Глутаматдекарбоксилаза и ее изоформы



Цитировать

Полный текст

Аннотация

В обзоре обобщены современные данные о свойствах, локализации и физиологической роли фермента синтеза ГАМК — глутаматдекарбоксилазы, в тканях млекопитающих. В связи с высокой распространенностью фермента в тканях и клетках организма, на данный момент существует большой массив разрозненных экспериментальных данных, которые нуждаются в обработке и систематизации. Приведены данные, демонстрирующие вовлеченность глутаматдекарбоксилазы в работу биохимических и физиологических процессов организма. Продемонстрировано, что наиболее интенсивно изучается ее роль в обеспечении ГАМК-ергической нейротрансмиссии в центральной нервной системе. При этом сведения о распространении и функциональном значении глутаматдекарбоксилазы в периферической нервной системе оказывается фрагментарным, а потому нуждаются в дополнительных исследованиях.

Полный текст

Доступ закрыт

Об авторах

Валерия Алексеевна Разенкова

ФГБНУ "Институт экспериментальной медицины"

Автор, ответственный за переписку.
Email: valeriya.raz@yandex.ru
ORCID iD: 0000-0002-3997-2232
SPIN-код: 8877-8902
Scopus Author ID: 57219609984
ResearcherId: AAH-1333-2021

младший научный сотрудник отдела Общей и частной морфологии

Россия

Дмитрий Эдуардович Коржевский

Институт экспериментальной медицины

Email: DEK2@yandex.ru
ORCID iD: 0000-0002-2456-8165
SPIN-код: 3252-3029
Scopus Author ID: 12770589000
ResearcherId: C-2206-2012

д-р мед. наук, профессор РАН, заведующий лабораторией функциональной морфологии центральной и периферической нервной системы отдела общей и частной морфологии

Россия, Санкт-Петербург

Список литературы

  1. Grimmelikhuijzen C. J. P. Cazzamali G., Williamson M., et al. Invertebrate Neurohormone GPCRs // Encyclopedia of Neuroscience. London: Elsevier, 2009. P. 205–212. https://doi.org/10.1016/B978-008045046-9.01445-5
  2. Gainetdinov R. R., Hoener M. C., Berry M. D. Trace amines and their receptors // Pharmacol. Rev. 2018. V. 70. No 3. P. 549–620. https://doi.org/10.1124/PR.117.015305
  3. Nuñez M., Olmo A. del, Calzada J. Biogenic amines // Encyclopedia of Food and Health. London: Elsevier, 2016. P. 416–423. https://doi.org/10.1016/B978-0-12-384947-2.00070-2
  4. Kleppner S. R., Tobin A. J. GABA // Encycl. Hum. Brain. 2002. P. 353–367. https://doi.org/10.1016/B0-12-227210-2/00150-3
  5. Davidoff R. A. Studies of neurotransmitter actions (GABA, glycine, and convulsants). // Res. Publ. Assoc. Res. Nerv. Ment. Dis. 1983. V. 61. P. 53–85.
  6. Magnaghi V., Ballabio M., Consoli A., et al. GABA receptor-mediated effects in the peripheral nervous system: A cross-interaction with neuroactive steroids // J. Mol. Neurosci. 2006. V. 28. No 1. p. 89–102. https://doi.org/10.1385/JMN:28:1:89
  7. Tanaka C., Taniyama K. The role of GABA in the peripheral nervous system // GABA Outside the CNS. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. P. 3–17. https://doi.org/10.1007/978-3-642-76915-3_1
  8. Jin Z., Korol S. V. GABA signalling in human pancreatic islets // Front. Endocrinol. (Lausanne). 2023. V. 14. https://doi.org/10.3389/FENDO.2023.1059110
  9. Al-Kuraishy H., Hussian N., Al-Naimi M., et al. The potential role of pancreatic γ-aminobutyric acid (GABA) in diabetes mellitus: a critical reappraisal // Int. J. Prev. Med. 2021. V. 12. No 1. https://doi.org/10.4103/IJPVM.IJPVM_278_19
  10. Zwanzger P., Rupprecht R. Selective GABAergic treatment for panic? Investigations in experimental panic induction and panic disorder // J. Psychiatry Neurosci. 2005. V. 30. No 3. P. 167–75.
  11. Möhler H. The rise of a new GABA pharmacology // Neuropharmacology. 2011. V. 60. No 7–8. P. 1042–1049. https://doi.org/10.1016/J.NEUROPHARM.2010.10.020
  12. Сухарева Б. С., Дарий Е. Л., Христофоров Р. Р. Глутаматдекарбоксилаза: структура и каталитические свойства // Успехи биологической химии. 2001. Т. 41. С. 131–162.
  13. Браунштейн А. Е., Шемякин М. М. Теория процессов аминокислотного обмена, катализируемых пиридоксалевыми энзимами // Биохимия. 1953. Т. 18. № 4. С. 393–411.
  14. Steward F. C., Thompson J. F., Dent C. E. γ-aminobutyric acid: a constituent of potato tubers? // Science. 1949. V. 110. P. 439–440.
  15. Awapara J., Landua A. J., Fuerst R., Seale B. Free gamma-aminobutyric acid in brain // J. Biol. Chem. 1950. V. 187. No 1. P. 35–39.
  16. Roberts E., Frankel S. gamma-Aminobutyric acid in brain: its formation from glutamic acid // J. Biol. Chem. 1950. V. 187. No 1. P. 55–63.
  17. Udenfriend S. Identification of gamma-aminobutyric acid in brain by the isotope derivative method // J. Biol. Chem. 1950. V. 187. No 1. P. 65–69.
  18. Bazemore A. W., Elliott K. A. C., Florey E. Isolation of factor I // J. Neurochem. 1957. V. 1. No 4. P. 334–339. https://doi.org/10.1111/J.1471-4159.1957.TB12090.X
  19. Krnjević K., Schwartz S. Is gamma-aminobutyric acid an inhibitory transmitter? // Nature. 1966. V. 211. No 5056. P. 1372–1374. https://doi.org/10.1038/2111372A0
  20. Kelly J. S., Krnjević K. Effects of gamma-aminobutyric acid and glycine on cortical neurons // Nature. 1968. V. 219. No 5161. P. 1380–1381. https://doi.org/10.1038/2191380A0
  21. Gale E. F. The production of amines by bacteria // Biochem. J. 1940. V. 34. No 3. P. 392–413. https://doi.org/10.1042/bj0340392
  22. Gale E. F. Amino-acid decarboxylases // Br. Med. Bull. 1953. V. 9. No 2. P. 135–137. https://doi.org/10.1093/oxfordjournals.bmb.a074329
  23. Taylor E. S., Gale E. F. Studies on bacterial amino-acid decarboxylases: 6. Codecarboxylase content and action of inhibitors // Biochem. J. 1945. V. 39. No 1. P. 52–58. https://doi.org/10.1042/BJ0390052
  24. Lichstein H. C., Gunsalus I. C., Umbreit W. W. Function of the vitamin B6 group: pyridoxal phosphate (codecarboxylase) in transamination // J. Biol. Chem. 1945. V. 161. No 1. P. 311–320. https://doi.org/10.1016/S0021-9258(17)41545-6
  25. Najjar V. A., Fisher J. Studies on L-glutamic acid decarboxylase from Escherichia coli // J. Biol. Chem. 1954. V. 206. No 1. P. 215–219.
  26. Shukuya R., Schwert G. W. Glutamic acid decarboxylase: I. Isolation procedure and properties of an enzyme // J. Biol. Chem. 1960a. V. 235. No 6. P. 1649–1652. https://doi.org/10.1016/S0021-9258(19)76856-2
  27. Shukuya R., Schwert G. W. Glutamic acid decarboxylase: III. The inactivation of the enzyme at low temperatures // J. Biol. Chem. 1960b. V. 235. P. 1658–1661.
  28. Denner L. A., Wu J. Y. Two forms of rat brain glutamic acid decarboxylase differ in their dependence on free pyridoxal phosphate // J. Neurochem. 1985. V. 44. No 3. P. 957–965. https://doi.org/10.1111/J.1471-4159.1985.TB12910.X
  29. Wu J. Y., Matsuda T., Roberts E. Purification and characterization of glutamate decarboxylase from mouse brain // J. Biol. Chem. 1973. V. 248. No 9. P. 3029–3034. https://doi.org/10.1016/S0021-9258(19)44004-0
  30. Spink D. C. Porter T. G., Wu S. J., Martin D. L. Characterization of three kinetically distinct forms of glutamate decarboxylase from pig brain // Biochem. J. 1985. V. 231. No 3. P. 695–703. https://doi.org/10.1042/BJ2310695
  31. Heinämäki A. A., Malila S. I., Tolonen K.M., et al. Resolution and purification of taurine- and GABA-synthesizing decarboxylases from calf brain // Neurochem. Res. 1983. V. 8. No 2. P. 207–218. https://doi.org/10.1007/BF00963921
  32. Blindermann J. ‐M., Maitre M., Ossola L., Mandel P. Purification and some properties of L-glutamate decarboxylase from human brain // Eur. J. Biochem. 1978. V. 86. No 1. P. 143–152. https://doi.org/10.1111/J.1432-1033.1978.TB12293.X
  33. Chu W. C., Metzler D. E. Enzymatically active truncated cat brain glutamate decarboxylase: expression, purification, and absorption spectrum // Arch. Biochem. Biophys. 1994. V. 313. No 2. P. 287–295. https://doi.org/10.1006/ABBI.1994.1390
  34. Malashkevich V. N., et al. Crystallization and preliminary X-ray analysis of the beta-isoform of glutamate decarboxylase from Escherichia coli // Acta Crystallogr. D. Biol. Crystallogr. 1998. V. 54. No Pt 5. P. 1020–1022. https://doi.org/10.1107/S0907444998003497
  35. Soghomonian J. J., Martin D. L. Two isoforms of glutamate decarboxylase: why? // Trends Pharmacol. Sci. 1998. V. 19. No 12. P. 500–505. https://doi.org/10.1016/S0165-6147(98)01270-X
  36. Fenalti G., Law R. H. P., Buckle A. M., et al. GABA production by glutamic acid decarboxylase is regulated by a dynamic catalytic loop // Nat. Struct. Mol. Biol. 2007 144. 2007. V. 14. No 4. P. 280–286. https://doi.org/10.1038/nsmb1228
  37. Wu J. Y., Denner L., Lin C. T., Song G. L-Glutamate decarboxylase from brain // Methods Enzymol. 1985. V. 113. P. 3–10. https://doi.org/10.1016/S0076-6879(85)13004-1
  38. Ilg T., Berger M., Noack S., et al. Glutamate decarboxylase of the parasitic arthropods Ctenocephalides felis and Rhipicephalus microplus: Gene identification, cloning, expression, assay development, identification of inhibitors by high throughput screening and comparison with the orthologs from Drosophila melanogaster and mouse // Insect Biochem. Mol. Biol. 2013. V. 43. No 2. P. 162–177. https://doi.org/10.1016/J.IBMB.2012.11.001
  39. Astegno A., Capitani G., Dominici P. Functional roles of the hexamer organization of plant glutamate decarboxylase // Biochim. Biophys. Acta. 2015. V. 1854. No 9. P. 1229–1237. https://doi.org/10.1016/J.BBAPAP.2015.01.001
  40. Coleman S. T., Fang T. K., Rovinsky S. A., et al. Expression of a glutamate decarboxylase homologue is required for normal oxidative stress tolerance in Saccharomyces cerevisiae // J. Biol. Chem. 2001. V. 276. No 1. P. 244–250. https://doi.org/10.1074/JBC.M007103200
  41. Sun L., Bai Y., Zhang X., et al. Characterization of three glutamate decarboxylases from Bacillus spp. for efficient γ-aminobutyric acid production // Microb. Cell Fact. 2021. V. 20. No 1. https://doi.org/10.1186/S12934-021-01646-8
  42. Boura M., Brensone D., Karatzas K. A. G. A novel role for the glutamate decarboxylase system in Listeria monocytogenes; protection against oxidative stress // Food Microbiol. 2020. V. 85. https://doi.org/10.1016/J.FM.2019.103284
  43. Petroff O. A. C. GABA and glutamate in the human brain // Neuroscientist. 2002. V. 8. No 6. P. 562–573. https://doi.org/10.1177/1073858402238515
  44. Bu D. F., Erlander M. G., Hitz B. C., et al. Two human glutamate decarboxylases, 65-kDa GAD and 67-kDa GAD, are each encoded by a single gene // Proc. Natl. Acad. Sci. 1992. V. 89. No 6. P. 2115–2119. https://doi.org/10.1073/PNAS.89.6.2115
  45. Kanaani J., Diacovo M. J., El-Husseini A. E. D., et al. Palmitoylation controls trafficking of GAD65 from Golgi membranes to axon-specific endosomes and a Rab5a-dependent pathway to presynaptic clusters // J. Cell Sci. 2004. V. 117. No Pt 10. P. 2001–2013. https://doi.org/10.1242/JCS.01030
  46. Namchuk M., Lindsay L. A., Turck C.W., et al. Phosphorylation of serine residues 3, 6, 10, and 13 distinguishes membrane anchored from soluble glutamic acid decarboxylase 65 and is restricted to glutamic acid decarboxylase 65alpha // J. Biol. Chem. 1997. V. 272. No 3. P. 1548–1557. https://doi.org/10.1074/JBC.272.3.1548
  47. Solimena M., Aggujaro D., Muntzel C., et al. Association of GAD-65, but not of GAD-67, with the Golgi complex of transfected Chinese hamster ovary cells mediated by the N-terminal region // Proc. Natl. Acad. Sci. 1993. V. 90. No 7. P. 3073–3077. https://doi.org/10.1073/PNAS.90.7.3073
  48. Lee S.-E., Lee Y., Lee G. H. The regulation of glutamic acid decarboxylases in GABA neurotransmission in the brain // Arch. Pharm. Res. 2019. V. 42. No 12. P. 1031–1039. https://doi.org/10.1007/s12272-019-01196-z
  49. Kanaani J., Cianciaruso C., Phelps E. A., et al. Compartmentalization of GABA synthesis by GAD67 differs between pancreatic beta cells and neurons // PLoS One. 2015. V. 10. No 2. https://doi.org/10.1371/JOURNAL.PONE.0117130
  50. Kanaani J., Kolibachuk J., Martinez H., Baekkeskov S. Two distinct mechanisms target GAD67 to vesicular pathways and presynaptic clusters // J. Cell Biol. 2010. V. 190. No 5. P. 911–925. https://doi.org/10.1083/JCB.200912101
  51. Porter T. G., Spink D. C., Martin S. B., Martin D. L. Transaminations catalysed by brain glutamate decarboxylase // Biochem. J. 1985. V. 231. No 3. P. 705–712. https://doi.org/10.1042/BJ2310705
  52. Battaglioli G., Liu H., Martin D. L. Kinetic differences between the isoforms of glutamate decarboxylase: Implications for the regulation of GABA synthesis // J. Neurochem. 2003. V. 86. No 4. P. 879–887. https://doi.org/10.1046/J.1471-4159.2003.01910.X
  53. Szabo G., Katarova Z., Greenspan R. Distinct protein forms are produced from alternatively spliced bicistronic glutamic acid decarboxylase mRNAs during development // Mol. Cell. Biol. 1994. V. 14. No 11. P. 7535. https://doi.org/10.1128/MCB.14.11.7535
  54. Chessler S. D., Lernmark Å. Alternative splicing of GAD67 results in the synthesis of a third form of glutamic-acid decarboxylase in human islets and other non-neural tissues // J. Biol. Chem. 2000. V. 275. No 7. P. 5188–5192. https://doi.org/10.1074/JBC.275.7.5188
  55. Korpershoek E., Verwest A. M., Ijzendoorn Y., et al. Expression of GAD67 and novel GAD67 splice variants during human fetal pancreas development: GAD67 expression in the fetal pancreas // Endocr. Pathol. 2007. V. 18. No 1. P. 31–36. https://doi.org/10.1007/S12022-007-0003-Y
  56. Popp A., Urbach A., Witte O. W., Frahm C. Adult and embryonic GAD transcripts are spatiotemporally regulated during postnatal development in the rat brain // PLoS One. 2009. V. 4. No 2. https://doi.org/10.1371/JOURNAL.PONE.0004371
  57. Bosma P. T., Blázquez M., Collins M. A., et al. Multiplicity of glutamic acid decarboxylases (GAD) in vertebrates: molecular phylogeny and evidence for a new GAD paralog // Mol. Biol. Evol. 1999. V. 16. No 3. P. 397–404. https://doi.org/10.1093/OXFORDJOURNALS.MOLBEV.A026120
  58. Grone B. P., Maruska K. P. Three distinct glutamate decarboxylase genes in vertebrates // Sci. Rep. 2016. V. 6. https://doi.org/10.1038/SREP30507
  59. Agner C. GABA in the nervous system: The view at fifty years // J. Neurol. Sci. 2001. V. 190. No 1–2. P. 101. https://doi.org/10.1016/S0022-510X(01)00582-2
  60. Best J. G., Stagg C. J., Dennis A. Other significant metabolites: myo-inositol, GABA, glutamine, and lactate // Magnetic resonance spectroscopy: tools for neuroscience research and emerging clinical applications / под ред. C. Stagg, D. Rothman. New York: Academic Press, 2014. P. 122–138.
  61. Pinal C. S., Tobin A. J. Uniqueness and redundancy in GABA production // Perspect. Dev. Neurobiol. 1998. V. 5. No 2–3. P. 109–118.
  62. Martin D. L., Rimvall K. Regulation of γ‐aminobutyric acid synthesis in the brain // J. Neurochem. 1993. V. 60. No 2. P. 395–407. https://doi.org/10.1111/j.1471-4159.1993.tb03165.x
  63. Tavazzani E., Tritto S., Spaiardi P., et al. Glutamic acid decarboxylase 67 expression by a distinct population of mouse vestibular supporting cells // Front. Cell. Neurosci. 2014. V. 8. No DEC. P. 110972. https://doi.org/10.3389/FNCEL.2014.00428/BIBTEX
  64. Holman H. A., Wan Y., Rabbitt R. D. Developmental GAD2 expression reveals progenitor-like cells with calcium waves in mammalian crista ampullaris // iScience. 2020. V. 23. No 8. https://doi.org/10.1016/J.ISCI.2020.101407
  65. Tochitani S., Kondo S. Immunoreactivity for GABA, GAD65, GAD67 and Bestrophin-1 in the meninges and the choroid plexus: implications for non-neuronal sources for GABA in the developing mouse brain // PLoS One. 2013. V. 8. No 2. Art. No 7. https://doi.org/10.1371/journal.pone.0056901
  66. Lee S., Yoon B. E., Berglund K., et al. Channel-mediated tonic GABA release from glia // Science. 2010. V. 330. No 6005. P. 790–796. https://doi.org/10.1126/SCIENCE.1184334/SUPPL_FILE/LEE.SOM.PDF
  67. Разенкова В. А., Коржевский Д. Э. Морфологические изменения ГАМКергических структур головного мозга крысы в ходе постнатального развития // Нейрохимия. 2022. Т. 39. № 1. С. 59–69. https://doi.org/10.31857/S1027813322010101
  68. Erdö S. L., Wolff J. R. γ-aminobutyric acid outside the mammalian brain // J. Neurochem. 1990. V. 54. No 2. P. 363–372. https://doi.org/10.1111/J.1471-4159.1990.TB01882.X
  69. Sakai Y., Hira Y., Matsushima S. Central GABAergic innervation of the mammalian pineal gland: A light and electron microscopic immunocytochemical investigation in rodent and nonrodent species // J. Comp. Neurol. 2001. V. 430. No 1. P. 72–84. https://doi.org/10.1002/1096-9861(20010129)430:1<72::AID-CNE1015>3.0.CO;2-T
  70. Yu H., Benitez S. G., Jung S. R., et al. GABAergic signaling in the rat pineal gland // J. Pineal Res. 2016. V. 61. No 1. P. 69–81. https://doi.org/10.1111/JPI.12328
  71. Li S., Kumar P., Joshee S., et al. Endothelial cell-derived GABA signaling modulates neuronal migration and postnatal behavior // Cell Res. 2018. V. 28. No 2. P. 221–248. https://doi.org/10.1038/cr.2017.135
  72. Sen S., Roy S., Bandyopadhyay G., et al. γ-aminobutyric acid is synthesized and released by the endothelium // Circ. Res. 2016. V. 119. No 5. P. 621–634. https://doi.org/10.1161/CIRCRESAHA.116.308645
  73. Todd A. J., Watt C., Spike R. C., Sieghart W. Colocalization of GABA, glycine, and their receptors at synapses in the rat spinal cord // J. Neurosci. 1996. V. 16. No 3. P. 974–982. https://doi.org/10.1523/JNEUROSCI.16-03-00974.1996
  74. Mackie M., Hughes D. I., Maxwell D. J., et al. Distribution and colocalisation of glutamate decarboxylase isoforms in the rat spinal cord // Neuroscience. 2003. V. 119. No 2. P. 461–472. https://doi.org/10.1016/S0306-4522(03)00174-X
  75. Shimizu-Okabe C., Kobayashi S., Kim J., et al. Developmental formation of the GABAergic and glycinergic networks in the mouse spinal cord // Int. J. Mol. Sci. 2022. V. 23. No 2. P. 834. https://doi.org/10.3390/ijms23020834
  76. Désarmenien M., Feltz P., Occhipinti G., et al. Coexistence of GABAA and GABAB receptors on A delta and C primary afferents // Br. J. Pharmacol. 1984. V. 81. No 2. P. 327–333. https://doi.org/10.1111/J.1476-5381.1984.TB10082.X
  77. Liske S., Morris M. E. Extrasynaptic effects of GABA (gamma-aminobutyric acid) agonists on myelinated axons of peripheral nerve // Can. J. Physiol. Pharmacol. 1994. V. 72. No 4. P. 368–374. https://doi.org/10.1139/Y94-054
  78. Magnaghi V., Ballabio M., Cavarretta I. T. R., et al. GABAB receptors in Schwann cells influence proliferation and myelin protein expression // Eur. J. Neurosci. 2004. V. 19. No 10. P. 2641–2649. https://doi.org/10.1111/J.0953-816X.2004.03368.X
  79. Magnaghi V., Parducz A., Frasca A., et al. GABA synthesis in Schwann cells is induced by the neuroactive steroid allopregnanolone // J. Neurochem. 2010. V. 112. No 4. P. 980–990. https://doi.org/10.1111/J.1471-4159.2009.06512.X
  80. Schousboe A., Waagepetersen H. S. Gamma-Aminobutyric Acid (GABA) // Curated Ref. Collect. Neurosci. Biobehav. Psychol. 2017. P. 511–515. https://doi.org/10.1016/B978-0-12-809324-5.02341-5
  81. Vandenbergh D. J., Mori N., Anderson D. J. Co-expression of multiple neurotransmitter enzyme genes in normal and immortalized sympathoadrenal progenitor cells // Dev. Biol. 1991. V. 148. No 1. P. 10–22. https://doi.org/10.1016/0012-1606(91)90313-R
  82. Häppölä O., Karhula T., Päivärinta H., et al. L-glutamate decarboxylase immunoreactivity in the sympathoadrenal system // GABA Outside the CNS. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. P. 65–82. https://doi.org/10.1007/978-3-642-76915-3_5
  83. Tillakaratne N. J. K., Medina-Kauwe L., Gibson K. M. Gamma-aminobutyric acid (GABA) metabolism in mammalian neural and nonneural tissues // Comp. Biochem. Physiol. Part A Physiol. 1995. V. 112. No 2. P. 247–263. https://doi.org/10.1016/0300-9629(95)00099-2
  84. Metzeler K., Agoston A., Gratzl M. An intrinsic gamma-aminobutyric acid (GABA)ergic system in the adrenal cortex: findings from human and rat adrenal glands and the NCI-H295R cell line // Endocrinology. 2004. V. 145. No 5. P. 2402–2411. https://doi.org/10.1210/en.2003-1413
  85. Harada K., Matsuoka H., Fujihara H., et al. GABA signaling and neuroactive steroids in adrenal medullary chromaffin cells // Front. Cell. Neurosci. 2016. V. 10. Art. No 100. https://doi.org/10.3389/FNCEL.2016.00100
  86. Geigerseder C., Doepner R., Thalhammer A., et al. Evidence for a GABAergic system in rodent and human testis: local GABA production and GABA receptors // Neuroendocrinology. 2003. V. 77. No 5. P. 314–323. https://doi.org/10.1159/000070897
  87. Doepner R. F. G., Geigerseder C., Frungieri M. B., et al. Insights into GABA receptor signalling in TM3 Leydig cells // Neuroendocrinology. 2005. V. 81. No 6. P. 381–390. https://doi.org/10.1159/000089556
  88. Erdö S. L., Joo F., Wolff J. R. Immunohistochemical localization of glutamate decarboxylase in the rat oviduct and ovary: further evidence for non-neural GABA systems // Cell Tissue Res. 1989. V. 255. No 2. P. 431–434. https://doi.org/10.1007/BF00224128
  89. Pléau J. M., Esling A., Geutkens S., et al. Pancreatic hormone and glutamic acid decarboxylase expression in the mouse thymus: a real-time PCR study // Biochem. Biophys. Res. Commun. 2001. V. 283. No 4. P. 843–848. https://doi.org/10.1006/BBRC.2001.4884
  90. Maemura K., Yanagawa Y., Obata K., et al. Antigen-presenting cells expressing glutamate decarboxylase 67 were identified as epithelial cells in glutamate decarboxylase 67-GFP knock-in mouse thymus // Tissue Antigens. 2006. V. 67. No 3. P. 198–206. https://doi.org/10.1111/J.1399-0039.2006.00548.X
  91. Breed E. R., Lee S. T., Hogquist K. A. Directing T cell fate: how thymic antigen presenting cells coordinate thymocyte selection // Semin. Cell Dev. Biol. 2018. V. 84. P. 2. https://doi.org/10.1016/J.SEMCDB.2017.07.045
  92. Разенкова В. А., Коржевский Д. Э. Определение ГАМК-эргических нейронов и синаптических терминалей в головном мозге крысы с использованием иммуногистохимической реакции к двум изоформам глутаматдекарбоксилазы // Медицинский академический журнал. 2021. Т. 21. № 2. С. 63–73. https://doi.org/10.17816/MAJ70770
  93. Коржевский Д. Э., Гигорьев И. П., Гусельникова В. В., и др. Иммуногистохимические маркеры для нейробиологии // Медицинский академический журнал. 2020. Т. 19. № 4. С. 7–24. https://doi.org/10.17816/MAJ16548
  94. Kubota Y. Untangling GABAergic wiring in the cortical microcircuit // Curr. Opin. Neurobiol. 2014. V. 26. P. 7–14. https://doi.org/10.1016/j.conb.2013.10.003
  95. Mower G. D., Guo Y. Comparison of the expression of two forms of glutamic acid decarboxylase (GAD67 and GAD65) in the visual cortex of normal and dark-reared cats // Dev. Brain Res. 2001. V. 126. No 1. P. 65–74. https://doi.org/10.1016/S0165-3806(00)00139-5
  96. Houser C. R., Hendry S. H. C., Jones E. G., Vaughn J. E. Morphological diversity of immunocytochemically identified GABA neurons in the monkey sensory-motor cortex // J. Neurocytol. 1983. V. 12. No 4. P. 617–638. https://doi.org/10.1007/BF01181527
  97. Warm D., Schroer J., Sinning A. GABAergic interneurons in early brain development: conducting and orchestrated by cortical network activity // Front. Mol. Neurosci. 2022. V. 14. Art. No 807969. https://doi.org/10.3389/FNMOL.2021.807969/BIBTEX
  98. Xu G., Broadbelt K. G., Haynes R. L., et al. Late development of the GABAergic system in the human cerebral cortex and white matter // J. Neuropathol. Exp. Neurol. 2011. V. 70. No 10. P. 841–858. https://doi.org/10.1097/NEN.0b013e31822f471c
  99. Schwarzer C., Berresheim U., Pirker S., et al. Distribution of the major gamma-aminobutyric acid(A) receptor subunits in the basal ganglia and associated limbic brain areas of the adult rat // J. Comp. Neurol. 2001. V. 433. No 4. P. 526–549. https://doi.org/10.1002/CNE.1158
  100. Kim J. S., Bak I. J., Hassler R., Okada Y. Role of γ-aminobutyric acid (GABA) in the extrapyramidal motor system. 2. Some evidence for the existence of a type of GABA-rich strio-nigral neurons. // Exp. brain Res. 1971. V. 14. No 1. P. 95–104. https://doi.org/10.1007/bf00234913
  101. Шабанов П. Д., Лебедев А. А. Структурно-функциональная организация системы расширенной миндалины и ее роль в подкреплении // Обзоры по клинической фармакологии и лекарственной терапии. 2007. Т. 5. № 1.
  102. Бонь Е. И., Зиматкин С. М. Строение и развитие гиппокампа крысы // Журнал Гродненского государственного медицинского университета. 2018. Т. 16. № 2. С. 132–138. https://doi.org/10.25298/2221-8785-2018-16-2-132-138
  103. Fukuda T., Heizmann C. W., Kosaka T. Quantitative analysis of GAD65 and GAD67 immunoreactivities in somata of GABAergic neurons in the mouse hippocampus proper (CA1 and CA3 regions), with special reference to parvalbumin-containing neurons // Brain Res. 1997. V. 764. No 1–2. P. 237–243. https://doi.org/10.1016/S0006-8993(97)00683-5
  104. Wang X., Gao F., Zhu J., et al. Immunofluorescently labeling glutamic acid decarboxylase 65 coupled with confocal imaging for identifying GABAergic somata in the rat dentate gyrus—A comparison with labeling glutamic acid decarboxylase 67 // J. Chem. Neuroanat. 2014. V. 61–62. P. 51–63. https://doi.org/10.1016/j.jchemneu.2014.07.002
  105. Kajita Y., Mushiake H. Heterogeneous GAD65 expression in subtypes of GABAergic neurons across layers of the cerebral cortex and hippocampus // Front. Behav. Neurosci. 2021. V. 15. Art. No 236. https://doi.org/10.3389/FNBEH.2021.750869/BIBTEX
  106. Miwa H., Kobayashi K., Hirai S., et al. GAD67-mediated GABA synthesis and signaling impinges on directing basket cell axonal projections toward Purkinje Cells in the cerebellum // The Cerebellum. 2021. V. 21. No 6. P. 905–919. https://doi.org/10.1007/s12311-021-01334-8
  107. Hirono M., Saitow F., Kudo M., et al. Cerebellar globular cells receive monoaminergic excitation and monosynaptic inhibition from Purkinje cells // PLoS One. 2012. V. 7. No 1. Art. No e29663. https://doi.org/10.1371/journal.pone.0029663
  108. Коржевский Д. Э., Гилерович Е. Г, Кирик О. В., и др. Одновременное выявление глутаматдекарбоксилазы и синаптофизина в парафиновых срезах мозжечка крысы // Морфология. 2015. Т. 147. № 1. С. 74–77.
  109. Tamamaki N., Yanagawa Y., Tomioka R., et al. Green fluorescent protein expression and colocalization with calretinin, parvalbumin, and somatostatin in the GAD67‐GFP knock‐in mouse // J. Comp. Neurol. 2003. V. 467. No 1. P. 60–79. https://doi.org/10.1002/cne.10905
  110. Colasante G., Collombat P., Raimondi V., et al. Arx Is a direct target of Dlx2 and thereby contributes to the tangential migration of GABAergic interneurons // J. Neurosci. 2008. V. 28. No 42. P. 10674–10686. https://doi.org/10.1523/JNEUROSCI.1283-08.2008

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Эко-Вектор,



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 74760 от 29.12.2018 г.


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах