Comparison of deformation models of the tympanic membrane



Cite item

Full Text

Abstract

Rationale. The development of methods for assessing the compliance of the physical properties of artificial materials with the physiological parameters of native tissues and organs is one of the urgent tasks of tissue engineering. This also applies to artificial wound dressings used in tympanoplasty operations. Objective. To determine a group of deformation models of the human eardrum for the purpose of screening artificial materials for surgical replacement of its defects. Methods. Formally defined deformation models were considered: elastic linear, bilinear, trilinear, exponential and hyperelastic models. Among the hyperelastic models, the neo-Hookean, 2-parameter Mooney-Rivlin, 1st-order Ogden, 3rd-order Yeo, 2nd-order polynomial and the Veronda-Westmann model were analyzed. The closeness of the calculated to experimental data was assessed using descriptive statistics. The Mathcad 15.0 and ANSYS 2022 R2 software packages were used for the calculations. Results. The numerical values ​​of the parameters of the linear, bilinear, trilinear, exponential and hyperelastic family models were determined. Of the studied hyperelastic models, the polynomial model demonstrated the lowest mean square approximation error (SD = 0.002 MPa), the highest data correlation was demonstrated by the polynomial, Ogden and Yeo models (R = 0.9999). Conclusions. The polynomial model is the most preferable for describing the mechanical properties of such a biological object as the eardrum, which experiences various deformation modes, and can be used for screening artificial materials for replacing defects in tympanic membrane plastic surgery. Among other models, the best indicators of the discrepancy between model and experimental data were found in the exponential model (SD = 0.002 MPa, R = 0.9998). The obtained data may be useful in the field of regenerative medicine and tissue engineering in the search for replacement materials for reconstructive interventions on the middle ear.

Full Text

Restricted Access

About the authors

Sergey A. Muslov

Federal State Budgetary Educational Institution of Higher Education "Russian University of Medicine" of the Ministry of Health of the Russian Federation

Author for correspondence.
Email: sergeymuslov@yandex.ru
ORCID iD: 0000-0002-9752-6804
SPIN-code: 7213-2852
Scopus Author ID: 6507596970
ResearcherId: AAK-9440-2020

Professor, Department of Normal Physiology and Medical Physics

Russian Federation, 127006, Moscow, Dolgorukovskaya st., building 4

Pavel Yu. Sukhochev

Lomonosov Moscow State University

Email: ps@moids.ru
ORCID iD: 0000-0002-8004-6011
SPIN-code: 7780-8694
Scopus Author ID: 58698650200
ResearcherId: JKH-7132-2023

Researcher at the Laboratory of Mathematical Support for Simulation Dynamic Systems, Department of Applied Research, Faculty of Mechanics and Mathematics

Russian Federation, GSP-1, Leninskie Gory, Moscow, 119991, Russian Federation

Mikhail Vladimirovich Chistyakov

Federal State Budgetary Educational Institution of Higher Education "Russian University of Medicine" of the Ministry of Health of the Russian Federation

Email: chimisha@yandex.ru
ORCID iD: 0000-0002-4921-3897
SPIN-code: 6599-5271

доцент, кафедра нормальной физиологии и медицинской физики

Russian Federation, 127006, Moscow, Dolgorukovskaya st., building 4

Nataliya Victorovna Zaitseva

Federal State Budgetary Educational Institution of Higher Education "Russian University of Medicine" of the Ministry of Health of the Russian Federation

Email: nataliy-zajceva@yandex.ru
ORCID iD: 0000-0002-3359-412X
SPIN-code: 2695-4180
ResearcherId: LFS-2877-2024

Доцент, кафедра нормальной физиологии и медицинской физики

Russian Federation, 127006, Moscow, Dolgorukovskaya st., building 4

Alexander A. Korneev

Federal State Budgetary Educational Institution of Higher Education "Russian University of Medicine" of the Ministry of Health of the Russian Federation

Email: cniti_aak@mail.ru
ORCID iD: 0000-0002-8405-6911
SPIN-code: 7463-7748

к.ф.-м.н. , доцент кафедры "Нормальной физиологии и медицинской физики"

127006, Moscow, Dolgorukovskaya st., building 4

Dmitriy I. Polyakov

Federal State Budgetary Educational Institution of Higher Education "Russian University of Medicine" of the Ministry of Health of the Russian Federation

Email: stomatolog2006@bk.ru
ORCID iD: 0000-0003-1284-0093
SPIN-code: 3604-7283

Candidate of Medical Sciences, Assistant Professor of the Department of Orthopedic Dentistry and Digital Technologies

Russian Federation, 127006, Moscow, Dolgorukovskaya st., building 4

References

  1. Svistushkin V.M., Timashev P.S., Shechter A.B. et al. Experimental substantiation of the tissue-engineering method for closing persistent perforations of 10 the tympanic membrane. Vestnik otorinolaringologii 2020;85(6):23-26 (in Russ). https://doi.org/10.17116/otorino20208506123.
  2. Muslov S.A., Vasyuk Yu.A., Zavyalova A.I. et al. Mathematical modeling of biomechanical elastic and hyperelastic properties of the myocardium // Meditsinskiy akademicheskiy zhurnal. 2023:23(4):53-68 (in Russ). doi: 10.17816/MAJ624108.
  3. Lodge W.O. Experiments in Hearing Georg Bekesy, New York: McGraw-Hill Book Company Inc. 1960. 710 pp. Price: 194s. https://doi.org/10.1111/j.1742-1241.1960.tb05851.x.
  4. Kirikae Ichiro. The structure and functions of the middle ear. Tokyo University Press, 1960. – 430 р.
  5. Faye J., S. Puria, W. F. Decremer, K. Steele. Three approaches to the assessment of the elastic modulus of the tympanic membrane. J. Biomech. 2005;38(9):1807-1815. https://doi.org/10.1016/j.jbiomech.2004.08.022.
  6. Luo H., Lu H., Dai C. and Gan R.Z. A comparison of Young’s modulus for normal and diseased human eardrums at high strain rates. Int. J. Experimental and Computational Biomechanics. 2009;1(1):1–22. https://doi.org/10.1504/ijecb.2009.022856
  7. Gentil F., Jorge R.N., Ferreira, A.J.M. et al. Biomechanical study of middle ear. In: Proceedings of the VIII International Conference on Computational Plasticity, (2005) pp.785-788.
  8. Gan Huang, Nitin P. Dafalapurkar, Rong Z. Gang, Hongbin Lu. A method for measuring the linear viscoelastic properties of the human eardrum using nanoindentation. J Biomech Eng. 2008; 130(1):014501. https://doi.org/10.1115/1.2838034.
  9. G Volandri, F Di Puccio, P Forte, C Carmignani. Biomechanics of the tympanic membrane. J Biomech. 2011;44(7):1219-36. https://doi.org/10.1016/j.jbiomech.2010.12.023.
  10. Mareev G.O. Modern ideas about the middle ear and its mathematical models (review). Saratovskiy nauchno-meditsinskiy zhurnal. 2012;8(1):96-100. (in Russ).
  11. Tao Cheng, Chenkai Dai and Rong Z. Gang. Viscoelastic properties of the human eardrum. Annals of Biomedical Engineering 2007;35(2):305-314. http://doi.org/10.1007/s10439-006-9227-0.
  12. Jef Aernouts, Joris J. J. Dirckx. Elastic characterization of the gerbil pars flaccida from in situ inflation experiments. Biomech Model Mechanobiol. 2011;10(5):727-41. https://doi.org/10.1007/s10237-010-0269-8.
  13. Veronda D. and Westmann R. Mechanical characterizations of skin-finite deformations J. Biomech. 1970;3(3):111-124. https://doi.org/10.1016/0021-9290(70)90055-2.
  14. Shmurak M.I., Kuchumov A.G., Voronova N.O. Analysis of hyperelastic models for describing the behavior of soft tissues of the human body. Master’s Journal. 2017;1:230-243.
  15. Muslov S.A., Pertsov S.S., Arutyunov S.D. Physico-mechanical properties of biological tissues. Edited by Academician of the Russian Academy of Sciences O.O. Yanushevich. Moscow: Practical Medicine, 2023. – 456 p. https://doi.org/10.17513/np.594.
  16. Kanbara R., Nakamura Yu., Ochiai K.T. et al. Three-dimensional finite element stress analysis: technique and methodology of nonlinear modeling of properties and behavior of soft tissues under load for various designs of partial dentures. Dent. Mater. J. 2012;31:297-308. 10.4012/dmj.2011-165' target='_blank'>https://doi: 10.4012/dmj.2011-165.
  17. S.A. Muslov, S.D. Arutyunov, E.A. Chizhmakov et al. Bioengineering aspects of the oral mucosa: review and own research // Sovremennyye voprosy biomeditsiny. 2023;7(4):21. doi: 10.51871/2588-0500_2023_07_04_37.
  18. Borak L., Florian Z., Bartakova S. et al. Bilinear elastic properties of the periodontal ligament for modeling using a finite element model of the mandible. Dent. Mater. J. 2011;30:448-454. 10.4012/dmj.2010-170' target='_blank'>https://doi: 10.4012/dmj.2010-170.
  19. Polyakov D.I., Muslov S.A., Stepanov A.G., Arutyunov S.D. Mechanical properties of ear tissues and biocompatible silicones for prosthetics of the auricle. Fiziko-khimicheskaya biologiya. Materials of the VIII International Scientific Internet Conference. Stavropol, 2020. P. 135-141. (in Russ).
  20. I.V. Rakhmanova, A.A. Dreval, S.I. Mamchenko et al. Clinical and anatomical features of the middle ear of premature newborns at different stages of pregnancy. Vestnik otorinolaringologii. 2012;5:27-30. (in Russ). https://doi.org/10.17116/otorino20178239-13. 11.
  21. E. A. Chizhmakov, K. G. Karakov, S. A. Muslov. et al. Ligamentous apparatus of the tooth, differential Young's modulus and hyperelastic Mooney-Rivlin models of the periodontal ligament // Sovremennyye voprosy biomeditsiny. 2023;7(3). doi: 10.51871/2588-0500_2023_07_03_43.
  22. Delalleau A., Josse G., Lagarde J.M. et al. A nonlinear elastic behavior to identify the mechanical parameters of human skin in vivo. Skin Res. Technol. 2008;14:152–164. https://doi.org/10.1111/j.1600-0846.2007.00269.x.
  23. Muslov S.A., Pertsov S.S., Chizhmakov E.A. et al. Elastic linear, bilinear, nonlinear exponential and hyperelastic models of skin // Rossiyskiy zhurnal biomekhaniki. 2023;27(3):89-103. doi: 10.15593/RZhBiomeh/2023.3.07.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 74760 от 29.12.2018 г.