Morphological characterization of glial cells in the Substantia nigra of spontaneously hypertensive SHR rats

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: Substantia nigra is the main dopaminergic center of the brain. Massive loss of dopaminergic neurons is characteristic for Parkinson’s disease. Arterial hypertension is considered a possible risk factor for Parkinson’s disease development, but to date there is no understanding of the mechanisms that may mediate the effect of high blood pressure on the death of dopaminergic neurons and the development of Parkinson’s disease. Since neuroglia is known to make a major contribution to the pathogenesis of neurodegeneration, it is important to evaluate the effect of arterial hypertension on the functional status of glial cells in the Substantia nigra.

AIM: The aim of the study was to analyze the features of morphofunctional state of both microglia and astroglia in the Substantia nigra of spontaneously hypertensive rats.

MATERIALS AND METHODS: Brain samples from Wistar rats (n = 3) and from spontaneously hypertensive SHR rats aged 9 months (n = 4) were used as a material for the study. Brain sections were immunostained for tyrosine hydroxylase to identify the Substantia Nigra, for calcium-binding protein Iba-1 to identify microglia, and for glial fibrillary acidic protein to identify astrocytes.

RESULTS: Compared to the control, microglial cells in the Substantia nigra of spontaneously hypertensive rats show signs of moderate activation manifested in significant thickening of the processes of microgliocytes. Single microgliocytes exhibit ameboid morphology, indicating their strong activation. A close spatial relationship with the bodies of dopaminergic neurons was noted for some identified microgliocytes. Astrocytes in Substantia nigra of both Wistar rats and SHR rats show no signs of activation.

CONCLUSIONS: Arterial hypertension may be one of the causes of neuroinflammation mediated by microglia in the Substantia nigra.

Full Text

Restricted Access

About the authors

Polina V. Kulikova

Institute of Experimental Medicine; Saint Petersburg State University

Email: pkulikova915@gmail.com
ORCID iD: 0009-0004-7130-2046

Research Assistant of the Laboratory of Experimental Histology and Confocal Microscopy, Department of General and Special Morphology; Student of the Faculty of Biology

Russian Federation, Saint Petersburg; Saint Petersburg

Valeria V. Guselnikova

Institute of Experimental Medicine; Saint Petersburg State University

Author for correspondence.
Email: Guselnicova.Valeriia@yandex.ru
ORCID iD: 0000-0002-9499-8275
SPIN-code: 5115-4320

Cand. Sci. (Biology), Head of the Laboratory of Experimental Histology and Confocal Microscopy, Department of General and Special Morphology; Associate Professor of the Department of Fundamental Problems of Medicine and Medical Technology

Russian Federation, Saint Petersburg; Saint Petersburg

References

  1. Kumar S, Goyal L, Singh S. Tremor and rigidity in patients with Parkinson’s disease: emphasis on epidemiology, pathophysiology and contributing factors. CNS Neurol Disord Drug Targets. 2022;21(7):596–609. doi: 10.2174/1871527320666211006142100
  2. Munhoz RP, Tumas V, Pedroso JL, Silveira-Moriyama L. The clinical diagnosis of Parkinson’s disease. Arq Neuropsiquiatr. 2024;82(6):1–10. doi: 10.1055/s-0043-1777775
  3. Balestrino R, Schapira AHV. Parkinson disease. Eur J Neurol. 2020;27(1):27–42. doi: 10.1111/ene.14108
  4. Ye H, Robak LA, Yu M, et al. Genetics and pathogenesis of parkinson’s syndrome. Annu Rev Pathol. 2023;18:95–121. doi: 10.1146/annurev-pathmechdis-031521-034145
  5. Ng YF, Ng E, Lim EW, et al. Case-control study of hypertension and Parkinson’s disease. NPJ Parkinsons Dis. 2021;7(1):63. doi: 10.1038/s41531-021-00202-w
  6. Sheeler C, Rosa JG, Ferro A, et al. Glia in neurodegeneration: The housekeeper, the defender and the perpetrator. Int J Mol Sci. 2020;21(23):9188. doi: 10.3390/ijms21239188
  7. Zhang W, Xiao D, Mao Q, Xia H. Role of neuroinflammation in neurodegeneration development. Signal Transduct Target Ther. 2023;8(1):267. doi: 10.1038/s41392-023-01486-5
  8. Yamori Y, Okamoto K. Spontaneous hypertension in the rat. A model for human “essential” hypertension. Verh Dtsch Ges Inn Med. 1974;80:168–170. doi: 10.1007/978-3-642-85449-1_25
  9. Korzhevskii DE, Sukhorukova EG, Kirik OV, Grigorev IP. Immunohistochemical demonstration of specific antigens in the human brain fixed in zinc-ethanol-formaldehyde. Eur J Histochem. 2015;59(3):2530. doi: 10.4081/ejh.2015.2530
  10. Korzhevskii DE, Grigor’ev IP, Gusel’nikova VV, et al. Immunohistochemical markers for neurobiology. Medical academic journal. 2019;19(4):7–24. EDN: BQAXWZ doi: 10.17816/MAJ16548
  11. Schulz M, Salamero-Boix A, Niesel K, et al. Microenvironmental regulation of tumor progression and therapeutic response in brain metastasis. Front Immunol. 2019;10:1713. doi: 10.3389/fimmu.2019.01713
  12. Barcia C, Ros CM, Annese V, et al. ROCK/Cdc42-mediated microglial motility and gliapse formation lead to phagocytosis of degenerating dopaminergic neurons in vivo. Sci Rep. 2012;2:809. doi: 10.1038/srep00809
  13. Shaerzadeh F, Phan L, Miller D, et al. Microglia senescence occurs in both substantia nigra and ventral tegmental area. Glia. 2020;68(11):2228–2245. doi: 10.1002/glia.23834
  14. Bhat S, Acharya UR, Hagiwara Y, et al. Parkinson’s disease: Cause factors, measurable indicators, and early diagnosis. Comput Biol Med. 2018;102:234–241. doi: 10.1016/j.compbiomed.2018.09.008
  15. Castillo-Rangel C, Marin G, Hernández-Contreras KA, et al. Neuroinflammation in Parkinson’s disease: from gene to clinic: a systematic review. Int J Mol Sci. 2023;24(6):5792. doi: 10.3390/ijms24065792
  16. Thakur S, Dhapola R, Sarma P, et al. Neuroinflammation in Alzheimer’s disease: Current progress in molecular signaling and therapeutics. Inflammation. 2023;46(1):1–17. doi: 10.1007/s10753-022-01721
  17. Siracusa R, Fusco R, Cuzzocrea S. Astrocytes: role and functions in brain pathologies. Front Pharmacol. 2019;10:1114. doi: 10.3389/fphar.2019.01114
  18. Ji RR, Donnelly CR, Nedergaard M. Astrocytes in chronic pain and itch. Nat Rev Neurosci. 2019;20(11):667–685. doi: 10.1038/s41583-019-0218-1
  19. Jurga AM, Paleczna M, Kadluczka J, Kuter KZ. Beyond the GFAP – astrocyte protein markers in the brain. Biomolecules. 2021;11(9):1361. doi: 10.3390/biom11091361
  20. Rothhammer V, Borucki DM, Tjon EC, et al. Microglial control of astrocytes in response to microbial metabolites. Nature. 2018;557(7707):724–728. doi: 10.1038/s41586-018-0119-x
  21. Liddelow SA, Guttenplan KA, Clarke LE, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 2017;541(7638):481–487. doi: 10.1038/nature21029

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure. Substantia nigra of the Wistar rats (b, e) and spontaneously hypertensive SHR rats (a, c–d, f). Immunohistochemical reaction to TH (а), to Iba-1 protein (b–d), to GFAP (e–f). The arrow indicates the body of a dopaminergic neuron, the arrowhead indicates microgliocyte that contacts the body of a dopaminergic neuron, and the asterisk a blood vessel. Cell nuclei are counterstained with alum hematoxylin. Scale bars, 50 μm (a–c), 20 μm (d–f)

Download (526KB)

Copyright (c) 2024 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 74760 от 29.12.2018 г.