ALTERATIONS IN THE EXPRESSION OF DOPAMINE CATABOLISM GENES IN DAT-KO RATS WITH INDUCED VALPROATE SYNDROME



Cite item

Full Text

Abstract

Background. Autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD) are complex disorders of nervous development. Both diseases are diagnosed in childhood and are often comorbital. Rats with a knockout of the dopamine transporter gene (DAT) exhibit symptoms characteristic of ADHD. Prenatal treatment with valproic acid (VPA) is used to model ASD. Dysfunction of the dopaminergic system may be one of the causes of ADHD and ASD. However the neurochemical mechanisms underlying dysfunction of the dopaminergic system and contributing to the pathogenesis of ADHD require further studies. Therefore, the aim of the work was to investigate the expression levels of dopamine catabolism genes in heterozygous rats with a knockout of the DAT encoding gene and induced valproate syndrome.

Materials and methods. The work was performed on 32 rats aged 40 days (adolescence). In total, 4 groups of baby rats were formed in the study - (DAT:Salt), (DAT:VPA), (WT:VPA) and (WT:Salt), where DAT/WT is the presence or absence of a genetic factor (DAT is a heterozygote for knockout of the SLC6A3 gene, WT is the wild type), VPA/Salt is the presence or absence of a toxic factor (induced valproate syndrome).

Results. The expression of mRNA monoamine oxidase A (MAO-A) and monoamine oxidase B (MAO-B) in the midbrain was reduced in the groups (DAT:Sat), (DAT:VPA), (WT:VPA) compared to the control group (WT:Salt). The expression mRNA of catechol-O-methyltransferase (COMT) mRNA in the midbrain of rats (DAT:Salt) is significantly higher than in the control group (WT:Salt), however, the treatment with VPA leads to a decrease in COMT expression in heterozygous rats by knocking out the SLC6A3 gene. No changes in the expression of MAO-A, MAO-B, COMT mRNA were observed in the prefrontal cortex and striatum.  

Conclusion. The development of valproate syndrome and/or reduce dopamine reuptake leads to a decrease in the levels of monoamine oxidase A and monoamine oxidase B mRNA in the rat midbrain. Prenatal exposure to VPA led to a decrease in the level of COMT mRNA in the midbrain of heterozygous rats by knockout of the DAT gene.

.

Full Text

Restricted Access

About the authors

I R Nazarov

Санкт-Петербургский государственный университет

Author for correspondence.
Email: inazarovgm@gmail.com
ORCID iD: 0009-0003-3789-0836
Russian Federation, 199034, Россия, Санкт-Петербург, Университетская набережная, д. 7/9

D A Obukhova

ФГБНУ "Институт экспериментальной медицины"; Санкт-Петербургский государственный университет

Email: obuhowadaria@gmail.com
ORCID iD: 0009-0002-4287-0808

Физиологический отдел им. И.П. Павлова, лаборатория нейрохимии; Биологический факультет, кафедра биохимии

197022, Россия, Санкт-Петербург, ул. Академика Павлова, 12; 199034, Россия, Санкт-Петербург, Университетская набережная, д. 7/9

V M Kudrinskaya

ФГБНУ "Институт экспериментальной медицины"; Санкт-Петербургский Политехнический Университет Петра Великого

Email: v.kudrinskaja2011@yandex.ru
ORCID iD: 0000-0002-2763-5191

Физиологический отдел им. И.П. Павлова, лаборатория нейрохимии; Институт биомедицинских систем и биотехнологий

197022, Россия, Санкт-Петербург, ул. Академика Павлова, 12; 195251, Россия, Санкт-Петербург, ул. Политехническая, 29.

N S Pestereva

ФГБНУ "Институт экспериментальной медицины"

Email: pesterevans@yandex.ru
ORCID iD: 0000-0002-3104-8790
197022, Россия, Санкт-Петербург, ул. Академика Павлова, 12

References

  1. Lai M.-C. et al. Prevalence of co-occurring mental health diagnoses in the autism population: a systematic review and meta-analysis // Lancet Psychiatry. 2019. Vol. 6, № 10. P. 819–829.
  2. Marotta R. et al. The Neurochemistry of Autism // Brain Sci. 2020. Vol. 10, № 3. P. 163.
  3. Pavăl D. A Dopamine Hypothesis of Autism Spectrum Disorder // Dev Neurosci. 2017. Vol. 39, № 5. P. 355–360.
  4. Inui T., Kumagaya S., Myowa-Yamakoshi M. Neurodevelopmental Hypothesis about the Etiology of Autism Spectrum Disorders // Front Hum Neurosci. 2017. Vol. 11. P. 354.
  5. Banerjee A. et al. Abnormal emotional learning in a rat model of autism exposed to valproic acid in utero // Front Behav Neurosci. 2014. Vol. 8. P. 387.
  6. Chaliha D. et al. A Systematic Review of the Valproic-Acid-Induced Rodent Model of Autism // Dev Neurosci. 2020. Vol. 42, № 1. P. 12–48.
  7. Favre M.R. et al. General developmental health in the VPA-rat model of autism // Front Behav Neurosci. 2013. Vol. 7. P. 88.
  8. Tartaglione A.M. et al. Prenatal valproate in rodents as a tool to understand the neural underpinnings of social dysfunctions in autism spectrum disorder // Neuropharmacology. 2019. Vol. 159. P. 107477.
  9. Hegarty S.V., Sullivan A.M., O’Keeffe G.W. Midbrain dopaminergic neurons: a review of the molecular circuitry that regulates their development // Dev Biol. 2013. Vol. 379, № 2. P. 123–138.
  10. Iijima Y. et al. Distinct Defects in Synaptic Differentiation of Neocortical Neurons in Response to Prenatal Valproate Exposure // Sci Rep. 2016. Vol. 6. P. 27400.
  11. Qi C. et al. Molecular mechanisms of synaptogenesis // Front Synaptic Neurosci. 2022. Vol. 14. P. 939793.
  12. Wang L. et al. Wnt signaling pathway participates in valproic acid-induced neuronal differentiation of neural stem cells // Int J Clin Exp Pathol. 2015. Vol. 8, № 1. P. 578–585.
  13. Luo S.X., Huang E.J. Dopaminergic Neurons and Brain Reward Pathways: From Neurogenesis to Circuit Assembly // Am J Pathol. 2016. Vol. 186, № 3. P. 478–488.
  14. Meiser J., Weindl D., Hiller K. Complexity of dopamine metabolism // Cell Commun Signal. 2013. Vol. 11, № 1. P. 34.
  15. Larsen M.B. et al. Dopamine transport by the serotonin transporter: a mechanistically distinct mode of substrate translocation // J Neurosci. 2011. Vol. 31, № 17. P. 6605–6615.
  16. Choi C.S. et al. Effects of atomoxetine on hyper-locomotive activity of the prenatally valproate-exposed rat offspring // Biomol Ther (Seoul). 2014. Vol. 22, № 5. P. 406–413.
  17. Xu H., Yang F. The interplay of dopamine metabolism abnormalities and mitochondrial defects in the pathogenesis of schizophrenia // Transl Psychiatry. 2022. Vol. 12, № 1. P. 464.
  18. Efimova E.V. et al. Dopamine transporter mutant animals: a translational perspective // J Neurogenet. 2016. Vol. 30, № 1. P. 5–15.
  19. Leo D., Sukhanov I., Gainetdinov R.R. Novel translational rat models of dopamine transporter deficiency // Neural Regen Res. 2018. Vol. 13, № 12. P. 2091–2093.
  20. Ali E.H.A., Elgoly A.H.M. Combined prenatal and postnatal butyl paraben exposure produces autism-like symptoms in offspring: comparison with valproic acid autistic model // Pharmacol Biochem Behav. 2013. Vol. 111. P. 102–110.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 74760 от 29.12.2018 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies