Mathematical modeling of biomechanical elastic and hyperelastic properties of the myocardium



Cite item

Full Text

Abstract

Relevance. The study of mechanical properties of biological tissues is extremely informative and is one of the most important areas of biomechanics. Knowledge of these aspects of biological objects based on experimental data can become a source of new medical and technical solutions for the reconstruction of organs and the development of replacement materials. Aim. Passive mechanical properties of isolated myocardium are compared with linear, bilinear, exponential and the most common hyperelastic models (neohookean, Mooney-Rivlin, Ogden, Yeoh, polynomial and Veronda-Westmann). Materials and methods. Literature data on mechanical tests of autopsy material obtained from mongrel dogs were used as initial data. To search for the most advanced calculation algorithms the computer algebra system was used, the Mathcad 15.0 software package and the multifunctional finite element analysis application ANSYS 2022 R2 were used. Direct comparison of models was made based on mathematical statistics. Results. Among the first group of models, the results closest to the experimental data were demonstrated by the exponential model R = 0.9958/0.9984 (in the longitudinal/transverse direction with respect to the myocardial fibers), the lowest accuracy was demonstrated by the linear model R = 0.9813/0.9803. Young's moduli of linear, bilinear and exponential models and material constants of hyperelastic models are determined. The coefficient of elastic anisotropy of the myocardium, defined as the ratio of the elastic moduli of the linear model measured along and across the direction of the fibers, is equal to 2.18, which is very different from the literature data for the myocardium of the human heart. Deformation along the fibers of the heart muscle is more energy-consuming in the direction along the fibers than in the transverse direction (3.81 and 2.52 mJ/cm3). The most accurate hyperelastic models turned out to be the 2nd order polynomial model R = 0.9971 and the 3rd order Yeoh model R = 0.997. The largest deviations and the lowest correlation coefficient between the experimental and model data were demonstrated by the simple neohookean model R = 0.974 with a single parameter μ. The numerical values of the parameters of hyperelastic models obtained by calculation methods used practically did not differ from each other (2.16%). Conclusion. The study demonstrated the importance of selecting the correct mechanical model for isolated myocardium. The data obtained can be useful in virtual interventions (simulations) for predicting outcomes and supporting clinical decisions, developing replacement materials and structures made of them for reconstructive operations on heart structures.

Full Text

Restricted Access

About the authors

Sergey A. Muslov

"A.I. Yevdokimov Moscow State University of Medicine and Dentistry" of the Ministry of Healthcare of the Russian Federation

Author for correspondence.
Email: sergeymuslov@yandex.ru
ORCID iD: 0000-0002-9752-6804
SPIN-code: 7213-2852
Scopus Author ID: 6507596970
ResearcherId: AAK-9440-2020

Associate Professor, Professor, Department of Normal Physiology and Medical Physics

Russian Federation, 20 Delegatskaya str., building 1, Moscow, 127473, Russian Federation

Yuriy A. Vasyuk

Evdokimov Moscow State Medical University

Email: yvasyuk@yandex.ru
ORCID iD: 0000-0003-2913-9797
SPIN-code: 2265-5331
Scopus Author ID: 6508291333
ResearcherId: G-1772-2013

заведующий кафедрой госпитальной терапии №1, Заслуженный врач РФ, Заслуженный работник высшей школы РФ, д.м.н., профессор, ученый секретарь МГМСУ им. А.И. Евдокимова

Russian Federation, 20 Delegatskaya str., building 1, Moscow, 127473, Russian Federation

Alla I. Zavyalova

МГМСУ им. А.И. Евдокимова

Email: allaz05@list.ru
ORCID iD: 0009-0001-1727-4388
SPIN-code: 4883-7130

доцент кафедры госпитальной терапии №1, Заведующая терапевтическим отделением КМЦ “Кусково” МГМСУ им. А.И. Евдокимова, к.м.н.

Russian Federation, 20 Delegatskaya str., building 1, Moscow, 127473, Russian Federation

Elena Yu. Shupenina

МГМСУ им. А.И. Евдокимова

Email: eshupenina@mail.ru
ORCID iD: 0000-0001-6188-4610

к.м.н., профессор кафедры госпитальной терапии №1 МГМСУ им. А.И. Евдокимова

Russian Federation, 20 Delegatskaya str., building 1, Moscow, 127473, Russian Federation

Pavel Yu. Sukhochev

МГУ имени М.В. Ломоносова

Email: ps@moids.ru
ORCID iD: 0000-0002-8004-6011

научный сотрудник лаборатории математического обеспечения имитационных динамических систем отдела прикладных исследований механико-математического факультета МГУ имени М.В. Ломоносова

Russian Federation, 119991, Moscow, Leninskie gory, 1

Layla Z. Guchukova

ГБУЗ МО Одинцовская областная больница

Email: Gucci.loca@mail.ru
ORCID iD: 0009-0007-2150-6034
SPIN-code: 8280-0970

врач-терапевт

Russian Federation, 143003, Московская обл., Одинцовский г.о., г. Одинцово, ул. Маршала Бирюзова, д. 5

References

  1. References
  2. Nemavhola F., Pandelani T., Ngwangwa H. Fitting of hyperelastic constitutive models in different sheep heart regions based on biaxial mechanical properties. bioRxiv preprint. 2021. doi: https://doi.org/10.1101/2021.10.28.466240.
  3. Izakov V.Ya., Markhasin V.S., Yasnikov G.P., et al. Introduction to the biomechanics of passive myocardium. – Moscow : Nauka, 2000. (in Russ.)
  4. Skovoroda A.R. Problems of elasticity theory in the problem of diagnostics of pathologies of soft biological tissues. M.: Fizmatlit, 2006. (in Russ). eLIBRARY ID: 21108711, EDN: RTXZAZ.
  5. Ostrovsky N.V., Chelnokova N.O., Golyadkina A.A., et al. Biomechanical parameters of the ventricles of the human heart. Fundamental research. 2015;(1-10):2070-2075. (in Russ). URL: https://fundamental-research.ru/ru/article/view?id=38599 (Accessed: 17.10.2023).
  6. Ovcharenko E.A., Kalashnikov K.Yu., Glushkova T.V., Barbarash L.S. Modeling of implantation of a bioprosthesis by the finite element method. Complex problems of cardiovascular diseases. 2016;(1):6-11. (in Russ). https://doi.org/10.17802/2306-1278-2016-1-6-11
  7. Shilko S.V., Kuzminsky Yu.G., Borisenko M.V. Mathematical model and software implementation of monitoring of the cardiovascular system. PFMT. 2011;3(8):104-112. (in Russ). eLIBRARY ID: 18925773, EDN: PYDZBL.
  8. Demer L.L. and Yin F.C. Passive biaxial mechanical properties of isolated canine myocardium. J. Physiol. 1983;339(1):615-630. https://doi.org/10.1113/jphysiol.1983.sp014738.
  9. Fung Y.C. Elasticity of soft tissues in simple elongation. Am. J. Physiol. 1967;213(6):1532-1544. https://doi.org/10.1152/ajplegacy.1967.213.6.1532.
  10. Mirsky I. Assessment of passive, elastic stiffness of cardiac muscle: mathematical concepts, physiologic and clinical considerations, directions of future research. Prog. cardiovasc. Dis. 1976;18(4):277-308. https://doi.org/10.1016/0033-0620(76)90023-2.
  11. Fung Y.C. Biorheology of soft tissues. Biorheology. 1973;10(2):139-155. https://doi.org/10.3233/bir-1973-10208.
  12. Panda S.C., Natarajan R. Finite-element method of stress analysis in the human left ventricular layered wall structure. Med. biol. Eng. Comput. 1977;15(1):67-71. https://doi.org/10.1007/bf02441577.
  13. Smolyuk L.T., Protsenko Y.L. Mechanical properties of passive myocardium: experiment and mathematical model. Biophysics. 2010;55(5):905-909. (in Russ). DOI https://doi.org/10.1134/S0006350910050209.
  14. Green AE, Adkins JE. Large Elastic Deformations and Nonlinear Continuum Mechanics. Oxford: Clarendon, 1960. https://doi.org/10.2307/3613144.
  15. Fung Y.C. Biomechanics, its scope, history, and some problems of continuum mechanics in physiology. Apple. Mech. Rev. 1973;21(1):1-20. https://doi.org/10.1016/0043-1648(68)90345-1.
  16. Muslov S.A., Lotkov A.I., Arutyunov S.D., Albakova TM. Calculation of parameters of mechanical properties of the heart muscle. Perspective materials. 2020;(12):42-52. (in Russ). https://doi.org/10.30791/1028-978x-2020-12-42-52.
  17. Anliker M. Direct measurements of the distensibility of heart ventricles. Presented at the 2nd Annual Workshop of the Basic Science Council of the American Heart Association, Ames Research Centre. Moffett Field, Calif., 1968 4-8th Aug.
  18. Papadacci C., Bunting E.A., Wan E.Y., et al. 3D Myocardial Elastography In Vivo // IEEE Trans Med Imaging. 2017;36(2):618-627. doi: 10.1109/TMI.2016.2623636.
  19. da Silveira J.S., Scansen B.A., Wassenaar P.A., et al. Quantification of myocardial stiffness using magnetic resonance elastography in right ventricular hypertrophy: initial feasibility in dogs // Magn Reson Imaging. 2016;34(1):26-34. doi: 10.1016/j.mri.2015.10.001.
  20. Muslov S.A., Albakova M.B., Guchukova L.Z. Constants of the hyperelastic Mooney-Rivlin model of the ventricular wall of the heart. Cardiological Bulletin. 2021;16(2-2):39. (in Russ). eLIBRARY ID: 46673555, EDN: FPHHQN.
  21. M. Ren, C.W. Ong, M.L. Buist, C.H. Yap. Biventricular biaxial mechanical testing and constitutive modelling of fetal porcine myocardium passive stiffness. J Mech Behav Biomed Mater. 2022 Oct;134:105383. doi: 10.1016/j.jmbbm.2022.105383.
  22. Avazmohammadi R., Soares J.S., Li D.S., et al. A Contemporary Look at Biomechanical Models of Myocardium // Annu Rev Biomed Eng. 2019;21:417-442. doi: 10.1146/annurev-bioeng-062117-121129.
  23. Ogden R.W., Saccomandi G., Sgura I. Fitting hyperelastic models to experimental data. Comput. Mech. 2004;34(6):484-502. doi: 10.1007/s00466-004-0593-y.
  24. Chen J., Ahmad R., Li W., et al. Biomechanics of oral mucosa. J. R. Soc. Interface 2015;12(109):20150325. https://doi.org/10.1098/rsif.2015.0325.
  25. Wertheim M.G. Memoire sur l'elasticite et la cohesion des pricipaux tissus du corps humain. Ann. Chimie Phys. Paris (Ser. 3); 1847;21:385-414. http://books.google.com/books?id=8FcDAAAAYAAJ&oe=UTF-8.
  26. Morgan F.R. The mechanical properties of collagen fibers: stress-strain curves. J. Soc. Leather Trades Chem. 1960;44:171-182.
  27. Kenedi R.M., Gibson T., Daly C.H. Bioengineering study of the human skin. In Structure and Function of Connective and Sceletal Tissue. SF Jackson, SM Harkness, and g. R Tristram (eds.) Scientific Comittee, St. Andrews, Scotland, 1964, P. 388-395. https://doi.org/10.1016/b978-1-4831-6701-5.50022-x.
  28. Ridge M.D., Wright V. Mechanical properties of skin: A bioegineering study of skin texture. J. Appl. Physiol. 1966;21(5):1602-1606. https://doi.org/10.1152/jappl.1966.21.5.1602.
  29. Daniella Corporan, Maher Saadeh, Alessandra Yoldas, et al. Passive mechanical properties of the left ventricular myocardium and extracellular matrix in hearts with chronic volume overload from mitral regurgitation. Physiological Reports. 2022;10(14):e15305. https://doi.org/10.14814/phy2.15305.
  30. Yamada H. Strength of Biological Materials. Baltimore, 1973. https://doi.org/10.1126/science.171.3966.57-a.
  31. Muslov S.A., Pertsov S.S., Arutyunov S.D. Physical and mechanical properties of biological tissues. Ed. Academician of RAS O.O. Yanushevich. Moscow: Evdokimov MGMSU, 2023. (in Russ.)
  32. Fung Y.C. Biomechanics: Mechanical Properties of Living Tissues, Second Edition 2nd Edition. Springer; 2nd edition, June 18, 1993. https://doi.org/10.1115/1.2901550.
  33. Muslov S.A., Pertsov S.S., Chizhmakov E.A., and others. Elastic linear, bilinear, nonlinear exponential and hyperelastic skin models // Russian Journal of Biomechanics. 2023. Vol. 27, No. 3. pp. 89-103. doi: 10.15593/RZhBiomeh/2023.3.07. (in Russ.)
  34. Ivanov D.V., Fomkina O.A. Determination of constants for the neo-Hooke and Mooney-Rivlin models based on the results of experiments on uniaxial stretching. Bulletin of the Saratov University. Mathematics. Mechanics. 2008;(10):114-117. (in Russ). eLIBRARY ID: 24159925, EDN: UIRZIV.
  35. Shmurak M.I., Kuchumov A.G., Voronova N.O. Analysis of hyperelastic models for describing the behavior of soft tissues of the human body. Master's Journal. 2017;(1):230-243. (in Russ). eLIBRARY ID: 29454888, EDN: YUOPFB.
  36. Yeoh O.H. Some forms of the strain energy function for rubber // Rubber Chemistry and Technology. 1993;66(5):754-771. https://doi.org/10.5254/1.3538343.
  37. Rivlin R.S. Some applications of elasticity theory to rubber engineering. Collected Papers of R.S. Rivlin. 1997;1(2):9-16. https://doi.org/10.1007/978-1-4612-2416-7_2.
  38. Veronda D. and Westmann R. Mechanical characterizations of skin-finite deformations. J. Biomech. 1970;3(3):111-124. https://doi.org/10.1016/0021-9290(70)90055-2.
  39. Kanbara R., Nakamura Y., Ochiai K.T., et al. Three-dimensional finite element stress analysis: the technique and methodology of nonlinear property simulation and soft tissue loading behavior for different partial denture designs. Dent. Mater. J. 2012;31(2):297-308. (doi: 10.4012/dmj.2011-165).
  40. Borak L., Florian Z., Bartakova S., et al. Bilinear elastic property of the periodontal ligament for simulation using a finite element mandible model. Dent. Mater. J. 2011;30(4):448-454. (doi: 10.4012/dmj. 2010-170).
  41. Sacks M., Chuong C. Biaxial mechanical properties of passive right ventricular free wall myocardium. Journal of Biomechanical Engineering. 1993;115(2):202-205. DOI: https://doi.org/10.1115/1.2894122.
  42. R. Emig, C.M. Zgierski-Johnston, V. Timmermann, et al. Passive myocardial mechanical properties: meaning, measurement, models. Biophysical Reviews. 2021;13(5):587-610. https://doi.org/10.1007/s12551-021-00838-1.
  43. Sirry M.S., Butler J.R., Patnaik S.S., et al. Characterisation of the mechanical properties of infarcted myocardium in the rat under biaxial tension and uniaxial compression. J Mech Behav Biomed Mater. 2016;63:252-264. https://doi.org/10.1016/j.jmbbm.2016.06.029.
  44. Hill R. General theory of uniqueness and stability in elastic-plastic solids // Journal of the Mechanics and Physics of Solids. 1958;6(3):236–249, doi: 10.1016/0022-5096(58)90029-2.
  45. Drucker D.C. A definition of a stable inelastic material // Journal of Applied Mechanics. 1959. Vol. 26, N.1. P. 101-195, doi: 10.1115/1.4011929.
  46. Y. Wang, D.R. Haynor, Y. Kim. An investigation of the importance of myocardial anisotropy in finite-element modeling of the heart: methodology and application to the estimation of defibrillation efficacy. IEEE Trans Biomed Eng. 2001 Dec;48(12):1377-89. doi: 10.1109/10.966597.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 74760 от 29.12.2018 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies