NERVE GROWTH FACTOR INHIBITS MIGRATION, CLONOGENICITY, AND BIOENERGETIC METABOLISM OF MITOCHONDRIA OF GLIOMA U251 CELLS

  • Authors: Chernov A.1, Glushakov R.I.1, Landynya S.S2, Sharapov Y.А3,4, Galimova E.S3,5, Shamova O.V.3,4
  • Affiliations:
    1. Institute of Experimental Medicine
    2. Институт экспериментальной медицины, Санкт-Петербург, Россия Санкт-Петербургский государственный университет, Санкт-Петербург, Россия
    3. Институт экспериментальной медицины, Санкт-Петербург, Россия
    4. Санкт-Петербургский государственный университет, Санкт-Петербург, Россия
    5. Институт эволюционной физиологии и биохимии им. И.М. Сеченова РАН, Санкт-Петербург, Россия
  • Section: Original research
  • Published: 18.07.2024
  • URL: https://journals.eco-vector.com/MAJ/article/view/632885
  • DOI: https://doi.org/10.17816/MAJ632885
  • ID: 632885


Cite item

Full Text

Abstract

Introduction. Glioblastoma (GBM) is the most malignant tumor of the central nervous system. Temozolomide is the standard treatment for gliomas, and its use often leads to drug resistance and relapse of GBM. Therefore, further research is needed to find other drugs that can improve the effectiveness of standard treatments.

The goal is to study the effects of nerve growth factor, temozolomide on clonogenicity, migration and energy metabolism of mitochondria of human U251 glioma cells.

Materials and methods. The study was conducted on human U251 glioma cells. A colony formation test was used to evaluate the ability of glioma cells to form colonies in vitro. Migration of U251 glioma cells was assessed by the Scratch Assay. To study mitochondrial metabolism in glioma cells, oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) were measured using the Seahorse XF CellMito and Seahorse XF Glycolysis Stress Test kits, respectively.

Results. We found that NGF (7.55× 10-3 µM) and TMZ (155 µM) inhibited the clonogenicity of U251 glioma cells by 66.2% and 73.5–81.3% within 1–2 days, respectively. Exposure to NGF (7.55×10-3 µM) also suppresses U251 glioma cell migration on days 3 and 4. TMZ (155 µM) inhibits glioma cell migration on days 1–3. The anti-clonogenic and anti-migratory activities of NGF and TMZ may be associated with their ability to reduce the basal rate of oxygen consumption, inhibit ATP synthetase and maximum mitochondrial respiration in human U251 glioma cells. NGF and TMZ did not affect glycolysis, glycolytic capacity, and glycolytic reserve in U251 glioma cells compared to controls.

Conclusion. Thus, NGF and TMZ inhibit migration, clonogenicity, and bioenergetic metabolism of mitochondria in U251 glioma cells, exhibiting anti-mitogenic, anti-migration, and reducing energy metabolism effects.

Full Text

Restricted Access

About the authors

Alexander Chernov

Institute of Experimental Medicine

Author for correspondence.
Email: al.chernov@mail.ru
ORCID iD: 0000-0003-2464-7370

старший научный сотрудник, к.б.н., отдела общей патологии и патологической физиологии 

Russian Federation

Ruslan Ivanovich Glushakov

Email: glushakovruslan1@gmail.com
Russian Federation

Sofia S Landynya

Институт экспериментальной медицины, Санкт-Петербург, Россия
Санкт-Петербургский государственный университет, Санкт-Петербург, Россия

Email: sofia.lanynya@mail.ru

студент, старший лаборант

Russian Federation

Yaroslav А Sharapov

Институт экспериментальной медицины, Санкт-Петербург, Россия;
Санкт-Петербургский государственный университет, Санкт-Петербург, Россия

Email: yarostloff@yandex.ru

студент, старший лаборант

Russian Federation

Elvira S Galimova

Институт экспериментальной медицины, Санкт-Петербург, Россия;
Институт эволюционной физиологии и биохимии им. И.М. Сеченова РАН, Санкт-Петербург, Россия

Email: elvira8galimova@gmail.com

старший научный сотрудник, к.б.н.

Israel

Olga Valerevna Shamova

Институт экспериментальной медицины, Санкт-Петербург, Россия;
Санкт-Петербургский государственный университет, Санкт-Петербург, Россия

Email: oshamova@yandex.ru

доктор медицинских наук, доцент, член-корреспондент РАН,

заведующий отделом общей патологии и патофизиологии

References

  1. References
  2. International agency for research of cancer (Globocan) [Electronic resource]: the World of Health Organization, 2022. – Mode of access: http: www.globocan.iarc.fr. – Data of access: 08.05.2024.
  3. Miller K.D., Ostrom Q.T., Kruchko C. et al. Brain and other central nervous system tumor statistics // CA Cancer J Clin. 2021. Vol. 71, No. 5. P. 381-406. doi: 10.3322/caac.21693
  4. Skaga E., Kulesskiy E., Fayzullin A. et al. Intertumoral heterogeneity in patient-specific drug sensitivities in treatment-naïve glioblastoma // BMC Cancer. 2019. Vol. 19, No. 1. P. 628. doi: 10.1186/s12885-019-5861-4
  5. Taylor O.G., Brzozowski J.S., Skelding K.A. Glioblastoma Multiforme: An Overview of Emerging Therapeutic Targets // Front Oncol. 2019. Vol. 9. P. 963. doi: 10.3389/fonc.2019.00963
  6. Chernov A.N., Alaverdian D.A., Galimova E. S. et al. The phenomenon of multidrug resistance in glioblastomas // Hematol Oncol Stem Cell Ther. 2022. Vol. 15, No. 2. P. 1-7. doi: 10.1016/j.hemonc.2021.05.006
  7. Olivier C., Oliver L., Lalier L. et al. Drug Resistance in Glioblastoma: The Two Faces of Oxidative Stress // Front Mol Biosci. 2021. Vol. 7. P. 620677. doi: 10.3389/fmolb.2020.620677
  8. Marzagalli M., Fontana F., Raimondi M. et al. Cancer stem cells-key players in tumor relapse // Cancers. 2021. Vol. 13, No. 3. P. 376. doi: 10.3390/cancers13030376
  9. Bazzoni R., Bentivegna A. Role of Notch Signaling Pathway in Glioblastoma Multiforme Pathogenesis // Cancers. 2019. Vol. 11, No. 3. P. 292. doi: 10.3390/cancers11030292
  10. Bhuvanalakshmi G., Gamit N., Patil M., et al. Stemness, Pluripotentiality, and Wnt Antagonism: sFRP4, a Wnt antagonist Mediates Pluripotency and Stemness in Glioblastoma // Cancers. 2018. Vol. 11, No. 1. P. 25. doi: 10.3390/cancers11010025
  11. Dymova M.A., Kuligina E.V., Richter V.A. Molecular Mechanisms of Drug Resistance in Glioblastoma // Int J Mol Sci. 2021. Vol. 22, No. 12. P. 6385. doi: 10.3390/ijms22126385
  12. Diehn M., Cho R. W., Lobo N. A. et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells // Nature. 2009. Vol. 458 (7239). P. 780–783. doi: 10.1038/nature07733
  13. Wang L, Zhang X, Cui G. et al. A novel agent exerts antitumor activity in breast cancer cells by targeting mitochondrial complex II // Oncotarget. 2016. Vol. 7, No. 22. P. 32054-64. doi: 10.18632/oncotarget.8410
  14. Redza-Dutordoir M, Averill-Bates D. A. Activation of apoptosis signalling pathways by reactive oxygen species // Biochim. Biophys. Acta. 2016. Vol. 1863, No. 12. P. 2977-2992. doi: 10.1016/j.bbamcr.2016.09.012
  15. Li Y, Chang Y, Ye N, Chen Y. et al. Advanced glycation end products-induced mitochondrial energy metabolism dysfunction alters proliferation of human umbilical vein endothelial cells // Mol. Med. Rep. 2017. Vol. 15, No. 5. P. 2673-2680. doi: 10.3892/mmr.2017.6314
