COMPARATIVE STUDY OF THE MAIN FACTORS OF PATHOGENESIS OF INFLAMMATORY BOWEL DISEASE ON IN VITRO AND IN VIVO MODELS



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: Inflammatory bowel disease (IBD) is characterized by inflammation of the intestinal mucosa and increased intestinal permeability. In order to study the biological effects of drugs, it is important that experimental models adequately reproduce the main factors of pathogenesis of the disease.

AIM: To compare permeability of the intestinal epithelial barrier and the inflammation in models of IBD, based on lipopolysaccharide (LPS)-stimulated Caco-2 cells, and in mice with a knockout of the mucin 2 gene (Muc2-/-).

 MATERIALS AND METHODS: For in vitro IBD model, Caco-2 cells were exposed to LPS and assessed for transepithelial electrical resistance, monolayer permeability, expression of tight junction genes (ZO-1, Claudin-1) and pro-inflammatory cytokines (IL-8, TNF-α, IL-1β), and IL-8 secretion. Muc2-/- mice were used as an in vivo model of IBD. Intestinal permeability was determined by the concentration of fluorescein-isothiocyanate-dextran in the blood after its intragastric administration, a histological analysis of colon samples was performed, and the expression of the TNF-α, IL-1β, IL-10 and the content of IL-1β and IL-10 were assessed.

RESULTS: In vitro, 10 μg/ml LPS reduced transepithelial electrical resistance by 57%, increased the permeability of the cell monolayer by 38%, increased the expression of IL-8 and TNF-α by 2.8 and 2.3 times, decreased the expression of ZO-1 and Claudin-1 by 54 and 53%, increased the secretion of IL-8 by 27 times compared to the control. In vivo, intestinal permeability of Muc2-/- mice was 5.8 times higher, the expression of TNF-α, IL-1β was 9.9 and 6.8 times higher; IL-10 expression was 71% lower, intestinal levels of IL-1β and IL-10 were 94% and 44% lower compared to healthy mice.

 CONCLUSIONS: In vitro and in vivo models of IBD are characterized by similar dynamics in intestinal permeability and inflammatory response. These models adequately reproduce the pathogenesis of IBD and complement each other.

Full Text

Restricted Access

About the authors

Tatiana S. Sall

Institute of Experimental Medicine

Author for correspondence.
Email: miss_taty@mail.ru
ORCID iD: 0000-0002-5890-5641
SPIN-code: 4172-6277
Scopus Author ID: 57194050387

Research Associate, Department of Biochemistry

Russian Federation, 12 Academician Pavlov St., Saint Petersburg, 197022, Russia

Ekaterina A. Litvinova

Novosibirsk State Technical University

Email: dimkit@mail.ru
ORCID iD: 0000-0001-6398-7154
SPIN-code: 2995-8611
Scopus Author ID: 7005626124

Cand. Sci. (Biol.), Research Associate

Russian Federation, 20 K. Marx Ave., Novosibirsk, 630073, Russia

Elena L. Arzhanova

Novosibirsk State University

Email: e.arzhanova@g.nsu.ru
ORCID iD: 0009-0006-1066-1867
Scopus Author ID: 58569546100

student

Russian Federation, 1 Pirogova str., Novosibirsk, 630090, Russia

Tatiana A. Kashina

Peter the Great St. Petersburg Polytechnic University

Email: tat.kashina@list.ru
ORCID iD: 0000-0002-7314-8298
SPIN-code: 4713-4128

Student

Russian Federation, 29 B Polytechnicheskaya, Saint Petersburg, 195251, Russia

Irina V. Voronkina

Institute of Experimental Medicine

Email: voronirina@list.ru
ORCID iD: 0000-0003-0078-4442
SPIN-code: 2336-4158
Scopus Author ID: 6602535489

Cand. Sci. (Biol.), Senior Research Associate, Department of Biochemistry

Russian Federation, 12 Academician Pavlov St., Saint Petersburg, 197022, Russia

Olga V. Kirik

Institute of Experimental Medicine

Email: olga_kirik@mail.ru
ORCID iD: 0000-0001-6113-3948
SPIN-code: 5725-8742
Scopus Author ID: 27171304100

Cand. Sci. (Biol.), Senior Research Associate, Department of General and Private Morphology

Russian Federation, 12 Academician Pavlov St., Saint Petersburg, 197022, Russia

Stanislav I. Sitkin

Almazov National Medical Research Centre;
North-Western State Medical University Named after I.I. Mechnikov

Email: sitkins@yandex.ru
ORCID iD: 0000-0003-0331-0963
SPIN-code: 3961-8815
Scopus Author ID: 6603071466

MD, Cand. Sci. (Med.), Head of the research group of epigenetics and metagenomics in perinatology and pediatrics; Associate Professor of the Department of Propaedeutics of Internal Diseases, Gastroenterology and Dietetics 

Russian Federation, 2 Akkuratova street, Saint Petersburg, 197341, Russia; 47 Piskarevskij prospect, Saint Petersburg, 195067, Russia

Timur Ya. Vakhitov

Institute of Experimental Medicine

Email: tim-vakhitov@yandex.ru
ORCID iD: 0000-0001-8221-6910
SPIN-code: 7298-2571
Scopus Author ID: 55406626900

Dr. Sci. (Biol.), Chief Researcher of Non-Infectious Disease Metabolomics Group

Russian Federation, 12 Academician Pavlov St., Saint Petersburg, 197022, Russia

References

  1. Vakhitov TYa, Kononova SV, Demyanova EV, et al. Serum metabolomic profile in patients with ulcerative colitis: pathophysiological role, diagnostic and therapeutic implications. Vopr. det. dietol. (Pediatric Nutrition). 2023;21(5):5–15. (In Russ.) doi: 10.20953/1727-5784-2023-5-5-15
  2. Kang Y, Park H, Choe BH, Kang B. The Role and Function of Mucins and Its Relationship to Inflammatory Bowel Disease. Front Med (Lausanne). 2022;9:848344. doi: 10.3389/fmed.2022.848344
  3. Sitkin SI, Vakhitov TY, Demyanova EV. Microbiome, gut dysbiosis and inflammatory bowel disease: That moment when the function is more important than taxonomy. Almanac of Clinical Medicine. 2018;46(5):396–425. (In Russ.) doi: 10.18786/2072-0505-2018-46-5-396-425
  4. Stephens M, von der Weid PY. Lipopolysaccharides modulate intestinal epithelial permeability and inflammation in a species-specific manner. Gut Microbes. 2020;11(3):421–432. doi: 10.1080/19490976.2019.1629235
  5. Vanuytsel T, Tack J, Farre R. The Role of Intestinal Permeability in Gastrointestinal Disorders and Current Methods of Evaluation. Front Nutr. 2021;8:717925. doi: 10.3389/fnut.2021.717925
  6. Lee M, Chang EB. Inflammatory Bowel Diseases (IBD) and the Microbiome-Searching the Crime Scene for Clues. Gastroenterology. 2021;160(2):524-537. doi: 10.1053/j.gastro.2020.09.056
  7. Edelblum KL, Turner JR. The tight junction in inflammatory disease: communication breakdown. Curr Opin Pharmacol. 2009;9(6):715-20. doi: 10.1016/j.coph.2009.06.022
  8. Song X, Wen H, Zuo L, et al. Epac-2 ameliorates spontaneous colitis in Il-10−/− mice by protecting the intestinal barrier and suppressing NF-κB/MAPK signalling. J Cell Mol Med. 2022;26:216–227. doi: 10.1111/jcmm.17077
  9. Chelakkot C, Ghim J, Ryu SH. Mechanisms regulating intestinal barrier integrity and its pathological implications. Exp Mol Med. 2018; 50:1–9. doi: 10.1038/s12276-018-0126-x
  10. Lea T. Epithelial Cell Models; General Introduction. In: Verhoeckx K, Cotter P, López-Expósito I, et al., editors. The Impact of Food Bioactives on Health: in vitro and ex vivo models [Internet]. Cham (CH): Springer; 2015. Chapter 9.
  11. Dubashynskaya NV, Bokatyi AN, Sall TS, et al. Cyanocobalamin-Modified Colistin-Hyaluronan Conjugates: Synthesis and Bioactivity. Int J Mol Sci. 2023;24(14):11550. doi: 10.3390/ijms241411550
  12. Harnik S, Ungar B, Loebstein R, Ben-Horin S. A Gastroenterologist's guide to drug interactions of small molecules for inflammatory bowel disease. United European Gastroenterol J. 2024. doi: 10.1002/ueg2.12559
  13. Ferruzza S, Rossi C, Scarino ML, Sambuy Y. A protocol for in situ enzyme assays to assess the differentiation of human intestinal Caco-2 cells. Toxicol In Vitro. 2012;26(8):1247-51. doi: 10.1016/j.tiv.2011.11.007
  14. Bednarek R. In Vitro Methods for Measuring the Permeability of Cell Monolayers. Methods and Protocols. 2022;5(1):17. doi: 10.3390/mps5010017
  15. Joshi A, Soni A, Acharya S. In vitro models and ex vivo systems used in inflammatory bowel disease. In vitro models. 2022;1:213–227. doi: 10.1007/s44164-022-00017-w
  16. Baydi Z, Limami Y, Khalki L, et al. An Update of Research Animal Models of Inflammatory Bowel Disease. ScientificWorldJournal. 2021;2021:7479540. doi: 10.1155/2021/7479540
  17. Valatas V, Bamias G, Kolios G. Experimental colitis models: Insights into the pathogenesis of inflammatory bowel disease and translational issues. Eur J Pharmacol. 2015;759:253-64. doi: 10.1016/j.ejphar.2015.03.017
  18. Theile M, Wiora L, Russ D, et al. A Simple Approach to Perform TEER Measurements Using a Self-Made Volt-Amperemeter with Programmable Output Frequency. J. Vis. Exp. 2019;152:e60087. doi: 10.3791/60087
  19. Hubatsch I, Ragnarsson EGE, Artursson P. Determination of drug permeability and prediction of drug absorption in Caco-2 monolayers. Nature Protocols. 2007;2(9):2111–2119. doi: 10.1038/nprot.2007.303
  20. Shekhawat P, Bagul M, Edwankar D, Pokharkar V. Enhanced dissolution/caco-2 permeability, pharmacokinetic and pharmacodynamic performance of re-dispersible eprosartan mesylate nanopowder. Eur J Pharm Sci. 2019;132:72-85. doi: 10.1016/j.ejps.2019.02.021
  21. Kugathasan S, Saubermann LJ, Smith L, et al. Mucosal T-cell immunoregulation varies in early and late inflammatory bowel disease. Gut. 2007;56(12):1696-705. doi: 10.1136/gut.2006.116467
  22. Garcia BREV, Makiyama EN, Sampaio GR, et al. Effects of Branched-Chain Amino Acids on the Inflammatory Response Induced by LPS in Caco-2 Cells. Metabolites. 2024;14(1):76. doi: 10.3390/metabo14010076
  23. Chua KJ, Ling H, Hwang IY, et al. An Engineered Probiotic Produces a Type III Interferon IFNL1 and Reduces Inflammations in in vitro Inflammatory Bowel Disease Models. ACS Biomater Sci Eng. 2023;9(9):5123-5135. doi: 10.1021/acsbiomaterials.2c00202
  24. Kim S, Jang SH, Kim MJ, et al. Hybrid nutraceutical of 2-ketoglutaric acid in improving inflammatory bowel disease: Role of prebiotics and TAK1 inhibitor. Biomed Pharmacother. 2024;171:116126. doi: 10.1016/j.biopha.2024.116126
  25. Sall T, Sitkin S, Lazebnik L, Vakhitov T. Effects of gut microbiota metabolites on the intestinal epithelial cell viability, barrier function, IL-8 secretion, and triglyceride accumulation in cell models of IBD and NAFLD. European Journal of Case Reports in Internal Medicine (EJCRIM). 2023;10(Sup 1):222. doi: 10.12890/2023_V10Sup1

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 74760 от 29.12.2018 г.