Применение наночастиц серебра в медицине: плюсы и минусы; преимущества композитов наночастиц серебра с органическими антибактериальными субстанциями и биосовместимыми полимерами



Цитировать

Полный текст

Аннотация

Развитие резистентности бактерий к применяемым в клинической практике препаратам является серьезной проблемой современной медицины. Наночастицы в настоящее время широко используются в различных отрослях промышленности, а также в медицине. Антибактериальный потенциал наночастиц серебра обширен и распространяется на грамотрицательные и грамположительные бактерии, включая мультирезистентные штаммы, в том числе в составе бактериальных биопленок. Установлено, что наночастицы серебра имеют множественные мишени антимиробного действия, вследствие чего развитие микробной резистентности к ним затруднено. Кроме того, для серебра описаны другие виды биологической активности: ранозаживляющая, противовоспалительная, противоопухолевая. Однако, несмотря на несомненные достоинства этих наноматериалов, до сих пор остаются и проблемы с их применением в медицине, связанные с некоторыми нежелательным влиянием на живые объекты. Столь разнообразные биологические свойства, а также потенциальная токсичность наночастиц серебра определяются размером и формой наночастиц, способом их синтеза и видом стабилизирующего агента. В данном обзоре приводится информация по спобсобам модификации наночастиц серебра антибактериальными соединениями, такими как антибиотики, антимикробные пептиды, которые демонстрируют синергические и аддитивные воздействия против патогенных бактерий при использовании в комбинации с наночастицами, а при создании комплексов повышают антимикробную активность и обеспечивают стабильность наночастиц. Поэтому композиты наночастиц серебра с органическими антибактериальными препаратами и биосовместимыми полимерами могут рассматриваться как перспективная основа для создания новых эффективных антибактериальных препаратов, лишенных нежелательных свойств.

Полный текст

Доступ закрыт

Об авторах

Елизавета Васильевна Владимирова

ФГБНУ "Институт экспериментальной медицины"

Email: vladymyrovaliza18@mail.ru
ORCID iD: 0000-0002-6576-9844

Ольга Валерьевна Шамова

Институт экспериментальной медицины, Санкт-Петербург

Автор, ответственный за переписку.
Email: oshamova@yandex.ru
ORCID iD: 0000-0002-5168-2801

Доцент, доктор биологических наук, член-корреспондент РАН, заведующий отделом общей патологии и патологической физиологии

Россия

Список литературы

  1. 1. Hong L., Luo S.H., Yu C.H., и др. Functional Nanomaterials and Their Potential Applications in Antibacterial Therapy. Pharm Nanotechnol.2019. Vol. 7, N 2. P.129-146. doi: 10.2174/2211738507666190320160802
  2. 2. Betts J.W., Hornsey M., La Ragione R.M. Novel Antibacterials: Alternatives to Traditional Antibiotics. Advances in microbial physiology. 2018. Vol. 73. P. 123-169. doi: 10.1016/bs.ampbs.2018.06.001
  3. 3. Bruna T., Maldonado-Bravo F., Jara P., Caro N. Silver nanoparticles and their antibacterial applications. Int J Mol Sci. 2021. Vol. 22, N 13. P. 7202. doi: 10.3390/ijms22137202
  4. 4. Kowalczyk P., Szymczak M., Maciejewska M., и др. All that glitters is not silver-A new look at microbiological and medical applications of silver nanoparticles. Int J Mol Sci. 2021. Vol. 22, N 2. P. 1-29. doi: 10.3390/ijms22020854
  5. 5. Deshmukh S.P., Patil S.M., Mullani S.B., Delekar S.D. Silver nanoparticles as an effective disinfectant: A review. Mater Sci Eng C. 2019. Vol. 97. P. 954-965. doi: 10.1016/j.msec.2018.12.102
  6. 6. Li L., Stoiber M., Wimmer A., и др. To What Extent Can Full-Scale Wastewater Treatment Plant Effluent Influence the Occurrence of Silver-Based Nanoparticles in Surface Waters? Environ Sci Technol. 2016. Vol. 50, N 12. P. 6327-6333. doi: 10.1021/acs.est.6b00694
  7. 7. Li P., Su M., Wang X., и др. Environmental fate and behavior of silver nanoparticles in natural estuarine systems. J Environ Sci. 2020. Vol. 88. P. 248-259. doi: 10.1016/j.jes.2019.09.013
  8. 8. Wimmer A., Urstoeger A., Funck N.C., и др. What happens to silver-based nanoparticles if they meet seawater? Water Res. 2020. Vol. 171. P. 115399. doi: 10.1016/j.watres.2019.115399
  9. 9. Lee J.H., Mun J, Park J.D., Yu I.J.. A health surveillance case study on workers who manufacture silver nanomaterials. Nanotoxicology. 2012. Vol. 6, N 6. P. 667-669. doi: 10.3109/17435390.2011.600840
  10. 10. Ferdous Z., Nemmar A. Health Impact of Silver Nanoparticles: A Review of the Biodistribution and Toxicity Following Various Routes of Exposure. Int J Mol Sci. 2020. Vol. 21, N 7. P. 2375. doi: 10.3390/ijms21072375
  11. 11. Tran Q.H., Nguyen V.Q., Le A.T. Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives. Adv Nat Sci Nanosci Nanotechnol. 2013. Vol. 4, N 3. P. 033001. doi: 10.1088/2043-6262/4/3/033001
  12. 12. Yaqoob A.A., Umar K., Ibrahim M.N.M. Silver nanoparticles: various methods of synthesis, size affecting factors and their potential applications–a review. Appl Nanosci. 2020. Vol. 10, N 5. P.1369-1378. doi: 10.1007/s13204-020-01318-w
  13. 13. Zhang X.F., Liu Z.G., Shen W., Gurunathan S. Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches. Int J Mol Sci. 2016. Vol. 17, N 9. P. 1534. doi: 10.3390/ijms17091534
  14. 14. Elsupikhe RF, Shameli K, Ahmad MB, Ibrahim NA, Zainudin N. Green sonochemical synthesis of silver nanoparticles at varying concentrations of κ-carrageenan. Nanoscale Res Lett. 2015;10(1):302. doi: 10.1186/s11671-015-0916-1
  15. 15. Dung Dang T.M., Tuyet Le T.T., Fribourg-Blanc E., Dang M.C. Influence of surfactant on the preparation of silver nanoparticles by polyol method. Adv Nat Sci Nanosci Nanotechnol. 2012. Vol. 3, N 3, P. 035004. doi: 10.1088/2043-6262/3/3/035004
  16. 16. Krutyakov Y.A., Kudrinskiy A.A., Olenin A.Y., Lisichkin G.V. Synthesis and properties of silver nanoparticles: advances and prospects. Russ Chem Rev. 2008. Vol. 77, N 3. P. 233-257. doi: 10.1070/RC2008v077n03ABEH003751
  17. 17. Nam K.T., Lee Y.J., Krauland E.M., Kottmann S.T., Belcher A.M. Peptide-Mediated Reduction of Silver Ions on Engineered Biological Scaffolds. ACS Nano. 2008. Vol. 2, N 7. P. 1480-1486. doi: 10.1021/nn800018n
  18. 18. Sintubin L., De Windt W., Dick J., и др.. Lactic acid bacteria as reducing and capping agent for the fast and efficient production of silver nanoparticles. Appl Microbiol Biotechnol. 2009. Vol. 84, N 4. P. 741-749. doi: 10.1007/s00253-009-2032-6
  19. 19. Balaji D.S., Basavaraja S., Deshpande R., Mahesh D.B., Prabhakar B.K., Venkataraman A. Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloids Surfaces B Biointerfaces. 2009. Vol. 68, N 1. P. 88-92. doi: 10.1016/j.colsurfb.2008.09.022
  20. 20. Chung I.M., Park I., Seung-Hyun K., Thiruvengadam M., Rajakumar G. Plant-Mediated Synthesis of Silver Nanoparticles: Their Characteristic Properties and Therapeutic Applications. Nanoscale Res Lett. 2016. Vol.11, N 1. P. 40. doi: 10.1186/s11671-016-1257-4
  21. 21. Korshed P., Li L, Liu Z., Mironov A., Wang T. Size-dependent antibacterial activity for laser‐generated silver nanoparticles. J Interdiscip Nanomedicine. 2019;. Vol. 4, N 1. P. 24-33. doi: 10.1002/jin2.54
  22. 22. Cavassin E.D., de Figueiredo L.F.P., Otoch J.P., и др. Comparison of methods to detect the in vitro activity of silver nanoparticles (AgNP) against multidrug resistant bacteria. J Nanobiotechnology. 2015. Vol. 13, N 1. P. 64. doi: 10.1186/s12951-015-0120-6
  23. 23. Marambio-Jones .C., Hoek E.M.V. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanoparticle Res. 2010. Vol. 12, N 5. P. 1531-1551. doi: 10.1007/s11051-010-9900-y
  24. 24. Qing Y., Cheng L., Li R., и др. Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. Int J Nanomedicine. 2018. Vol. 13 P. 3311-3327. doi: 10.2147/IJN.S165125
  25. 25. Dakal T.C., Kumar A., Majumdar R.S., Yadav V. Mechanistic Basis of Antimicrobial Actions of Silver Nanoparticles. Front Microbiol. 2016. Vol. 7. P. 1831. doi: 10.3389/fmicb.2016.01831
  26. 26. Swolana D., Wojtyczka R.D. Activity of Silver Nanoparticles against Staphylococcus spp. Int J Mol Sci. 2022. Vol. 23, N 8. P. 4298. doi: 10.3390/ijms23084298
  27. 27. Klueh U., Wagner V., Kelly S., Johnson A., Bryers J.D. Efficacy of silver-coated fabric to prevent bacterial colonization and subsequent device-based biofilm formation. J Biomed Mater Res. 2000. Vol. 53, N 6. P. 621-631. doi: 10.1002/1097-4636(2000)53:6<621::AID-JBM2>3.0.CO;2-Q
  28. 28. Yamanaka M., Hara K., Kudo J. Bactericidal Actions of a Silver Ion Solution on Escherichia coli , Studied by Energy-Filtering Transmission Electron Microscopy and Proteomic Analysis. Appl Environ Microbiol. 2005. Vol. 71, N 11. P. 7589-7593. doi: 10.1128/AEM.71.11.7589-7593.2005
  29. 29. Durán N., Marcato P.D., Conti R. De, Alves O.L., Costa F.T.M, Brocchi M. Potential use of silver nanoparticles on pathogenic bacteria, their toxicity and possible mechanisms of action. J Braz Chem Soc. 2010. Vol. 21, N 6. P. 949-959. doi: 10.1590/S0103-50532010000600002
  30. 30. Slawson R.M., Lee H., Trevors J.T. Bacterial interactions with silver. Biol Met. 1990. Vol. , N 3-4. P. 151-154. doi: 10.1007/BF01140573
  31. 31. Panzner M.J., Bilinovich S.M., Parker J.A., и др. Isomorphic deactivation of a Pseudomonas aeruginosa oxidoreductase: The crystal structure of Ag(I) metallated azurin at 1.7Å. J Inorg Biochem. 2013. Vol. 128. P. 11-16. doi: 10.1016/j.jinorgbio.2013.07.011
  32. 32. Pal S., Tak Y.K., Song J.M. Does the Antibacterial Activity of Silver Nanoparticles Depend on the Shape of the Nanoparticle? A Study of the Gram-Negative Bacterium Escherichia coli. Appl Environ Microbiol. 2007. Vol. 73, N 6. P. 1712-1720. doi: 10.1128/AEM.02218-06
  33. 33. Tang S., Zheng J. Antibacterial Activity of Silver Nanoparticles: Structural Effects. Adv Healthc Mater. 2018. Vol. 7, N 13. P. 1701503 doi: 10.1002/adhm.201701503
  34. 34. Wang L., Hu C., Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomedicine. 2017. Vol. 12. P. 1227-1249. doi: 10.2147/IJN.S121956
  35. 35. Jo D.H. Kim J.H., Lee T.G., Kim J.H. Size, surface charge, and shape determine therapeutic effects of nanoparticles on brain and retinal diseases. Nanomedicine Nanotechnology, Biol Med. 2015. Vol. 11, N 7. P. 1603-1611. doi: 10.1016/j.nano.2015.04.015
  36. 36. Xu L., Wang Y.Y., Huang J., Chen C.Y., Wang Z.X., Xie H. Silver nanoparticles: Synthesis, medical applications and biosafety. Theranostics. 2020. Vol. 10, N 20. P. 8996-9031. doi: 10.7150/thno.45413
  37. 37. Sharma V.K., Zboril R. Silver Nanoparticles in Natural Environment: Formation, Fate, and Toxicity. Bioactivity of Engineered Nanoparticles. 2017. P. 239-258. doi: 10.1007/978-981-10-5864-6_10
  38. 38. Burkowska-But A., Sionkowski G., Walczak M. Influence of stabilizers on the antimicrobial properties of silver nanoparticles introduced into natural water. J Environ Sci. 2014. Vol. 26, N 3. P. 542-549. doi: 10.1016/S1001-0742(13)60451-9
  39. 39. dos Santos C.A., Jozala A..F, Pessoa Jr A., Seckler M.M. Antimicrobial effectiveness of silver nanoparticles co-stabilized by the bioactive copolymer pluronic F68. J Nanobiotechnology. 2012. Vol. 10, N 1. P. 43. doi: 10.1186/1477-3155-10-43
  40. 40. Silver S. Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiol Rev. 2003. Vol. 27, N 2-3. P. 341-353. doi: 10.1016/S0168-6445(03)00047-0
  41. 41. Clement J.L., Jarrett P.S. Antibacterial Silver. Met Based Drugs. 1994. Vol. 1, N 5-6. P. 467-482. doi: 10.1155/MBD.1994.467
  42. 42. von Rozycki T., Nies D.H. Cupriavidus metallidurans: evolution of a metal-resistant bacterium. Antonie Van Leeuwenhoek. 2009. Vol. 96, N 2. P. 115-139. doi: 10.1007/s10482-008-9284-5
  43. 43. Nies D.H. The biological chemistry of the transition metal “transportome” of Cupriavidus metallidurans. Metallomics. 2016. Vol. 8, N 5. P. 481-507. doi: 10.1039/C5MT00320B
  44. 44. Pelgrift R.Y., Friedman A.J. Nanotechnology as a therapeutic tool to combat microbial resistance. Adv Drug Deliv Rev. 2013. Vol. 65, N 13-14. P. 1803-1815. doi: 10.1016/j.addr.2013.07.011
  45. 45. Markowska K., Grudniak A.M., Wolska K.I. Silver nanoparticles as an alternative strategy against bacterial biofilms. Acta Biochim Pol. 2013. Vol. 60, N 4. P. 523-530.
  46. 46. Percival S.L., Bowler P.G., Russell D. Bacterial resistance to silver in wound care. J Hosp Infect. 2005. Vol. 60, N 1. P. 1-7. doi: 10.1016/j.jhin.2004.11.014
  47. 47. Donlan R.M. Biofilms: Microbial Life on Surfaces. Emerg Infect Dis. 2002. Vol. 8, N 9. P. 881-890. doi: 10.3201/eid0809.020063
  48. 48. Flemming H.C., Wingender J. The biofilm matrix. Nat Rev Microbiol. 2010. Vol. 8, N 9.P. 623-633. doi: 10.1038/nrmicro2415
  49. 49. Gjermansen M., Ragas P., Sternberg C., Molin S., Tolker-Nielsen T. Characterization of starvation-induced dispersion in Pseudomonas putida biofilms. Environ Microbiol. 2005. Vol. 7, N 6. P. 894-904. doi: 10.1111/j.1462-2920.2005.00775.x
  50. 50. Reid D.W., Withers N.J., Francis L., Wilson J.W., Kotsimbos T.C. Iron Deficiency in Cystic Fibrosis. Chest. 2002. Vol. 121, N 1. P. 48-54. doi: 10.1378/chest.121.1.48
  51. 51. Di Martino P., Fursy R., Bret L., Sundararaju B., Phillips R.S. Indole can act as an extracellular signal to regulate biofilm formation of Escherichia coli and other indole-producing bacteria. Can J Microbiol. 2003. Vol. 49, N 7. P. 443-449. doi: 10.1139/w03-056
  52. 52. Patel C.N., Wortham B.W., Lines J.L., Fetherston J.D., Perry R.D., Oliveira M.A. Polyamines Are Essential for the Formation of Plague Biofilm. J Bacteriol. 2006. Vol. 188, N 7. P. 2355-2363. doi: 10.1128/JB.188.7.2355-2363.2006
  53. 53. Karatan E., Watnick P. Signals, Regulatory Networks, and Materials That Build and Break Bacterial Biofilms. Microbiol Mol Biol Rev. 2009. Vol. 73, N 2. P. 310-347. doi: 10.1128/MMBR.00041-08
  54. 54. Haussler S., Fuqua C. Biofilms 2012: New Discoveries and Significant Wrinkles in a Dynamic Field. J Bacteriol. 2013. Vol. 195, N 13. P. 2947-2958. doi: 10.1128/JB.00239-13
  55. 55. Webster T.J., Seil I. Antimicrobial applications of nanotechnology: methods and literature. Int J Nanomedicine. 2012. P. 2767-2781. doi: 10.2147/IJN.S24805
  56. 56. Fabrega J., Renshaw J.C., Lead J.R. Interactions of Silver Nanoparticles with Pseudomonas putida Biofilms. Environ Sci Technol. 2009. Vol. 43, N 23. P. 9004-9009. doi: 10.1021/es901706j
  57. 57. Kalishwaralal K., BarathManiKanth S. Pandian S.R.K., Deepak V., Gurunathan S. Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis. Colloids Surfaces B Biointerfaces. 2010. Vol. 79, N 2. P. 340-344. doi: 10.1016/j.colsurfb.2010.04.014
  58. 58. Martinez-Gutierrez F., Boegli L., Agostinho A., и др. Anti-biofilm activity of silver nanoparticles against different microorganisms. Biofouling. 2013. Vol. 29, N 6. P. 651-660. doi: 10.1080/08927014.2013.794225
  59. 59. Islam M.S., Larimer C., Ojha A., Nettleship I. Antimycobacterial efficacy of silver nanoparticles as deposited on porous membrane filters. Mater Sci Eng C. 2013. Vol. 33, N 8. P. 4575-4581. doi: 10.1016/j.msec.2013.07.013
  60. 60. Knetsch M.L.W., Koole L.H. New Strategies in the Development of Antimicrobial Coatings: The Example of Increasing Usage of Silver and Silver Nanoparticles. Polymers (Basel). 2011. Vol. 3, N 1. P. 340-366. doi: 10.3390/polym3010340
  61. 61. Rai M., Yadav A., Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv. 2009. Vol. 27, N 1. P. 76-83. doi: 10.1016/j.biotechadv.2008.09.002
  62. 62. Chen M., Yu Q., Sun H. Novel Strategies for the Prevention and Treatment of Biofilm Related Infections. Int J Mol Sci. 2013. Vol. 14, N 9. P. 18488-18501. doi: 10.3390/ijms140918488
  63. 63. Liu T., Zhang L., Joo D., Sun S.C. NF-κB signaling in inflammation. Signal Transduct Target Ther. 2017. Vol. 2, N 1. P. 17023. doi: 10.1038/sigtrans.2017.23
  64. 64. Gonzalez-Carter D.A., Leo B.F., Ruenraroengsak P., и др. Silver nanoparticles reduce brain inflammation and related neurotoxicity through induction of H2S-synthesizing enzymes. Sci Rep. 2017. Vol. 7, N 1. P. 42871. doi: 10.1038/srep42871
  65. 65. Adhya A., Bain J., Dutta G., и др. Healing of burn wounds by topical treatment: A randomized controlled comparison between silver sulfadiazine and nano-crystalline silver. J Basic Clin Pharm. 2015. Vol. 6, N 1. P. 29. doi: 10.4103/0976-0105.145776
  66. 66. Boonkaew B., Suwanpreuksa P., Cuttle L., Barber P.M., Supaphol P. Hydrogels containing silver nanoparticles for burn wounds show antimicrobial activity without cytotoxicity. J Appl Polym Sci. 2014. Vol. 131, N 9. doi: 10.1002/app.40215
  67. 67. Marcato P.D., De Paula L.B., Melo P.S., и др. In Vivo Evaluation of Complex Biogenic Silver Nanoparticle and Enoxaparin in Wound Healing. J Nanomater. 2015. Vol. 2015. P. 1-10. doi: 10.1155/2015/439820
  68. 68. Hebeish A., El-Rafie M.H., EL-Sheikh M.A., Seleem A.A., El-Naggar M.E. Antimicrobial wound dressing and anti-inflammatory efficacy of silver nanoparticles. Int J Biol Macromol. 2014. Vol. 65. P. 509-515. doi: 10.1016/j.ijbiomac.2014.01.071
  69. 69. Rigo C., Ferroni L., Tocco I., и др. Active Silver Nanoparticles for Wound Healing. Int J Mol Sci. 2013. Vol. 14, N 3. P. 4817-4840. doi: 10.3390/ijms14034817
  70. 70. Galandáková A., Franková J., Ambrožová N., и др. Effects of silver nanoparticles on human dermal fibroblasts and epidermal keratinocytes. Hum Exp Toxicol. 2016. Vol. 35, N 9. P. 946-957. doi: 10.1177/0960327115611969
  71. 71. Franková J., Pivodová V., Vágnerová H., Juránová J., Ulrichová J. Effects of silver nanoparticles on primary cell cultures of fibroblasts and keratinocytes in a wound-healing model. J Appl Biomater Funct Mater. 2016. Vol. 14, N 2. P. 137-142. doi: 10.5301/jabfm.5000268
  72. 72. Yeasmin S., Datta H.K., Chaudhuri S., Malik D., Bandyopadhyay A. In-vitro anti-cancer activity of shape controlled silver nanoparticles (AgNPs) in various organ specific cell lines. J Mol Liq. 2017. Vol. 242. P. 757-766. doi: 10.1016/j.molliq.2017.06.047
  73. 73. Wang Z., Chen C., Wang Y., и др. Ångstrom‐Scale Silver Particles as a Promising Agent for Low‐Toxicity Broad‐Spectrum Potent Anticancer Therapy. Adv Funct Mater. 2019. Vol. 29, N 23. P. 1808556. doi: 10.1002/adfm.201808556
  74. 74. Barabadi H., Hosseini O., Damavandi Kamali K., и др. Emerging Theranostic Silver Nanomaterials to Combat Lung Cancer: A Systematic Review. J Clust Sci. 2020. Vol. 31, N 1. P. 1-10. doi: 10.1007/s10876-019-01639-z
  75. 75. Chen B., Zhang Y., Yang Y., и др. Involvement of telomerase activity inhibition and telomere dysfunction in silver nanoparticles anticancer effects. Nanomedicine. 2018. Vol. 13, N 16. P. 2067-2082. doi: 10.2217/nnm-2018-0036
  76. 76. Yang T., Yao Q., Cao F., Liu Q., Liu B., Wang X. Silver nanoparticles inhibit the function of hypoxia-inducible factor-1 and target genes: insight into the cytotoxicity and antiangiogenesis. Int J Nanomedicine. 2016. Vol. 11. P. 6679-6692. doi: 10.2147/IJN.S109695
  77. 77. Quail D.F., Joyce J.A. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013. Vol. 19, N 11. P. 1423-1437. doi: 10.1038/nm.3394
  78. 78. Joyce J.A., Pollard J.W. Microenvironmental regulation of metastasis. Nat Rev Cancer. 2009. Vol. 9, N 4. P. 239-252. doi: 10.1038/nrc2618
  79. 79. Kim Y., Lin Q., Glazer P., Yun Z. Hypoxic Tumor Microenvironment and Cancer Cell Differentiation. Curr Mol Med. 2009. Vol. 9, N 4. P. 425-434. doi: 10.2174/156652409788167113
  80. 80. Kemp M.M., Kumar A., Mousa S., и др. Gold and silver nanoparticles conjugated with heparin derivative possess anti-angiogenesis properties. Nanotechnology. 2009. Vol. 20, N 45. P. 455104. doi: 10.1088/0957-4484/20/45/455104
  81. 81. Eom H.J., Choi J. p38 MAPK Activation, DNA Damage, Cell Cycle Arrest and Apoptosis As Mechanisms of Toxicity of Silver Nanoparticles in Jurkat T Cells. Environ Sci Technol. 2010. Vol. 44, N 21. P. 8337-8342. doi: 10.1021/es1020668
  82. 82. Pei J., Fu B., Jiang L., Sun T. Biosynthesis, characterization, and anticancer effect of plant-mediated silver nanoparticles using Coptis chinensis. Int J Nanomedicine. 2019;Vol. 14. P. 1969-1978. doi: 10.2147/IJN.S188235
  83. 83. Hashemi Goradel N., Ghiyami‐Hour F., Jahangiri S., и др. Nanoparticles as new tools for inhibition of cancer angiogenesis. J Cell Physiol. 2018. Vol. 233, N 4. P. 2902-2910. doi: 10.1002/jcp.26029
  84. 84. Zhao Y., Adjei A.A. Targeting Angiogenesis in Cancer Therapy: Moving Beyond Vascular Endothelial Growth Factor. Oncologist. 2015. Vol. 20, N 6. P. 660-673. doi: 10.1634/theoncologist.2014-0465
  85. 85. Buttacavoli M., Albanese N.N., Di Cara G., и др. Anticancer activity of biogenerated silver nanoparticles: an integrated proteomic investigation. Oncotarget. 2018. Vol. 9, N 11. P. 9685-9705. doi: 10.18632/oncotarget.23859
  86. 86. Fulbright L.E., Ellermann M., Arthur J.C. The microbiome and the hallmarks of cancer. PLOS Pathog. 2017. Vol. 13, N. 9. P. e1006480. doi: 10.1371/journal.ppat.1006480
  87. 87. Gurunathan S., Lee K.J., Kalishwaralal K., Sheikpranbabu S. Vaidyanathan R., Eom S.H. Antiangiogenic properties of silver nanoparticles. Biomaterials. 2009. Vol. 30, N 31. P. 6341-6350. doi: 10.1016/j.biomaterials.2009.08.008
  88. 88. Kalishwaralal K., Banumathi E., Pandian S.R.K., и др. Silver nanoparticles inhibit VEGF induced cell proliferation and migration in bovine retinal endothelial cells. Colloids Surfaces B Biointerfaces. 2009. Vol. 73, N 1. P. 51-57. doi: 10.1016/j.colsurfb.2009.04.025
  89. 89. Singh, S.P., Bhargava, C.S., Dubey, V., и др. Silver nanoparticles: Biomedical applications, toxicity, and safety issues. Int J Res Pharm Pharm. 2017. Vol. 4, N 2. P. 1-10.
  90. 90. Lansdown A.B.G. Silver in Health Care: Antimicrobial Effects and Safety in Use. Biofunctional Textiles and the Skin. 2006. Vol. 33. P. 17-34. doi: 10.1159/000093928
  91. 91. Ahamed M., AlSalhi M.S., Siddiqui M.K.J. Silver nanoparticle applications and human health. Clin Chim Acta. 2010. Vol. 411, N 23-24. P. 1841-1848. doi: 10.1016/j.cca.2010.08.016
  92. 92. Korani M., Rezayat M., Gilani K. Acute and subchronic dermal toxicity of nanosilver in guinea pig. Int J Nanomedicine. 2011. P. 855. doi: 10.2147/IJN.S17065
  93. 93. Wong K.K.Y., Liu X. Silver nanoparticles—the real “silver bullet” in clinical medicine? Medchemcomm. 2010. Vol. 1, N 2. P. 125. doi: 10.1039/c0md00069h
  94. 94. Tak Y.K., Pal S., Naoghare P.K., Rangasamy S., Song J.M. Shape-Dependent Skin Penetration of Silver Nanoparticles: Does It Really Matter? Sci Rep. 2015. Vol. 5, N 1. P. 16908. doi: 10.1038/srep16908
  95. 95. Szmyd R., Goralczyk A.G., Skalniak L., и др. Effect of silver nanoparticles on human primary keratinocytes. Biological Chemistry. 2013. Vol. 394, N 1. P. 113-123. doi: 10.1515/hsz-2012-0202
  96. 96. De Jong W.H., Van Der Ven L.T.M., Sleijffers A., и др. Systemic and immunotoxicity of silver nanoparticles in an intravenous 28 days repeated dose toxicity study in rats. Biomaterials. 2013. Vol. 34, N 33. P. 8333-8343. doi: 10.1016/j.biomaterials.2013.06.048
  97. 97. Xue Y., Zhang S., Huang Y., и др. Acute toxic effects and gender-related biokinetics of silver nanoparticles following an intravenous injection in mice. J Appl Toxicol. 2012. Vol. 32, N 11. P. 890-899. doi: 10.1002/jat.2742
  98. 98. Kim W.Y., Kim J., Park J.D., Ryu H.Y., Yu I.J. Histological Study of Gender Differences in Accumulation of Silver Nanoparticles in Kidneys of Fischer 344 Rats. J Toxicol Environ Heal Part A. 2009. Vol. 72, N 21-22. P. 1279-1284. doi: 10.1080/15287390903212287
  99. 99. Kim Y.S., Kim J.S., Cho H.S., и др. Twenty-Eight-Day Oral Toxicity, Genotoxicity, and Gender-Related Tissue Distribution of Silver Nanoparticles in Sprague-Dawley Rats. Inhal Toxicol. 2008. Vol. 20, N 6. P. 575-583. doi: 10.1080/08958370701874663
  100. 100. Kim Y.S., Song M.Y., Park J.D., и др. Subchronic oral toxicity of silver nanoparticles. Part Fibre Toxicol. 2010. Vol. 7, N 1. P. 20. doi: 10.1186/1743-8977-7-20
  101. 101. Song K.S., Sung J.H., Ji J.H., и др. Recovery from silver-nanoparticle-exposure-induced lung inflammation and lung function changes in Sprague Dawley rats. Nanotoxicology. 2013. Vol. 7, N 2. P. 169-180. doi: 10.3109/17435390.2011.648223
  102. 102. Lee J.H., Sung J.H., Ryu H.R., и др. Tissue distribution of gold and silver after subacute intravenous injection of co-administered gold and silver nanoparticles of similar sizes. Arch Toxicol. 2018. Vol. 92, N 4. P. 1393-1405. doi: 10.1007/s00204-018-2173-4
  103. 103. Lee J.H., Kim Y.S., Song K.S., и др. Biopersistence of silver nanoparticles in tissues from Sprague–Dawley rats. Part Fibre Toxicol. 2013. Vol. 10, N 1. P. 36. doi: 10.1186/1743-8977-10-36
  104. 104. Braydich-Stolle L., Hussain S., Schlager J.J., Hofmann M.C.. In Vitro Cytotoxicity of Nanoparticles in Mammalian Germline Stem Cells. Toxicol Sci. 2005. Vol. 88, N 2. P. 412-419. doi: 10.1093/toxsci/kfi256
  105. 105. Maillard J.Y., Hartemann P. Silver as an antimicrobial: facts and gaps in knowledge. Crit Rev Microbiol. 2013. Vol. 39, N 4. P. 373-383. doi: 10.3109/1040841X.2012.713323
  106. 106. Sung J.H., Ji J.H., Park J.D., и др. Subchronic Inhalation Toxicity of Silver Nanoparticles. Toxicol Sci. 2009. Vol. 108, N 2. P. 452-461. doi: 10.1093/toxsci/kfn246
  107. 107. Khatoon N., Alam H., Khan A., Raza K., Sardar M. Ampicillin Silver Nanoformulations against Multidrug resistant bacteria. Sci Rep. 2019. Vol. 1. P. 6848. doi: 10.1038/s41598-019-43309-0
  108. 108. Batul R., Bhave M., Yu A. Investigation of Antimicrobial Effects of Polydopamine-Based Composite Coatings. Molecules. 2023. Vol. 28, N 11. P. 4258. doi: 10.3390/molecules28114258
  109. 109. Deng H., McShan D., Zhang Y., и др. Mechanistic Study of the Synergistic Antibacterial Activity of Combined Silver Nanoparticles and Common Antibiotics. Environ Sci Technol. 2016. Vol. 50, N 16. P. 8840-8848. doi: 10.1021/acs.est.6b00998
  110. 110. Wang Y.W., Tang H., Wu D., и др. Enhanced bactericidal toxicity of silver nanoparticles by the antibiotic gentamicin. Environ Sci Nano. 2016. Vol. 3, N 4. P. 788-798. doi: 10.1039/C6EN00031B
  111. 111. Li Y., Xiang Q., Zhang Q., Huang Y., Su Z. Overview on the recent study of antimicrobial peptides: Origins, functions, relative mechanisms and application. Peptides. 2012. Vol. 37, N 2. P. 207-215. doi: 10.1016/j.peptides.2012.07.001
  112. 112. Tosi M.F. Innate immune responses to infection. J Allergy Clin Immunol. 2005. Vol. 116, N 2. P. 241-249. doi: 10.1016/j.jaci.2005.05.036
  113. 113. Zharkova M.S., Golubeva O.Y., Orlov D.S., и др. Silver Nanoparticles Functionalized With Antimicrobial Polypeptides: Benefits and Possible Pitfalls of a Novel Anti-infective Tool. Front Microbiol. 2021. Vol. 12. P. 750556.doi: 10.3389/fmicb.2021.750556
  114. 114. Masimen M.A.A., Harun N.A., Maulidiani M., Ismail W.I.W. Overcoming Methicillin-Resistance Staphylococcus aureus (MRSA) Using Antimicrobial Peptides-Silver Nanoparticles. Antibiotics. 2022. Vol. 11, N 7. P. 951. doi: 10.3390/antibiotics11070951
  115. 115. Jin Y., Yang Y., Duan W., Qu X., Wu J. Synergistic and On-Demand Release of Ag-AMPs Loaded on Porous Silicon Nanocarriers for Antibacteria and Wound Healing. ACS Appl Mater Interfaces. 2021. Vol. 13, N 14. P. 16127-16141. doi: 10.1021/acsami.1c02161
  116. 116. Jin Y., Duan W., Wo F., Wu J. Two-Dimensional Fluorescent Strategy Based on Porous Silicon Quantum Dots for Metal-Ion Detection and Recognition. ACS Appl Nano Mater. 2019. Vol. 2, N 10. P. 6110-6115. doi: 10.1021/acsanm.9b01647
  117. 117. Gao J., Na H., Zhong R., и др. One step synthesis of antimicrobial peptide protected silver nanoparticles: The core-shell mutual enhancement of antibacterial activity. Colloids Surfaces B Biointerfaces. 2020. Vol. 186. P. 110704. doi: 10.1016/j.colsurfb.2019.110704
  118. 118. Zhen J.B., Kang P.W., Zhao M.H., Yang K.W. Silver Nanoparticle Conjugated Star PCL- b -AMPs Copolymer as Nanocomposite Exhibits Efficient Antibacterial Properties. Bioconjug Chem. 2020. Vol. 31, N 1. P. 51-63. doi: 10.1021/acs.bioconjchem.9b00739
  119. 119. Xu J., Li Y., Wang H., Zhu M., Feng W., Liang G. Enhanced Antibacterial and Anti-Biofilm Activities of Antimicrobial Peptides Modified Silver Nanoparticles. Int J Nanomedicine. 2021;Vol. 16. P. 4831-4846. doi: 10.2147/IJN.S315839
  120. 120. Zheng K., Setyawati M.I., Lim T.P., Leong D.T., Xie J. Antimicrobial Cluster Bombs: Silver Nanoclusters Packed with Daptomycin. ACS Nano. 2016. Vol. 10, N 8. P. 7934-7942. doi: 10.1021/acsnano.6b03862
  121. 121. Ye Z., Sang T., Li K., и др. Hybrid nanocoatings of self-assembled organic-inorganic amphiphiles for prevention of implant infections. Acta Biomater. 2022. Vol. 140. P. 338-349. doi: 10.1016/j.actbio.2021.12.008

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Примечание

Growing bacterial resistance to conventional antibiotics is a serious problem of contemporary medicine. Nanoparticles are now widely used in various branches of industry and in medicine. The antibacterial potential of silver nanoparticles is extensive and spreads to Gram-negative and Gram-positive bacteria, including multidrug-resistant strains, and bacteria in biofilms. Silver nanoparticles have multiple targets of antibacterial action therefore the microbial resistance to them is hardly developing.  In addition, other types of biological activity have been described for silver: wound-healing, anti-inflammatory, anti-tumor. Such diverse biological properties, as well as potential toxicity of silver nanoparticles, are determined by their size and shape, the method of nanpoparticles synthesis and the type of stabilizing agent. However, despite the undoubted advantages of these nanomaterials, there are still problems with their application in medicine due to some undesirable effects on living objects. This review provides information on methods for modifying silver nanoparticles with antibacterial agents, such as antibiotics, antimicrobial peptides, which demonstrate a synergistic and additive effects against pathogenic bacteria, taken in combinations with nanoparticles as well as increase their antimicrobial activity and ensure stability when used as complexes with these nanomaterials. Thus, composites of silver nanoparticles with organic biocompatible preparations can be considering as a promising base for creating new effective antimicrobial drugs devoid of undesirable properties.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


© Эко-Вектор,



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 74760 от 29.12.2018 г.