Application of silver nanoparticles in medicine: pros and cons; advantages of silver nanoparticle composites with organic antibacterial substances and biocompatible polymers
- Authors: Vladimirova E.V.1, Shamova O.2
-
Affiliations:
- Institute of Experimental Medicine
- Institute of Experimental Medicine, St. Petersburg
- Section: Analytical reviews
- Published: 21.01.2025
- URL: https://journals.eco-vector.com/MAJ/article/view/635890
- DOI: https://doi.org/10.17816/MAJ635890
- ID: 635890
Cite item
Full Text
Abstract
Growing bacterial resistance to conventional antibiotics is a serious problem of contemporary medicine. Nanoparticles are now widely used in various branches of industry and in medicine. The antibacterial potential of silver nanoparticles is extensive and spreads to Gram-negative and Gram-positive bacteria, including multidrug-resistant strains, as well as bacterial biofilms. Silver nanoparticles have multiple targets of antibacterial action therefore the microbial resistance to them is hardly developing. In addition, other types of biological activity have been described for silver: wound-healing, anti-inflammatory, anti-tumor. Such diverse biological properties, as well as potential toxicity of silver nanoparticles, are determined by their size and shape, the method of nanpoparticles synthesis and the type of stabilizing agent. Therefore, despite the undoubted advantages of these nanomaterials, there are still problems with their application in medicine due to some undesirable effects on living objects. This review provides information on methods for modifying silver nanoparticles with antibacterial agents, such as antibiotics, antimicrobial peptides, which demonstrate a synergistic effect against pathogenic bacteria, to create new effective antibacterial drugs devoid of undesirable properties.
Full Text

About the authors
Elizaveta Vasilyevna Vladimirova
Institute of Experimental Medicine
Email: vladymyrovaliza18@mail.ru
ORCID iD: 0000-0002-6576-9844
Olga Shamova
Institute of Experimental Medicine, St. Petersburg
Author for correspondence.
Email: oshamova@yandex.ru
ORCID iD: 0000-0002-5168-2801
Associate Professor, Dr. Sci. (Biol.), Corresponding Member of the Russian Academy of Sciences, Head of the Department of General Pathology and Pathological Physiology
Russian FederationReferences
- Hong L, Luo SH, Yu CH, et al. Functional Nanomaterials and Their Potential Applications in Antibacterial Therapy. Pharm Nanotechnol. 2019;7(2):129-146. doi: 10.2174/2211738507666190320160802
- Betts JW, Hornsey M, La Ragione RM. Novel Antibacterials: Alternatives to Traditional Antibiotics. Advances in microbial physiology. 2018;73:123-169. doi: 10.1016/bs.ampbs.2018.06.001
- Bruna T, Maldonado-Bravo F, Jara P, Caro N. Silver nanoparticles and their antibacterial applications. Int J Mol Sci. 2021;22(13):7202. doi: 10.3390/ijms22137202
- Kowalczyk P, Szymczak M, Maciejewska M, et al. All that glitters is not silver-A new look at microbiological and medical applications of silver nanoparticles. Int J Mol Sci. 2021;22(2):1-29. doi: 10.3390/ijms22020854
- Deshmukh SP, Patil SM, Mullani SB, Delekar SD. Silver nanoparticles as an effective disinfectant: A review. Mater Sci Eng C. 2019;97:954-965. doi: 10.1016/j.msec.2018.12.102
- Li L, Stoiber M, Wimmer A, et al. To What Extent Can Full-Scale Wastewater Treatment Plant Effluent Influence the Occurrence of Silver-Based Nanoparticles in Surface Waters? Environ Sci Technol. 2016;50(12):6327-6333. doi: 10.1021/acs.est.6b00694
- Li P, Su M, Wang X, et al. Environmental fate and behavior of silver nanoparticles in natural estuarine systems. J Environ Sci. 2020;88:248-259. doi: 10.1016/j.jes.2019.09.013
- Wimmer A, Urstoeger A, Funck NC, et al. What happens to silver-based nanoparticles if they meet seawater? Water Res. 2020;171:115399. doi: 10.1016/j.watres.2019.115399
- Lee JH, Mun J, Park JD, Yu IJ. A health surveillance case study on workers who manufacture silver nanomaterials. Nanotoxicology. 2012;6(6):667-669. doi: 10.3109/17435390.2011.600840
- Ferdous Z, Nemmar A. Health Impact of Silver Nanoparticles: A Review of the Biodistribution and Toxicity Following Various Routes of Exposure. Int J Mol Sci. 2020;21(7):2375. doi: 10.3390/ijms21072375
- Tran QH, Nguyen VQ, Le AT. Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives. Adv Nat Sci Nanosci Nanotechnol. 2013;4(3):033001. doi: 10.1088/2043-6262/4/3/033001
- Yaqoob AA, Umar K, Ibrahim MNM. Silver nanoparticles: various methods of synthesis, size affecting factors and their potential applications–a review. Appl Nanosci. 2020;10(5):1369-1378. doi: 10.1007/s13204-020-01318-w
- Zhang XF, Liu ZG, Shen W, Gurunathan S. Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches. Int J Mol Sci. 2016;17(9):1534. doi: 10.3390/ijms17091534
- Elsupikhe RF, Shameli K, Ahmad MB, Ibrahim NA, Zainudin N. Green sonochemical synthesis of silver nanoparticles at varying concentrations of κ-carrageenan. Nanoscale Res Lett. 2015;10(1):302. doi: 10.1186/s11671-015-0916-1
- Dung Dang TM, Tuyet Le TT, Fribourg-Blanc E, Dang MC. Influence of surfactant on the preparation of silver nanoparticles by polyol method. Adv Nat Sci Nanosci Nanotechnol. 2012;3(3):035004. doi: 10.1088/2043-6262/3/3/035004
- Krutyakov YA, Kudrinskiy AA, Olenin AY, Lisichkin G V. Synthesis and properties of silver nanoparticles: advances and prospects. Russ Chem Rev. 2008;77(3):233-257. doi: 10.1070/RC2008v077n03ABEH003751
- Nam KT, Lee YJ, Krauland EM, Kottmann ST, Belcher AM. Peptide-Mediated Reduction of Silver Ions on Engineered Biological Scaffolds. ACS Nano. 2008;2(7):1480-1486. doi: 10.1021/nn800018n
- Sintubin L, De Windt W, Dick J, et al. Lactic acid bacteria as reducing and capping agent for the fast and efficient production of silver nanoparticles. Appl Microbiol Biotechnol. 2009;84(4):741-749. doi: 10.1007/s00253-009-2032-6
- Balaji DS, Basavaraja S, Deshpande R, Mahesh DB, Prabhakar BK, Venkataraman A. Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloids Surfaces B Biointerfaces. 2009;68(1):88-92. doi: 10.1016/j.colsurfb.2008.09.022
- Chung IM, Park I, Seung-Hyun K, Thiruvengadam M, Rajakumar G. Plant-Mediated Synthesis of Silver Nanoparticles: Their Characteristic Properties and Therapeutic Applications. Nanoscale Res Lett. 2016;11(1):40. doi: 10.1186/s11671-016-1257-4
- Korshed P, Li L, Liu Z, Mironov A, Wang T. Size‐dependent antibacterial activity for laser‐generated silver nanoparticles. J Interdiscip Nanomedicine. 2019;4(1):24-33. doi: 10.1002/jin2.54
- Cavassin ED, de Figueiredo LFP, Otoch JP, et al. Comparison of methods to detect the in vitro activity of silver nanoparticles (AgNP) against multidrug resistant bacteria. J Nanobiotechnology. 2015;13(1):64. doi: 10.1186/s12951-015-0120-6
- Marambio-Jones C, Hoek EM V. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanoparticle Res. 2010;12(5):1531-1551. doi: 10.1007/s11051-010-9900-y
- Qing Y, Cheng L, Li R, et al. Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. Int J Nanomedicine. 2018; 13:3311-3327. doi: 10.2147/IJN.S165125
- Dakal TC, Kumar A, Majumdar RS, Yadav V. Mechanistic Basis of Antimicrobial Actions of Silver Nanoparticles. Front Microbiol. 2016;7:1831. doi: 10.3389/fmicb.2016.01831
- Swolana D, Wojtyczka RD. Activity of Silver Nanoparticles against Staphylococcus spp. Int J Mol Sci. 2022;23(8):4298. doi: 10.3390/ijms23084298
- Klueh U, Wagner V, Kelly S, Johnson A, Bryers JD. Efficacy of silver-coated fabric to prevent bacterial colonization and subsequent device-based biofilm formation. J Biomed Mater Res. 2000;53(6):621-631. doi: 10.1002/1097-4636(2000)53:6<621::AID-JBM2>3.0.CO;2-Q
- Yamanaka M, Hara K, Kudo J. Bactericidal Actions of a Silver Ion Solution on Escherichia coli , Studied by Energy-Filtering Transmission Electron Microscopy and Proteomic Analysis. Appl Environ Microbiol. 2005;71(11):7589-7593. doi: 10.1128/AEM.71.11.7589-7593.2005
- Durán N, Marcato PD, Conti R De, Alves OL, Costa FTM, Brocchi M. Potential use of silver nanoparticles on pathogenic bacteria, their toxicity and possible mechanisms of action. J Braz Chem Soc. 2010;21(6):949-959. doi: 10.1590/S0103-50532010000600002
- Slawson RM, Lee H, Trevors JT. Bacterial interactions with silver. Biol Met. 1990;3(3-4):151-154. doi: 10.1007/BF01140573
- Panzner MJ, Bilinovich SM, Parker JA, et al. Isomorphic deactivation of a Pseudomonas aeruginosa oxidoreductase: The crystal structure of Ag(I) metallated azurin at 1.7Å. J Inorg Biochem. 2013;128:11-16. doi: 10.1016/j.jinorgbio.2013.07.011
- Pal S, Tak YK, Song JM. Does the Antibacterial Activity of Silver Nanoparticles Depend on the Shape of the Nanoparticle? A Study of the Gram-Negative Bacterium Escherichia coli. Appl Environ Microbiol. 2007;73(6):1712-1720. doi: 10.1128/AEM.02218-06
- Tang S, Zheng J. Antibacterial Activity of Silver Nanoparticles: Structural Effects. Adv Healthc Mater. 2018;7(13):1701503. doi: 10.1002/adhm.201701503
- Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomedicine. 2017;Volume 12:1227-1249. doi: 10.2147/IJN.S121956
- Jo DH, Kim JH, Lee TG, Kim JH. Size, surface charge, and shape determine therapeutic effects of nanoparticles on brain and retinal diseases. Nanomedicine Nanotechnology, Biol Med. 2015;11(7):1603-1611. doi: 10.1016/j.nano.2015.04.015
- Xu L, Wang YY, Huang J, Chen CY, Wang ZX, Xie H. Silver nanoparticles: Synthesis, medical applications and biosafety. Theranostics. 2020;10(20):8996-9031. doi: 10.7150/thno.45413
- Sharma VK, Zboril R. Silver Nanoparticles in Natural Environment: Formation, Fate, and Toxicity. Bioactivity of Engineered Nanoparticles. 2017:239-258. doi: 10.1007/978-981-10-5864-6_10
- Burkowska-But A, Sionkowski G, Walczak M. Influence of stabilizers on the antimicrobial properties of silver nanoparticles introduced into natural water. J Environ Sci. 2014;26(3):542-549. doi: 10.1016/S1001-0742(13)60451-9
- dos Santos CA, Jozala AF, Pessoa Jr A, Seckler MM. Antimicrobial effectiveness of silver nanoparticles co-stabilized by the bioactive copolymer pluronic F68. J Nanobiotechnology. 2012;10(1):43. doi: 10.1186/1477-3155-10-43
- Silver S. Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiol Rev. 2003;27(2-3):341-353. doi: 10.1016/S0168-6445(03)00047-0
- Clement JL, Jarrett PS. Antibacterial Silver. Met Based Drugs. 1994;1(5-6):467-482. doi: 10.1155/MBD.1994.467
- von Rozycki T, Nies DH. Cupriavidus metallidurans: evolution of a metal-resistant bacterium. Antonie Van Leeuwenhoek. 2009;96(2):115-139. doi: 10.1007/s10482-008-9284-5
- Nies DH. The biological chemistry of the transition metal “transportome” of Cupriavidus metallidurans. Metallomics. 2016;8(5):481-507. doi: 10.1039/C5MT00320B
- Pelgrift RY, Friedman AJ. Nanotechnology as a therapeutic tool to combat microbial resistance. Adv Drug Deliv Rev. 2013;65(13-14):1803-1815. doi: 10.1016/j.addr.2013.07.011
- Markowska K, Grudniak AM, Wolska KI. Silver nanoparticles as an alternative strategy against bacterial biofilms. Acta Biochim Pol. 2013;60(4):523-530.
- Percival SL, Bowler PG, Russell D. Bacterial resistance to silver in wound care. J Hosp Infect. 2005;60(1):1-7. doi: 10.1016/j.jhin.2004.11.014
- Donlan RM. Biofilms: Microbial Life on Surfaces. Emerg Infect Dis. 2002;8(9):881-890. doi: 10.3201/eid0809.020063
- Flemming HC, Wingender J. The biofilm matrix. Nat Rev Microbiol. 2010;8(9):623-633. doi: 10.1038/nrmicro2415
- Gjermansen M, Ragas P, Sternberg C, Molin S, Tolker-Nielsen T. Characterization of starvation-induced dispersion in Pseudomonas putida biofilms. Environ Microbiol. 2005;7(6):894-904. doi: 10.1111/j.1462-2920.2005.00775.x
- Reid DW, Withers NJ, Francis L, Wilson JW, Kotsimbos TC. Iron Deficiency in Cystic Fibrosis. Chest. 2002;121(1):48-54. doi: 10.1378/chest.121.1.48
- Di Martino P, Fursy R, Bret L, Sundararaju B, Phillips RS. Indole can act as an extracellular signal to regulate biofilm formation of Escherichia coli and other indole-producing bacteria. Can J Microbiol. 2003;49(7):443-449. doi: 10.1139/w03-056
- Patel CN, Wortham BW, Lines JL, Fetherston JD, Perry RD, Oliveira MA. Polyamines Are Essential for the Formation of Plague Biofilm. J Bacteriol. 2006;188(7):2355-2363. doi: 10.1128/JB.188.7.2355-2363.2006
- Karatan E, Watnick P. Signals, Regulatory Networks, and Materials That Build and Break Bacterial Biofilms. Microbiol Mol Biol Rev. 2009;73(2):310-347. doi: 10.1128/MMBR.00041-08
- Haussler S, Fuqua C. Biofilms 2012: New Discoveries and Significant Wrinkles in a Dynamic Field. J Bacteriol. 2013;195(13):2947-2958. doi: 10.1128/JB.00239-13
- Webster TJ, Seil I. Antimicrobial applications of nanotechnology: methods and literature. Int J Nanomedicine. 2012:2767-2781. doi: 10.2147/IJN.S24805
- Fabrega J, Renshaw JC, Lead JR. Interactions of Silver Nanoparticles with Pseudomonas putida Biofilms. Environ Sci Technol. 2009;43(23):9004-9009. doi: 10.1021/es901706j
- Kalishwaralal K, BarathManiKanth S, Pandian SRK, Deepak V, Gurunathan S. Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis. Colloids Surfaces B Biointerfaces. 2010;79(2):340-344. doi: 10.1016/j.colsurfb.2010.04.014
- Martinez-Gutierrez F, Boegli L, Agostinho A, et al. Anti-biofilm activity of silver nanoparticles against different microorganisms. Biofouling. 2013;29(6):651-660. doi: 10.1080/08927014.2013.794225
- Islam MS, Larimer C, Ojha A, Nettleship I. Antimycobacterial efficacy of silver nanoparticles as deposited on porous membrane filters. Mater Sci Eng C. 2013;33(8):4575-4581. doi: 10.1016/j.msec.2013.07.013
- Knetsch MLW, Koole LH. New Strategies in the Development of Antimicrobial Coatings: The Example of Increasing Usage of Silver and Silver Nanoparticles. Polymers (Basel). 2011;3(1):340-366. doi: 10.3390/polym3010340
- Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv. 2009;27(1):76-83. doi: 10.1016/j.biotechadv.2008.09.002
- Chen M, Yu Q, Sun H. Novel Strategies for the Prevention and Treatment of Biofilm Related Infections. Int J Mol Sci. 2013;14(9):18488-18501. doi: 10.3390/ijms140918488
- Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal Transduct Target Ther. 2017;2(1):17023. doi: 10.1038/sigtrans.2017.23
- Gonzalez-Carter DA, Leo BF, Ruenraroengsak P, et al. Silver nanoparticles reduce brain inflammation and related neurotoxicity through induction of H2S-synthesizing enzymes. Sci Rep. 2017;7(1):42871. doi: 10.1038/srep42871
- Adhya A, Bain J, Dutta G, et al. Healing of burn wounds by topical treatment: A randomized controlled comparison between silver sulfadiazine and nano-crystalline silver. J Basic Clin Pharm. 2015;6(1):29. doi: 10.4103/0976-0105.145776
- Boonkaew B, Suwanpreuksa P, Cuttle L, Barber PM, Supaphol P. Hydrogels containing silver nanoparticles for burn wounds show antimicrobial activity without cytotoxicity. J Appl Polym Sci. 2014;131(9). doi: 10.1002/app.40215
- Marcato PD, De Paula LB, Melo PS, et al. In Vivo Evaluation of Complex Biogenic Silver Nanoparticle and Enoxaparin in Wound Healing. J Nanomater. 2015;2015:1-10. doi: 10.1155/2015/439820
- Hebeish A, El-Rafie MH, EL-Sheikh MA, Seleem AA, El-Naggar ME. Antimicrobial wound dressing and anti-inflammatory efficacy of silver nanoparticles. Int J Biol Macromol. 2014;65:509-515. doi: 10.1016/j.ijbiomac.2014.01.071
- Rigo C, Ferroni L, Tocco I, et al. Active Silver Nanoparticles for Wound Healing. Int J Mol Sci. 2013;14(3):4817-4840. doi: 10.3390/ijms14034817
- Galandáková A, Franková J, Ambrožová N, et al. Effects of silver nanoparticles on human dermal fibroblasts and epidermal keratinocytes. Hum Exp Toxicol. 2016;35(9):946-957. doi: 10.1177/0960327115611969
- Franková J, Pivodová V, Vágnerová H, Juránová J, Ulrichová J. Effects of silver nanoparticles on primary cell cultures of fibroblasts and keratinocytes in a wound-healing model. J Appl Biomater Funct Mater. 2016;14(2):0-0. doi: 10.5301/jabfm.5000268
- Yeasmin S, Datta HK, Chaudhuri S, Malik D, Bandyopadhyay A. In-vitro anti-cancer activity of shape controlled silver nanoparticles (AgNPs) in various organ specific cell lines. J Mol Liq. 2017;242:757-766. doi: 10.1016/j.molliq.2017.06.047
- Wang Z, Chen C, Wang Y, et al. Ångstrom‐Scale Silver Particles as a Promising Agent for Low‐Toxicity Broad‐Spectrum Potent Anticancer Therapy. Adv Funct Mater. 2019;29(23):1808556. doi: 10.1002/adfm.201808556
- Barabadi H, Hosseini O, Damavandi Kamali K, et al. Emerging Theranostic Silver Nanomaterials to Combat Lung Cancer: A Systematic Review. J Clust Sci. 2020;31(1):1-10. doi: 10.1007/s10876-019-01639-z
- Chen B, Zhang Y, Yang Y, et al. Involvement of telomerase activity inhibition and telomere dysfunction in silver nanoparticles anticancer effects. Nanomedicine. 2018;13(16):2067-2082. doi: 10.2217/nnm-2018-0036
- Yang T, Yao Q, Cao F, Liu Q, Liu B, Wang X. Silver nanoparticles inhibit the function of hypoxia-inducible factor-1 and target genes: insight into the cytotoxicity and antiangiogenesis. Int J Nanomedicine. 2016;11:6679-6692. doi: 10.2147/IJN.S109695
- Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013;19(11):1423-1437. doi: 10.1038/nm.3394
- Joyce JA, Pollard JW. Microenvironmental regulation of metastasis. Nat Rev Cancer. 2009;9(4):239-252. doi: 10.1038/nrc2618
- Kim Y, Lin Q, Glazer P, Yun Z. Hypoxic Tumor Microenvironment and Cancer Cell Differentiation. Curr Mol Med. 2009;9(4):425-434. doi: 10.2174/156652409788167113
- Kemp MM, Kumar A, Mousa S, et al. Gold and silver nanoparticles conjugated with heparin derivative possess anti-angiogenesis properties. Nanotechnology. 2009;20(45):455104. doi: 10.1088/0957-4484/20/45/455104
- Eom HJ, Choi J. p38 MAPK Activation, DNA Damage, Cell Cycle Arrest and Apoptosis As Mechanisms of Toxicity of Silver Nanoparticles in Jurkat T Cells. Environ Sci Technol. 2010;44(21):8337-8342. doi: 10.1021/es1020668
- Pei J, Fu B, Jiang L, Sun T. Biosynthesis, characterization, and anticancer effect of plant-mediated silver nanoparticles using Coptis chinensis. Int J Nanomedicine. 2019;14:1969-1978. doi: 10.2147/IJN.S188235
- Hashemi Goradel N, Ghiyami‐Hour F, Jahangiri S, et al. Nanoparticles as new tools for inhibition of cancer angiogenesis. J Cell Physiol. 2018;233(4):2902-2910. doi: 10.1002/jcp.26029
- Zhao Y, Adjei AA. Targeting Angiogenesis in Cancer Therapy: Moving Beyond Vascular Endothelial Growth Factor. Oncologist. 2015;20(6):660-673. doi: 10.1634/theoncologist.2014-0465
- Buttacavoli M, Albanese NN, Di Cara G, et al. Anticancer activity of biogenerated silver nanoparticles: an integrated proteomic investigation. Oncotarget. 2018;9(11):9685-9705. doi: 10.18632/oncotarget.23859
- Fulbright LE, Ellermann M, Arthur JC. The microbiome and the hallmarks of cancer. PLOS Pathog. 2017;13(9):e1006480. doi: 10.1371/journal.ppat.1006480
- Gurunathan S, Lee KJ, Kalishwaralal K, Sheikpranbabu S, Vaidyanathan R, Eom SH. Antiangiogenic properties of silver nanoparticles. Biomaterials. 2009;30(31):6341-6350. doi: 10.1016/j.biomaterials.2009.08.008
- Kalishwaralal K, Banumathi E, Pandian SRK, et al. Silver nanoparticles inhibit VEGF induced cell proliferation and migration in bovine retinal endothelial cells. Colloids Surfaces B Biointerfaces. 2009;73(1):51-57. doi: 10.1016/j.colsurfb.2009.04.025
- Singh, S. P., Bhargava, C. S., Dubey, V., Mishra, A., & Singh Y. Silver nanoparticles: Biomedical applications, toxicity, and safety issues. Int J Res Pharm Pharm. 2017;4(2):1-10.
- Lansdown ABG. Silver in Health Care: Antimicrobial Effects and Safety in Use. In: Biofunctional Textiles and the Skin. 2006;33:17-34. doi: 10.1159/000093928
- Ahamed M, AlSalhi MS, Siddiqui MKJ. Silver nanoparticle applications and human health. Clin Chim Acta. 2010;411(23-24):1841-1848. doi: 10.1016/j.cca.2010.08.016
- Korani M, Rezayat M, Gilani K. Acute and subchronic dermal toxicity of nanosilver in guinea pig. Int J Nanomedicine. 2011:855. doi: 10.2147/IJN.S17065
- Wong KKY, Liu X. Silver nanoparticles—the real “silver bullet” in clinical medicine? Medchemcomm. 2010;1(2):125. doi: 10.1039/c0md00069h
- Tak YK, Pal S, Naoghare PK, Rangasamy S, Song JM. Shape-Dependent Skin Penetration of Silver Nanoparticles: Does It Really Matter? Sci Rep. 2015;5(1):16908. doi: 10.1038/srep16908
- Szmyd R, Goralczyk AG, Skalniak L, et al. Effect of silver nanoparticles on human primary keratinocytes. Biological Chemistry. 2013;394(1):113-123. doi: 10.1515/hsz-2012-0202
- De Jong WH, Van Der Ven LTM, Sleijffers A, et al. Systemic and immunotoxicity of silver nanoparticles in an intravenous 28 days repeated dose toxicity study in rats. Biomaterials. 2013;34(33):8333-8343. doi: 10.1016/j.biomaterials.2013.06.048
- Xue Y, Zhang S, Huang Y, et al. Acute toxic effects and gender-related biokinetics of silver nanoparticles following an intravenous injection in mice. J Appl Toxicol. 2012;32(11):890-899. doi: 10.1002/jat.2742
- Kim WY, Kim J, Park JD, Ryu HY, Yu IJ. Histological Study of Gender Differences in Accumulation of Silver Nanoparticles in Kidneys of Fischer 344 Rats. J Toxicol Environ Heal Part A. 2009;72(21-22):1279-1284. doi: 10.1080/15287390903212287
- Kim YS, Kim JS, Cho HS, et al. Twenty-Eight-Day Oral Toxicity, Genotoxicity, and Gender-Related Tissue Distribution of Silver Nanoparticles in Sprague-Dawley Rats. Inhal Toxicol. 2008;20(6):575-583. doi: 10.1080/08958370701874663
- Kim YS, Song MY, Park JD, et al. Subchronic oral toxicity of silver nanoparticles. Part Fibre Toxicol. 2010;7(1):20. doi: 10.1186/1743-8977-7-20
- Song KS, Sung JH, Ji JH, et al. Recovery from silver-nanoparticle-exposure-induced lung inflammation and lung function changes in Sprague Dawley rats. Nanotoxicology. 2013;7(2):169-180. doi: 10.3109/17435390.2011.648223
- Lee JH, Sung JH, Ryu HR, et al. Tissue distribution of gold and silver after subacute intravenous injection of co-administered gold and silver nanoparticles of similar sizes. Arch Toxicol. 2018;92(4):1393-1405. doi: 10.1007/s00204-018-2173-4
- Lee JH, Kim YS, Song KS, et al. Biopersistence of silver nanoparticles in tissues from Sprague–Dawley rats. Part Fibre Toxicol. 2013;10(1):36. doi: 10.1186/1743-8977-10-36
- Braydich-Stolle L, Hussain S, Schlager JJ, Hofmann MC. In Vitro Cytotoxicity of Nanoparticles in Mammalian Germline Stem Cells. Toxicol Sci. 2005;88(2):412-419. doi: 10.1093/toxsci/kfi256
- Maillard JY, Hartemann P. Silver as an antimicrobial: facts and gaps in knowledge. Crit Rev Microbiol. 2013;39(4):373-383. doi: 10.3109/1040841X.2012.713323
- Sung JH, Ji JH, Park JD, et al. Subchronic Inhalation Toxicity of Silver Nanoparticles. Toxicol Sci. 2009;108(2):452-461. doi: 10.1093/toxsci/kfn246
- Khatoon N, Alam H, Khan A, Raza K, Sardar M. Ampicillin Silver Nanoformulations against Multidrug resistant bacteria. Sci Rep. 2019;9(1):6848. doi: 10.1038/s41598-019-43309-0
- Batul R, Bhave M, Yu A. Investigation of Antimicrobial Effects of Polydopamine-Based Composite Coatings. Molecules. 2023;28(11):4258. doi: 10.3390/molecules28114258
- Deng H, McShan D, Zhang Y, et al. Mechanistic Study of the Synergistic Antibacterial Activity of Combined Silver Nanoparticles and Common Antibiotics. Environ Sci Technol. 2016;50(16):8840-8848. doi: 10.1021/acs.est.6b00998
- Wang YW, Tang H, Wu D, et al. Enhanced bactericidal toxicity of silver nanoparticles by the antibiotic gentamicin. Environ Sci Nano. 2016;3(4):788-798. doi: 10.1039/C6EN00031B
- Li Y, Xiang Q, Zhang Q, Huang Y, Su Z. Overview on the recent study of antimicrobial peptides: Origins, functions, relative mechanisms and application. Peptides. 2012;37(2):207-215. doi: 10.1016/j.peptides.2012.07.001
- Tosi MF. Innate immune responses to infection. J Allergy Clin Immunol. 2005;116(2):241-249. doi: 10.1016/j.jaci.2005.05.036
- Zharkova MS, Golubeva OY, Orlov DS, et al. Silver Nanoparticles Functionalized With Antimicrobial Polypeptides: Benefits and Possible Pitfalls of a Novel Anti-infective Tool. Front Microbiol. 2021;12:750556. doi: 10.3389/fmicb.2021.750556
- Masimen MAA, Harun NA, Maulidiani M, Ismail WIW. Overcoming Methicillin-Resistance Staphylococcus aureus (MRSA) Using Antimicrobial Peptides-Silver Nanoparticles. Antibiotics. 2022;11(7):951. doi: 10.3390/antibiotics11070951
- Jin Y, Yang Y, Duan W, Qu X, Wu J. Synergistic and On-Demand Release of Ag-AMPs Loaded on Porous Silicon Nanocarriers for Antibacteria and Wound Healing. ACS Appl Mater Interfaces. 2021;13(14):16127-16141. doi: 10.1021/acsami.1c02161
- Jin Y, Duan W, Wo F, Wu J. Two-Dimensional Fluorescent Strategy Based on Porous Silicon Quantum Dots for Metal-Ion Detection and Recognition. ACS Appl Nano Mater. 2019;2(10):6110-6115. doi: 10.1021/acsanm.9b01647
- Gao J, Na H, Zhong R, et al. One step synthesis of antimicrobial peptide protected silver nanoparticles: The core-shell mutual enhancement of antibacterial activity. Colloids Surfaces B Biointerfaces. 2020;186:110704. doi: 10.1016/j.colsurfb.2019.110704
- Zhen JB, Kang PW, Zhao MH, Yang KW. Silver Nanoparticle Conjugated Star PCL- b -AMPs Copolymer as Nanocomposite Exhibits Efficient Antibacterial Properties. Bioconjug Chem. 2020;31(1):51-63. doi: 10.1021/acs.bioconjchem.9b00739
- Xu J, Li Y, Wang H, Zhu M, Feng W, Liang G. Enhanced Antibacterial and Anti-Biofilm Activities of Antimicrobial Peptides Modified Silver Nanoparticles. Int J Nanomedicine. 2021; 16:4831-4846. doi: 10.2147/IJN.S315839
- Zheng K, Setyawati MI, Lim TP, Leong DT, Xie J. Antimicrobial Cluster Bombs: Silver Nanoclusters Packed with Daptomycin. ACS Nano. 2016;10(8):7934-7942. doi: 10.1021/acsnano.6b03862
- Ye Z, Sang T, Li K, et al. Hybrid nanocoatings of self-assembled organic-inorganic amphiphiles for prevention of implant infections. Acta Biomater. 2022;140:338-349. doi: 10.1016/j.actbio.2021.12.008
Supplementary files

Note
Growing bacterial resistance to conventional antibiotics is a serious problem of contemporary medicine. Nanoparticles are now widely used in various branches of industry and in medicine. The antibacterial potential of silver nanoparticles is extensive and spreads to Gram-negative and Gram-positive bacteria, including multidrug-resistant strains, and bacteria in biofilms. Silver nanoparticles have multiple targets of antibacterial action therefore the microbial resistance to them is hardly developing. In addition, other types of biological activity have been described for silver: wound-healing, anti-inflammatory, anti-tumor. Such diverse biological properties, as well as potential toxicity of silver nanoparticles, are determined by their size and shape, the method of nanpoparticles synthesis and the type of stabilizing agent. However, despite the undoubted advantages of these nanomaterials, there are still problems with their application in medicine due to some undesirable effects on living objects. This review provides information on methods for modifying silver nanoparticles with antibacterial agents, such as antibiotics, antimicrobial peptides, which demonstrate a synergistic and additive effects against pathogenic bacteria, taken in combinations with nanoparticles as well as increase their antimicrobial activity and ensure stability when used as complexes with these nanomaterials. Thus, composites of silver nanoparticles with organic biocompatible preparations can be considering as a promising base for creating new effective antimicrobial drugs devoid of undesirable properties.