HABITUATION OF PHASIC DOPAMINE RELEASE: HYPOTHESIS AND EVIDENCE



Cite item

Full Text

Abstract

This article describes a phenomenon of gradual reduction in evoked phasic extracellular dopamine level elevations (PDE) during repeated stimulation of dopaminergic brain structures of experimental animals. By identifying characteristic signs, the hypothesis is justified that the decrease in PDE is due to habituation - one of the forms of non-associative learning. The material for identifying the signs of habituation is the results of two new experiments, previously published studies, and literature data. In the experiments, the induction of PDE was carried out by electrical stimulation, and their registration was carried out by fast-scan cyclic voltammetry. Experiment 1, performed on anesthetized rats, confirmed the existence of the phenomenon of gradual reduction in PDE in the nucleus accumbens core. The results of experiment 2, conducted on the rat brain slices, made it possible to localize the physiological mechanism of PDE habituation in the area of dopaminergic nerve endings. Based on the kinetic analysis of PDE, we can conclude, that the habituation is caused by the decrease in the dopamine release, not by the increase in its reuptake.

Full Text

Restricted Access

About the authors

Valery N. Mukhin

Federal State Budgetary Scientific Institution "Institute of Experimental Medicine"

Author for correspondence.
Email: valery.mukhin@gmail.com
ORCID iD: 0000-0003-0999-6847
SPIN-code: 3655-9126
Scopus Author ID: 57204253686
ResearcherId: E-6735-2014

Senior scientific researcher, Pavlov Department of Physiology

Russian Federation, Acad. Pavlov str., 12, St. Petersburg, 197376, Russia

Ivan R. Borovets

Federal State Budgetary Scientific Institution "Institute of Experimental Medicine"

Email: o.1330medach@gmail.com
ORCID iD: 0000-0003-3737-1537
Scopus Author ID: 57220181570
ResearcherId: ADQ-1493-2022

Junior Researcher, Ivan P. Pavlov Department of Physiology

Russian Federation, Acad. Pavlov str., 12, St. Petersburg, 197376, Russia

Alexandr Y. Terekhov

Federal State Budgetary Scientific Institution "Institute of Experimental Medicine"

Email: hazker735@gmail.com
ORCID iD: 0000-0001-7007-2067
Scopus Author ID: 57216356365
ResearcherId: W-3040-2018

postgraduate student, Ivan P. Pavlov Department of Physiology

Russian Federation, Acad. Pavlov str., 12, St. Petersburg, 197376, Russia

Victor M. Klimenko

Federal State Budgetary Scientific Institution "Institute of Experimental Medicine"

Email: klimenko_victor@mail.ru
ORCID iD: 0000-0001-9701-4537
SPIN-code: 8709-5642
Scopus Author ID: 14066179000
ResearcherId: A-4703-2016

professor, Leading Researcher of Ivan P. Pavlov Department of Physiology

Russian Federation, Acad. Pavlov str., 12, St. Petersburg, 197376, Russia

References

  1. Heien MLAV, Wightman RM. Phasic Dopamine Signaling During Behavior, Reward, and Disease States. CNS Neurol Disord - Drug Targets- CNS Neurol Disord. 2006;5(1):99-108. doi: 10.2174/187152706775535669
  2. Mukhin VN, Borovets IR, Sizov VV, Klimenko VM. Action and Interaction of Amyloid-β and Insulin on the Dopamine Release and Reuptake in the Lateral Dorsal Striatum of Rats. J Evol Biochem Physiol. 2024;60(1):162-177. doi: 10.1134/S0022093024010125
  3. Mukhin VN, Borovets IR, Sizov VV, Pavlov KI, Klimenko VM. β-Amyloid and Lithium Affect the Magnitude of Phasic Dopamine Release in the Shell of the Nucleus Accumbens. Neurosci Behav Physiol. 2021;51(2):201-208. doi: 10.1007/s11055-021-01058-6
  4. Budygin EA, Phillips PEM, Robinson DL, Kennedy AP, Gainetdinov RR, Wightman RM. Effect of Acute Ethanol on Striatal Dopamine Neurotransmission in Ambulatory Rats. J Pharmacol Exp Ther. 2001;297(1):27-34. Accessed January 12, 2024. https://jpet.aspetjournals.org/content/297/1/27
  5. Can A, Frost DO, Cachope R, Cheer JF, Gould TD. Chronic lithium treatment rectifies maladaptive dopamine release in the nucleus accumbens. J Neurochem. 2016;139(4):576-585. doi: 10.1111/jnc.13769
  6. Jones SR, Mathews TA, Budygin EA. Effect of moderate ethanol dose on dopamine uptake in rat nucleus accumbens in vivo. Synapse. 2006;60(3):251-255. doi: 10.1002/syn.20294
  7. Keighron JD, Bonaventura J, Li Y, et al. Interactions of calmodulin kinase II with the dopamine transporter facilitate cocaine-induced enhancement of evoked dopamine release. Transl Psychiatry. 2023;13(1):1-10. doi: 10.1038/s41398-023-02493-4
  8. Lee SM, Jang HB, Fan Y, et al. Nociceptive Stimuli Activate the Hypothalamus–Habenula Circuit to Inhibit the Mesolimbic Reward System and Cocaine-Seeking Behaviors. J Neurosci. 2022;42(49):9180-9192. doi: 10.1523/JNEUROSCI.0577-22.2022
  9. Salinas AG, Lee JO, Augustin SM, et al. Distinct sub-second dopamine signaling in dorsolateral striatum measured by a genetically-encoded fluorescent sensor. Nat Commun. 2023;14(1):5915. doi: 10.1038/s41467-023-41581-3
  10. Deal AL, Mikhailova MA, Grinevich VP, Weiner JL, Gainetdinov RR, Budygin EA. In vivo voltammetric evidence that locus coeruleus activation predominantly releases norepinephrine in the infralimbic cortex: Effect of acute ethanol. Synapse. 2019;73(4):e22080. doi: 10.1002/syn.22080
  11. Michael AC, Ikeda M, Justice JB. Dynamics of the recovery of releasable dopamine following electrical stimulation of the medial forebrain bundle. Neurosci Lett. 1987;76(1):81-86. doi: 10.1016/0304-3940(87)90196-0
  12. Michael AC, Ikeda M, Justice JB. Mechanisms contributing to the recovery of striatal releasable dopamine following MFB stimulation. Brain Res. 1987;421(1):325-335. doi: 10.1016/0006-8993(87)91302-3
  13. Yavich L, MacDonald E. Dopamine release from pharmacologically distinct storage pools in rat striatum following stimulation at frequency of neuronal bursting. Brain Res. 2000;870(1):73-79. doi: 10.1016/S0006-8993(00)02403-3
  14. Condon MD, Platt NJ, Zhang YF, et al. Plasticity in striatal dopamine release is governed by release-independent depression and the dopamine transporter. Nat Commun. 2019;10(1):4263. doi: 10.1038/s41467-019-12264-9
  15. McDiarmid TA, Yu AJ, Rankin CH. Habituation Is More Than Learning to Ignore: Multiple Mechanisms Serve to Facilitate Shifts in Behavioral Strategy. BioEssays. 2019;41(9):1900077. doi: 10.1002/bies.201900077
  16. De Luca MA. Habituation of the responsiveness of mesolimbic and mesocortical dopamine transmission to taste stimuli. Front Integr Neurosci. 2014;8:21. doi: 10.3389/fnint.2014.00021
  17. Leussis MP, Bolivar VJ. Habituation in rodents: A review of behavior, neurobiology, and genetics. Neurosci Biobehav Rev. 2006;30(7):1045-1064. doi: 10.1016/j.neubiorev.2006.03.006
  18. Lloyd D, Medina D, Hawk L, Fosco W, Richards J. Habituation of reinforcer effectiveness. Front Integr Neurosci. 2014;7. doi:https://doi.org/10.3389/fnint.2013.00107
  19. Retterstol N, Sund A. Drug addiction and habituation. Acta Psychiatr Scand. 1964;40 Suppl. 179:120-120. doi: 10.1111/j.1600-0447.1964.tb04935.x
  20. Yeap J, Crouch B, Riedel G, Platt B. Sequential habituation to space, object and stranger is differentially modulated by glutamatergic, cholinergic and dopaminergic transmission. Behav Pharmacol. 2020;31(7):652-670. doi: 10.1097/FBP.0000000000000573
  21. González-Mora JL, Salazar P, Martín M, Mas M. Monitoring Extracellular Molecules in Neuroscience by In Vivo Electrochemistry: Methodological Considerations and Biological Applications. In: Philippu A, ed. In Vivo Neuropharmacology and Neurophysiology. Neuromethods. Springer New York; 2017:181-206. doi: 10.1007/978-1-4939-6490-1_9
  22. Grinevich VP, Zakirov AN, Berseneva UV, Gerasimova EV, Gainetdinov RR, Budygin EA. Applying a Fast-Scan Cyclic Voltammetry to Explore Dopamine Dynamics in Animal Models of Neuropsychiatric Disorders. Cells. 2022;11(9):1533. doi: 10.3390/cells11091533
  23. Ehrich JM, Phillips PEM, Chavkin C. Kappa Opioid Receptor Activation Potentiates the Cocaine-Induced Increase in Evoked Dopamine Release Recorded In Vivo in the Mouse Nucleus Accumbens. Neuropsychopharmacology. 2014;39(13):3036-3048. doi: 10.1038/npp.2014.157
  24. Fortin SM, Chartoff EH, Roitman MF. The Aversive Agent Lithium Chloride Suppresses Phasic Dopamine Release Through Central GLP-1 Receptors. Neuropsychopharmacology. 2016;41(3):906-915. doi: 10.1038/npp.2015.220
  25. Mukhin VN, Sizov VV, Pavlov KI, Klimenko VM. β-Amyloid 25–35 Suppresses the Secretory Activity of the Dopaminergic System in the Rat Brain. Neurosci Behav Physiol. 2019;49(7):816-821. doi: 10.1007/s11055-019-00807-y
  26. Wightman RM, Amatorh C, Engstrom RC, et al. Real-time characterization of dopamine overflow and uptake in the rat striatum. Neuroscience. 1988;25(2):513-523. doi: 10.1016/0306-4522(88)90255-2
  27. Yorgason JT, España RA, Jones SR. Demon voltammetry and analysis software: Analysis of cocaine-induced alterations in dopamine signaling using multiple kinetic measures. J Neurosci Methods. 2011;202(2):158-164. doi: 10.1016/j.jneumeth.2011.03.001

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 74760 от 29.12.2018 г.