  16. D’Alterio C., Scala S., Sozzi G. et al. Paradoxical effects of chemotherapy on tumor relapse and metastasis promotion // Semin Cancer Biol. 2020. Vol. 60. P. 351-361. doi: 10.1016/j.semcancer.2019.08.019
  17. Franco M.L., Nadezhdin K.D., Light T.P. et al. Interaction between the transmembrane domains of neurotrophin receptors p75 and TrkA mediates their reciprocal activation // J Biol Chem. 2021. Vol. 297, No. 2. P. 100926. doi: 10.1016/j.jbc.2021.100926
  18. Huang, E. J., Reichardt L.F. Neurotrophins: Roles in Neuronal Development and Function // Annu Rev Neurosci. 2001. Vol. 24. P. 677–736. doi: 10.1146/annurev.neuro.24.1.677
  19. Donato M.D., Galasso G., Giovannelli P. et al. Targeting the Nerve Growth Factor Signaling Impairs the Proliferative and Migratory Phenotype of Triple-Negative Breast Cancer Cells // Front Cell Dev Biol. 2021. Vol. 9. P. 676568. doi: 10.3389/fcell.2021.676568
  20. Paul A. B., Grant E. S.F., Habib K. The expression and localisation of beta-nerve growth factor (beta-NGF) in benign and malignant human prostate tissue: relationship to neuroendocrine differentiation // Br J Cancer. 1996. Vol. 74, No. 12. P. 1990-6. doi: 10.1038/bjc.1996.665
  21. Sierra-Fonseca J. A., Najera O., Martinez-Jurado J. et al. Nerve growth factor induces neurite outgrowth of PC12 cells by promoting Gβγ-microtubule interaction // BMC Neurosci. 2014. Vol. 15. P. 132. doi: 10.1186/s12868-014-0132-4
  22. Li R., Li D., Wu C. et al. Nerve growth factor activates autophagy in Schwann cells to enhance myelin debris clearance and to expedite nerve regeneration // Theranostics. 2020. Vol. 10, No. 4. P. 1649-1677. doi: 10.7150/thno.40919
  23. Буравлев В.М., Вепринцев Б.Н., Викторов И.В. и др. Руководство по культивированию нервной ткани. Методы. Техника. Проблемы. Москва: Наука, 1988. 315 с.
  24. Li C., Zhou C., Wang S. et al. Sensitization of glioma cells to tamoxifen-induced apoptosis by Pl3-kinase inhibitor through the GSK-3β/β-catenin signaling pathway // PLoS One. 2011. Vol. 6, No. 10. P. e27053. doi: 10.1371/journal.pone.0027053
  25. Ge H, Mu L, Jin L. et al. Tumor associated CD70 expression is involved in promoting tumor migration and macrophage infiltration in GBM // Int J Cancer. 2017. Vol. 141, No. 7. P. 1434-1444. doi: 10.1002/ijc.30830
  26. Gu X, Ma Y, Liu Y. et al. Measurement of mitochondrial respiration in adherent cells by Seahorse XF96 Cell Mito Stress // STAR Protoc. 2020. Vol. 2, No. 1. P. 100245. doi: 10.1016/j.xpro.2020.10024
  27. Little AC, Kovalenko I, Goo LE, et al. High-content fluorescence imaging with the metabolic flux assay reveals insights into mitochondrial properties and functions // Commun Biol. 2020. Vol. 3, No. 1. P. 271. doi: 10.1038/s42003-020-0988-z
  28. Li Y, Chang Y, Ye N. et al. Advanced glycation end products‑induced mitochondrial energy metabolism dysfunction alters proliferation of human umbilical vein endothelial cells // Mol Med Rep. 2017. Vol. 15, No. 5. P. 2673-2680. doi: 10.3892/mmr.2017.6314
  29. Agilent Seahorse XF Glycolysis Stress Test Kit User Guide Kit 103020-100; Agilent Technologies, Inc., USA, 2019. 22 p.
  30. Гланц С. Медико-биологическая статистика. Москва: Практика, 1999. 459 с.
  31. Zhou X., Hao Q., Liao P. et al. Nerve growth factor receptor negates the tumor suppressor p53 as a feedback regulator // eLife. 2016. Vol. 5. P. e15099. doi: 10.7554/eLife.1509
  32. Aubert L., Guilbert M., Corbet C. et al. NGF-induced TrkA/CD44 association is involved in tumor aggressiveness and resistance to lestaurtinib // Oncotarget. 2015. Vol. 6, № 12. P. 9807-19. doi: 10.18632/oncotarget.3227
  33. Johnston A.L., Lun X., Rahn J.J. et al. The p75 neurotrophin receptor is a central regulator of glioma invasion // PLoS Biol. 2007. Vol. 5, № 8. P. e212. doi: 10.1371/journal.pbio.0050212
  34. Tong B., Pantazopoulou V., Johansson E. et al. The p75 neurotrophin receptor enhances HIF-dependent signaling in glioma // Exp Cell Res. 2018. Vol. 371, № 1. P. 122-129. doi: 10.1016/j.yexcr.2018.08.002
  35. Wang T.C., Luo S.J., Lin C.L. et al. Modulation of p75 neurotrophin receptor under hypoxic conditions induces migration and invasion of C6 glioma cells // Clin Exp Metastasis. 2015. Vol. 32, № 1. P. 73-81. doi: 10.1007/s10585-014-9692-z
  36. Donato M.D., Galasso G., Giovannelli P. et al. Targeting the Nerve Growth Factor Signaling Impairs the Proliferative and Migratory Phenotype of Triple-Negative Breast Cancer Cells // Front Cell Dev Biol. 2021. Vol. 9. P. 676568. doi: 10.3389/fcell.2021.676568
  37. Arthurs A L., Keating DJ., Stringer BW., Conn SJ. The Suitability of Glioblastoma Cell Lines as Models for Primary Glioblastoma Cell Metabolism // Cancers (Basel). 2020. Vol. 12, № 12. P. 3722. doi: 10.3390/cancers12123722
  38. Warburg O. On the Origin of Cancer Cells // Science. 1956. Vol. 123. P. 309–314. doi: 10.1126/science.123.3191.309
  39. Vlashi E, Lagadec C, Vergnes L. et al. Metabolic state of glioma stem cells and nontumorigenic cells // Proc Natl Acad Sci USA. 2011;108(38):16062-7. doi: 10.1073/pnas.1106704108
  40. Di K, Lomeli N., Bota D A. et al. Magmas inhibition as a potential treatment strategy in malignant glioma // J Neurooncol. 2019. Vol. 141, No. 2. P. 267-276. doi: 10.1007/s11060-018-03040-8
  41. Kanu L. N., Ross A. E., Farhat W. et al. Development and Characterization of a Photocrosslinkable, Chitosan-Based, Nerve Growth Factor-Eluting Hydrogel for the Ocular Surface // Transl Vis Sci Technol. 2024. Vol. 13, No. 6:12. doi: 10.1167/tvst.13.6.12.
  42. Nerve Growth Factor Eye Drops Treatment in Patients With Retinitis Pigmentosa and Cystoid Macular Edema (NEMO). Режим доступа: https://clinicaltrials.gov/ct2/show/NCT02609165?cond=NGF&draw=5&rank=34. Дата доступа: 29.06.2024.
  43. An 8-week Study to Evaluate Safety and Efficacy of NGF Eye Drops Solution Versus Vehicle in Patients With Dry Eye. Режим доступа: Clinical Trials. – Mode of access: https://clinicaltrials.gov/ct2/show/NCT03019627?cond=NGF&draw=7&rank=54 Дата доступа: 29.06.2024.
  44. Cvrljevic A.N., Akhavan D, Wu M. et al. Activation of Src induces mitochondrial localization of de2-7EGFR (EGFRvIII) in glioma cells: implications for glucose metabolism // Cell Sci. 2011. Vol. 124, Pt 17. P. 2938-50. doi: 10.1242/jcs.083295

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 74760 от 29.12.2018 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies