the uninvited. Microbiol Mol Biol Rev. 2013;77(4):551–566. doi: 10.1128/MMBR.00024-13
  4. Al-khatib K, Williams BR, Silverman RH, et al. Distinctive roles for OAS and PKR in the in vivo anti-viral effect of an adenoviral vector expressing murine IFN-β. J Immunol. 2004;72(9):5638–5647. doi: 10.4049/jimmunol.172.9.5638
  5. Meurs EF, Watanabe Y, Kadereit S, et al. Constitutive expression of human double-stranded RNA-activated p68 kinase in murine cells mediates phosphorylation of eukaryotic initiation factor 2 and partial resistance to encephalomyocarditis virus growth. J Virol. 1992;66(10):5805–5814. doi: 10.1128/JVI.66.10.5805-5814.1992
  6. Williams BR. Signal integration via PKR. Sci STKE. 2001;(89):re2. doi: 10.1126/stke.2001.89.re2
  7. Wang S, Wu J, Wang F, et al. Expression pattern analysis of antiviral genes and inflammatory cytokines in PEDV-infected porcine intestinal epithelial cells. Front Vet Sci. 2020;7:75. doi: 10.3389/fvets.2020.00075
  8. Bakhteeva LB, Khaibullina SF, Lombardi VK, et al. Significance of polymorphism in 2’,5’-oligoadenylate synthetase genes in HIV infection. Modern Technologies in Medicine. 2016;8(1):99–105. doi: 10.17691/stm2016.8.1.13
  9. Knapp S, Yee LJ, Frodsham AJ, et al. Polymorphisms in interferon-induced genes and the outcome of hepatitis C virus infection: roles of MxA, OAS-1 and PKR. Genes Immun. 2003;4(6):411–419. doi: 10.1038/sj.gene.6363984
  10. Lozhkov AA, Plotnikova MA, Egorova MA, et al. Simultaneous detection of RIG-1, MDA5, and IFIT-1 expression is a convenient tool for evaluation of the interferon-mediated response. Viruses. 2022;14(10):2090. doi: 10.3390/v14102090
  11. Sheppard P, Kindsvogel W, Xu W, et al. IL-28, IL-29 and their class II cytokine receptor IL-28R. Nat Immunol. 2003;4(1):63–68. doi: 10.1038/ni873
  12. Stark GR, Kerr IM, Williams BR, et al. How cells respond to interferons. Annu Rev Biochem. 1998;67(1):227–264. doi: 10.1146/annurev.biochem.67.1.227
  13. Savvateeva EN, Rubina AY, Gryadunov DA. Biomarkers of community-acquired pneumonia: a key to disease diagnosis and management. Biomed Res Int. 2019;2019:1701276. doi: 10.1155/2019/1701276
  14. Blanco-Melo D, Nilsson-Payant BE, Liu W, et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell. 2020;181(5):1036–1045.e9. doi: 10.1016/j.cell.2020.04.026
  15. Lei X, Dong X, Ma R, et al. Activation and evasion of type I interferon responses by SARS-CoV-2. Nat Commun. 2020;11(1):3810. doi: 10.1038/s41467-020-17665-9
  16. Kazmierski J, Friedmann K, Postmus D, et al. Nonproductive exposure of PBMCs to SARS-CoV-2 induces cell-intrinsic innate immune responses. Mol Syst Biol. 2022;18(8):e10961. doi: 10.15252/msb.202210961
  17. Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271–280.e8. doi: 10.1016/j.cell.2020.02.052
  18. Song X, Hu W, Yu H, et al. Little to no expression of angiotensin-converting enzyme-2 on most human peripheral blood immune cells but highly expressed on tissue macrophages. Cytometry A. 2023;103(2):136–145. doi: 10.1002/cyto.a.24285
  19. Xiong Y, Liu Y, Cao L, et al. Transcriptomic characteristics of bronchoalveolar lavage fluid and peripheral blood mononuclear cells in COVID-19 patients. Emerg Microbes Infect. 2020;9(1):761–770. doi: 10.1080/22221751.2020.1747363
  20. Faist A, Schloer S, Mecate-Zambrano A, et al. Inhibition of p38 signaling curtails the SARS-CoV-2 induced inflammatory response but retains the IFN-dependent antiviral defense of the lung epithelial barrier. Antiviral Res. 2023;209:105475. doi: 10.1016/j.antiviral.2022.105475

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Determination of PCR efficiencies in monoplex and multiplex approaches: a — multiplex amplification of MxA, OAS1, and PKR genes (simultaneous detection in one tube); b — separation of PCR products using agarose gel electrophoresis: 1 — OAS1, 2 — PKR, 3 — MxA, 4 — simultaneous amplification of three genes in multiplex PCR, 5 — DNA Ladder, 100 bp (Fermentas); c — standard curve for MxA gene in monoplex approach; d — standard curve for the OAS1 gene in monoplex approach; d — standard curve for the PKR gene in monoplex approach

Download (326KB)
3. Fig. 2. Relative expression of MxA, OAS1, and PKR genes in leukocytes of patients with influenza infection А (IVA), coronavirus disease (COVID-19), and in healthy volunteers (HV). Statistical significance was determined for groups of infected people compared with a group of healthy volunteers by Kruskal–Wallis test (with pairwise Dunnett’s multiple comparisons test): * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001

Download (177KB)
4. Fig. 3. Patterns expression of MxA (a), OAS1 (b) and PKR (c) genes in leukocytes (from healthy volunteers) in response to in vitro stimulation of leukocytes by influenza viruses А (IVA), B (IVB), SARS-CoV-2, and respiratory syncytial virus (RSV) compared to uninfected cells (CC). Statistical significance was determined using single-factor analysis of variance (ANOVA) for paired samples with Holm–Sidak correction for groups stimulated by viruses relative to control cells group: * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001; NS is non-significant, the differences are not reliable

Download (190KB)
5. Fig. 1. MxA gene amplification using different fluorophores and quenchers

Download (125KB)
6. Fig. 2. Growth curves of fluorescence obtained for the dilution series of samples (from –9 to –2) during real-time PCR detection on channel FAM for MxA detection (a); ROX for OAS1 detection (b); Cy5 for PKR detection (c)

Download (320KB)

Copyright (c) 2023 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 74760 от 29.12.2018 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies