Cytotoxic effects of nerve growth factor and its combinations with chemotherapeutic drugs on anaplastoc astrocytoma, glioblastoma and medubloblastoma cells in vitro

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: Currently, the effectiveness of the treatment of malignant tumors using surgical resection, radiotherapy and chemotherapy is insufficient. Therefore, new research is needed to find alternative molecules with antitumor effects. It is known that nerve growth factor (NGF) inhibits invasion, migration, and angiogenesis of tumor cells. Studying the effects of NGF on brain tumors, as well as its combinations with chemotherapy drugs used in medicine, may contribute to the development of new treatment regimens for malignant neoplasms in the central nervous system.

AIM: The purpose of this study is an exploration the molecular and cellular mechanisms of anticancer effects of individual and combined preparations of NGF and chemotherapeutic drugs on brain tumor cells (gliomas C6, U251, anaplastic astrocytoma, glioblastoma and medulloblastoma).

MATERIALS AND METHODS: The study was performed on rat glioma C6, human U251 glioma cell lines, as well as on primary cells of anaplastic astrocytoma (n = 9), glioblastoma (n = 9) and medulloblastoma (n = 38) patients. The cytotoxicity of chemotherapeutic drugs, NGF and their combinations against tumor cells was assessed using the MTT assay. The expression of TrkA and p75 receptors on anaplastic astrocytoma, glioblastoma and medulloblastoma cells was assessed by immunofluorescence analysis using anti-TrkA and anti-p75 monoclonal antibodies.

RESULTS: Nerve growth factor exhibits in vitro cytotoxic activity that exceeds the activity of chemotherapy drugs towards rat glioma C6, human U251, anaplastic astrocytoma (AA), glioblastoma (GBM) and medulloblastoma cells. The cytotoxic activity of NGF in combination with chemotherapy drugs is significantly higher than the activity of the individual NGF drug against medulloblastoma cells, while against anaplastic astrocytoma cells it is comparable to the indicators of the isolated action of NGF, and lower for glioblastoma cells. The effectiveness of the cytotoxic effect of the combinations NGF + cisplatin and NGF + temozolomide (TMZ) on AA and GBM cells correlates with both the expression of TrkA, p75 receptors, and their coexpression, indicating that expression indicators can be considered as markers of tumor cell sensitivity to NGF.

CONCLUSIONS: The data obtained allow us to consider NGF as a potential anticancer drug for the treatment of brain tumors. Thus, NGF can act as a potential anticancer drug for the development of new therapeutic regimens for brain tumors.

Full Text

Restricted Access

About the authors

Alexander N. Chernov

Institute of Experimental Medicine

Author for correspondence.
Email: al.chernov@mail.ru
ORCID iD: 0000-0003-2464-7370

Cand. Sci. (Biol.), Senior Research Associate, Department of General Pathology and Pathological Physiology

Russian Federation, 12 Academician Pavlov St., Saint Petersburg, 197376

Elvira S. Galimova

Institute of Experimental Medicine; Sechenov Institute of Evolutionary Physiology and Biochemistry of the RAS

Email: elya-4@yandex.ru
ORCID iD: 0000-0002-8773-0932

Cand. Sci. (Biol.), Senior Research Associate, Department of General Pathology and Pathological Physiology; Senior Research Associate, Interdisciplinary Laboratory of Neurobiology

Russian Federation, 12 Academician Pavlov St., Saint Petersburg, 197376; Saint Petersburg

Olga V. Shamova

Institute of Experimental Medicine

Email: oshamova@yandex.ru
ORCID iD: 0000-0002-5168-2801

Dr. Sci. (Biol.), Assistant Professor, Corresponding Member of the RAS, Head of the Department of General Pathology and Pathological Physiology

Russian Federation, 12 Academician Pavlov St., Saint Petersburg, 197376

References

  1. Global Burden of Disease Cancer Collaboration, Fitzmaurice C, Allen C. et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015 a systematic analysis for the global burden of disease study. JAMA Oncol. 2017;3(4):524–548. doi: 10.1001/jamaoncol.2016.568
  2. International agency for research of cancer (Globocan) [Internet]. WHO. 2020. Available from: http:www.globocan.iarc.fr. Accessed: 23.11.2023.
  3. Lafay-Cousin L, Smith A, Chi SN, et al. Clinical, pathological, and molecular characterization of infant medulloblastomas treated with sequential high-dose chemotherapy. Pediatr Blood Cancer. 2016;63(9):1527–1534. doi: 10.1002/pbc.26042
  4. Johnston DL, Keene D, Strother D, et al. Survival following tumor recurrence in children with medulloblastoma. J Pediatr Hematol Oncol. 2018;40(3):e159–e163. doi: 10.1097/MPH.0000000000001095
  5. Wen PY, Kesari S. Malignant gliomas in adults. N Engl J Med. 2008;359(5):492–507. doi: 10.1056/NEJMra0708126
  6. Taylor OG, Brzozowski JS, Skelding KA. Glioblastoma multiforme: an overview of emerging therapeutic targets. Front Oncol. 2019;9:963. doi: 10.3389/fonc.2019.00963
  7. Safdie F, Brandhorst S, Wei M, et al. Fasting enhances the response of glioma to chemo- and radiotherapy. PLoS One. 2012;7(9):e44603. doi: 10.1371/journal.pone.0044603
  8. Penas-Prado M, Hess KR, Fisch MJ, et al. Randomized phase II adjuvant factorial study of dose-dense temozolomide alone and in combination with isotretinoin, celecoxib, and/or thalidomide for glioblastoma. Neuro Oncol. 2015;17(2):266–273. doi: 10.1093/neuonc/nou155
  9. Tomlinson FH, Lihou MG, Smith PJ. Comparison of in vitro activity of epipodophyllotoxins with other chemotherapeutic agents in human medulloblastomas. Br J Cancer. 1991;64(6):1051–1059. doi: 10.1038/bjc.1991.464
  10. Prolonged Exposure to Doxorubicin in Patients with Glioblastoma Multiforme and Diffuse Intrinsic Pontine Glioma [Internet]. Available from: https://clinicaltrials.gov/ct2/show/NCT02758. Accessed: 23.10.2023.
  11. Skaga E, Kulesskiy E, Fayzullin A, et al. Intertumoral heterogeneity in patient-specific drug sensitivities in treatment-naïve glioblastoma. BMC Cancer. 2019;19:628. doi: 10.1186/s12885-019-5861-4
  12. Chernov AN, Alaverdian DA, Galimova ES, et al. The phenomenon of multidrug resistance in glioblastomas. Hematol Oncol Stem Cell Ther. 2022;15(2):1–7. doi: 10.1016/j.hemonc.2021.05.006
  13. Chernov AN, Shamova OV. Molecular mechanisms of drug resistance of glioblastoma. Part 1: ABC family proteins and inhibitors. Medical Academic Journal. 2021;21(4):85–106. doi: 10.17816/MAJ83049
  14. Checa J, Aran JM. Reactive oxygen species: drivers of physiological and pathological processes. J Inflamm Res. 2020;13:1057–1073. doi: 10.2147/JIR.S275595
  15. Pimentel E. Neurotrophic growth factors. In: Handbook of growth factors. CRC Press Inc.; 1994. Vol. 2. Chap. 5. P. 217–240.
  16. Levi-Montalcini R. The nerve growth factor: thirty-five years later. EMBO J. 1987;6(5):1146–1154.
  17. McDonald NQ, Lapatto R, Murray-Rust J, et al. New protein fold revealed by a 2.3-A resolution crystal structure of nerve growth factor. Nature. 1991;354(6352):411–414. doi: 10.1038/354411a0
  18. Kalyunov VN. Biologiya faktora rosta nervnoi tkani. Minsk: Nauka i tekhnika; 1986. 208 p. (In Russ.)
  19. Farina AR, Di Ianni N, Cappabianca L. et al. TrkAIII promotes microtubule nucleation and assembly at the centrosome in SH-SY5Y neuroblastoma cells, contributing to an undifferentiated anaplastic phenotype. Biomed Res Int. 2013:2013:740187. doi: 10.1155/2013/740187
  20. Vaishnavi A, Le T, Doebele RC. TRKing down an old oncogene in a new era of targeted therapy. Cancer Discov. 2015;5(1):25–34. doi: 10.1158/2159-8290.CD-14-0765
  21. Giannakopoulou D, Daguin-Nerrière V, Mitsacos A. et al. Ectopic expression of TrkA in the adult rat basal ganglia induces both nerve growth factor-dependent and independent neuronal responses. J Neurosci Res. 2012;90(8):1507–1521. doi: 10.1002/jnr.23031
  22. Kraemer BR, Yoon SO, Carter BD. The biological functions and signaling mechanisms of the p75 neurotrophin receptor. Handb Exp Pharmacol. 2014;220:121–164. doi: 10.1007/978-3-642-45106-5_6
  23. Isaev NK, Stelmashuk EV, Henrikhs EE. Role of nerve growth factor in plasticity of forebrain cholinergic neurons. Biochemistry. (Mosc). 2017;82(3):291–300. doi: 10.1134/S0006297917030075
  24. Deppmann CD, Mihalas S, Sharma N, et al. A model for neuronal competition during development. Science. 2008;320(5874):369–373. doi: 10.1126/science.1152677
  25. Tacconelli A, Farina AR, Cappabianca L, et al. TrkA alternative splicing: a regulated tumor-promoting switch in human neuroblastoma. Cancer Cell. 2004;6(4):347–360. doi: 10.1016/j.ccr.2004.09.011
  26. Ho R, Minturn JE, Simpson AM, et al. The effect of P75 on Trk receptors in neuroblastomas. Сancer Lett. 2011;305(1):76–85. doi: 10.1016/j.canlet.2011.02.029
  27. Nakagawara A, Arima-Nakagawara M, Scavarda NJ, et al. Association between high levels of expression of the trk gene and favorable outcome of human neuroblastoma. N Engl J Med. 1993;328(12):847–854. doi: 10.1056/NEJM199303253281205
  28. Bassili M, Birman E, Schor NF, et al. Differential roles of Trk and p75 neurotrophin receptors in tumorigenesis and chemoresistance ex vivo and in vivo. Cancer Chemother Pharmacol. 2010;65(6):1047–1056. doi: 10.1007/s00280-009-1110-x
  29. Mendonça LM, da Silva Machado C, Correia Teixeira CC, et al. Curcumin reduces cisplatin-induced neurotoxicity in NGF-differentiated PC12 cells. Neurotoxicology. 2013:34:205–211. doi: 10.1016/j.neuro.2012.09.011
  30. Zhang S, Xie R, Wan F, et al. Identification of U251 glioma stem cells and their heterogeneous stem-like phenotypes. Oncol Lett. 2013;6(6):1649–1655. doi: 10.3892/ol.2013.1623
  31. Buravlev VM, Veprintsev BN, Viktorov IV, et al. Rukovodstvo po kul’tivirovaniyu nervnoi tkani. Metody. Tekhnika. Problemy. Moscow: Nauka; 1988. 315 p. (In Russ.)
  32. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65(1–2):55–63. doi: 10.1016/0022-1759(83)90303-4
  33. Mohamadi N, Maryam Kazemi S, Mohammadian M, et al. Toxicity of cisplatin-loaded poly butyl cyanoacrylate nanoparticles in a brain cancer cell line: anionic polymerization results. Asian Pac J Cancer Prev. 2017;18(3):629–632. doi: 10.22034/APJCP.2017.18.3.629
  34. Ghinelli E, Johansson J, Ríos JD, et al. Presence and localization of neurotrophins and neurotrophin receptors in rat lacrimal gland. Invest Ophthalmol Vis Sci. 2003;44(8):3352–3357. doi: 10.1167/iovs.03-0037
  35. van Belle G, Fisher LD, Heagerty PJ, et al. Biostatistics: a methodology for the health sciences. Canada: Jonh Wiley and Sons Inc.; 2004. 889 p.
  36. IA Carboplatin + Radiotherapy in Relapsing GBM: Clinical Trials [Internet]. NBTS. Available from: https://clinicaltrials.gov/ct2/show/NCT03672721. Accessed: 21.11.2023.
  37. Fernandes C, Costa A, Osório L, et al. Current standards of care in glioblastoma therapy. In: Glioblastoma [Internet]. Ed. by S. De Vleeschouwer. Codon Publications Brisbane, Australia, 2017. Chap. 11. P. 197–241. doi: 10.15586/codon.glioblastoma.2017.ch11
  38. Díaz R, Jordá MV, Reynés G, et al. Neoadjuvant cisplatin and etoposide, with or without tamoxifen, prior to radiotherapy in high-grade gliomas: a single-center experience. Anticancer Drugs. 2005;16(3):323–329. doi: 10.1097/00001813-200503000-00012
  39. Bunyatyan ND, Vasil’ev AN, Zhuravleva MV, et al. Rukovodstvo po provedeniyu doklinicheskikh issledovanii lekarstvennykh sredstv. Chast’ pervaya. Moscow: Grif i K; 2012. 944 p. (In Russ.)
  40. Barbagallo GM, Paratore S, Caltabiano R, et al. Long-term therapy with temozolomide is a feasible option for newly diagnosed glioblastoma: a single-institution experience with as many as 101 temozolomide cycles. Neurosurg Focus. 2014;37(6):E4. doi: 10.3171/2014.9.FOCUS14502
  41. Konoplya NE. Lechenie medulloblastomy u detei mladshe chetyrekh let. Medical journal. 2009;(1):112–114. (In Russ.)
  42. Wang Y, Kong X, Guo Y, et al. Continuous dose-intense temozolomide and cisplatin in recurrent glioblastoma patients. Medicine (Baltimore). 2017;96(10):e6261. doi: 10.1097/MD.0000000000006261
  43. Chu E, Kim R, De Vita Jr. V, et al. Chemotherapy of malignant neoplasms. Ed. by E. Chu, De Vita Jr. Per. s angl. S.V. Kuznetsova, E.A. Okishevoi, A.A. Moiseeva. Moscow: Praktika; 2008. 447 p.
  44. Watanabe Т, Katayama Y, Kimura S, et al. Control of proliferation and survival of C6 glioma cells with modification of the nerve growth factor autocrine system. J Neurooncol. 1999;41(2):121–128. doi: 10.1023/a:1006127624487
  45. Singer H, Hansen B, Martinie D, et al. Mitogenesis in glioblastoma multiforme cell lines: a role for NGF and its TrkA receptors. J Neurooncol. 1999;45(1):1–8. doi: 10.1023/a:1006323523437
  46. Weis C, Wiesenhofer B, Humpel C. Nerve growth factor plays a divergent role in mediating growth of rat C6 glioma cells via binding to the P75 neurotrophin receptor. J Neurooncol. 2002;56(1):59–67. doi: 10.1023/a:1014410519935
  47. Emmett CJ. McNeeley PA, Jonson RM. Evaluation of human astrocytoma and glioblastoma cell lines for nerve growth factor release. Neurochem Int. 1997;30(4–5):465–474. doi: 10.1016/s0197-0186(96)00083-6
  48. Tоrnatоre C, Rabin S, Baker-Cairns B, et al. Engraftment of C6-2B cells into the striatum of ACI nude rats as a tool for comparison of the in vitro and in vivo phenotype of a glioma cell line. Cell Transplant. 1997;6(3):317–326. doi: 10.1177/096368979700600314
  49. Chou TT, Trojanowski JQ, Lee VM. A novel apoptotic pathway induced by nerve growth factor-mediated TrkA activation in medulloblastoma. J Biol Chem. 2000;275(1):565–570. doi: 10.1074/jbc.275.1.565
  50. Vaishnavi A, Le AT, Doebele RC. TRKing down an old oncogene in a new era of targeted therapy. Cancer Discov. 2015;5(1):25–34. doi: 10.1158/2159-8290.CD-14-0765
  51. Bodnarchuk TW, Napper S, Rapin N, Misra V. Mechanism for the induction of cell death in ONS-76 medulloblastoma cells by Zhangfei/CREB-ZF. J Neurooncol. 2012;109(3):485–501. doi: 10.1007/s11060-012-0927-z
  52. Stetson LC, Dazard J-E, Barnholtz-Sloan JS. Protein markers predict survival in glioma patients. Mol Cell Proteomics. 2016;15(7):2356–2365. doi: 10.1074/mcp.M116.060657
  53. Nakagawara A, Arima-Nakagawara M, Scavarda NJ, et al. Association between high levels of expression of the TRK gene and favorable outcome in human neuroblastoma. N Engl J Med. 1993;328(12):847–854. doi: 10.1056/NEJM199303253281205
  54. Antonelli A, Lenzi L, Nakagawara A, et al. Tumor suppressor proteins are differentially affected in human ependymoblastoma and medulloblastoma cells exposed to nerve growth factor. Cancer Invest. 2007;25(2):94–101. doi: 10.1080/07357900701205689
  55. Bassili M, Birman E, Schor NF, et al. Differential roles of Trk and p75 neurotrophin receptors in tumorigenesis and chemoresistance ex vivo and in vivo. Cancer Chemother Pharmacol. 2010;65(6):1047–1056. doi: 10.1007/s00280-009-1110-x
  56. Aloe L, Rocco ML, Balzamino BO, et al. Nerve growth factor: role in growth, differentiation and controlling cancer cell development. J Exp Clin Cancer Res. 2016;35:116. doi: 10.1186/s13046-016-0395-y

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig.1. Cytotoxicity index (%) of NGF and chemotherapy drugs towards U251 glioma cells in vitro according to the MTT test. *indicates statistically significant differences IC chemotherapy drugs from IC of NGF

Download (62KB)
3. Fig. 2. The cytotoxicity index of the chemotherapy drugs and nerve growth factor (NGF) towards anaplastic astrocytoma cells in vitro. * Statistically significant differences сytotoxicity index of chemotherapy drugs from NGF

Download (56KB)
4. Fig. 3. The cytotoxicity index of the chemotherapy drugs and nerve growth factor (NGF) for glioblastoma cells. * Statistically significant differences сytotoxicity index of chemotherapy drugs from NGF

Download (59KB)
5. Fig. 4. The cytotoxicity index of the chemotherapy drugs and nerve growth factor (NGF) towards medulloblastoma cells in vitro. * Statistically significant differences сytotoxicity index of chemotherapy drugs from NGF

Download (54KB)
6. Fig. 5. The cytotoxicity index of the combinations of nerve growth factor (NGF) with chemotherapy drugs towards anaplastic astrocytoma cells. * Statistically significant differences сytotoxicity index of chemotherapy drugs from NGF

Download (66KB)
7. Fig. 6. The cytotoxicity index of the combinations of nerve growth factor (NGF) with chemotherapy drugs towards glioblastoma cells

Download (66KB)
8. Fig. 7. The cytotoxicity index of the combinations of nerve growth factor (NGF) with chemotherapy drugs towards medulloblastoma cells. * Statistically significant differences сytotoxicity index of chemotherapy drugs from NGF

Download (64KB)
9. Fig. 8. Expression of TrkA and p75 receptors on anaplastic astrocytoma cells exposed to nerve growth factor (NGF) and its combinations with cisplatin and temozolomide. * Statistically significant (p < 0.05) differences of TrkA receptor expression from control within one group; ** statistically significant (p < 0.05) differences in p75 receptor expression from control within another group

Download (85KB)
10. Fig. 9. Expression of TrkA and p75 receptors on glioblastoma cells exposed to nerve growth factor (NGF) and its combinations with cisplatin and temozolomide. * Statistically significant (p < 0.05) differences of TrkA receptor expression from control within one group; ** statistically significant (p < 0.05) differences in p75 receptor expression from control within another group

Download (82KB)
11. Fig. 10. Expression of TrkA and p75 receptors on medulloblastoma cells exposed to nerve growth factor (NGF) and its combinations with cisplatin and temozolomide. * Statistically significant (p < 0.05) differences of TrkA receptor expression from control within one group; ** statistically significant (p < 0.05) differences in p75 receptor expression from control within another group

Download (82KB)
12. Fig. 11. Correlations between the expression of TrkA (a), p75 (b), TrkA/p75 (c) receptors and the cytotoxicity index of nerve growth factor (NGF) and its combinations with cisplatin or temozolomide when exposed to anaplastic astrocytoma (AA) and glioblastoma (GBM) cells in vitro. Level of significance of correlations: * p < 0.01, ** p < 0.01, *** p < 0.001

Download (170KB)

Copyright (c) 2024 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 74760 от 29.12.2018 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies