Применение наночастиц серебра в медицине: плюсы и минусы; преимущества композитов наночастиц серебра с органическими антибактериальными субстанциями и биосовместимыми полимерами
- Авторы: Владимирова Е.В.1, Шамова О.В.2
-
Учреждения:
- ФГБНУ "Институт экспериментальной медицины"
- Институт экспериментальной медицины, Санкт-Петербург
- Раздел: Аналитический обзор
- Статья опубликована: 21.01.2025
- URL: https://journals.eco-vector.com/MAJ/article/view/635890
- DOI: https://doi.org/10.17816/MAJ635890
- ID: 635890
Цитировать
Полный текст
Аннотация
Развитие резистентности бактерий к применяемым в клинической практике препаратам является серьезной проблемой современной медицины. Наночастицы в настоящее время широко используются в различных отрослях промышленности, а также в медицине. Антибактериальный потенциал наночастиц серебра обширен и распространяется на грамотрицательные и грамположительные бактерии, включая мультирезистентные штаммы, в том числе в составе бактериальных биопленок. Установлено, что наночастицы серебра имеют множественные мишени антимиробного действия, вследствие чего развитие микробной резистентности к ним затруднено. Кроме того, для серебра описаны другие виды биологической активности: ранозаживляющая, противовоспалительная, противоопухолевая. Однако, несмотря на несомненные достоинства этих наноматериалов, до сих пор остаются и проблемы с их применением в медицине, связанные с некоторыми нежелательным влиянием на живые объекты. Столь разнообразные биологические свойства, а также потенциальная токсичность наночастиц серебра определяются размером и формой наночастиц, способом их синтеза и видом стабилизирующего агента. В данном обзоре приводится информация по спобсобам модификации наночастиц серебра антибактериальными соединениями, такими как антибиотики, антимикробные пептиды, которые демонстрируют синергические и аддитивные воздействия против патогенных бактерий при использовании в комбинации с наночастицами, а при создании комплексов повышают антимикробную активность и обеспечивают стабильность наночастиц. Поэтому композиты наночастиц серебра с органическими антибактериальными препаратами и биосовместимыми полимерами могут рассматриваться как перспективная основа для создания новых эффективных антибактериальных препаратов, лишенных нежелательных свойств.
Полный текст

Об авторах
Елизавета Васильевна Владимирова
ФГБНУ "Институт экспериментальной медицины"
Email: vladymyrovaliza18@mail.ru
ORCID iD: 0000-0002-6576-9844
Ольга Валерьевна Шамова
Институт экспериментальной медицины, Санкт-Петербург
Автор, ответственный за переписку.
Email: oshamova@yandex.ru
ORCID iD: 0000-0002-5168-2801
Доцент, доктор биологических наук, член-корреспондент РАН, заведующий отделом общей патологии и патологической физиологии
РоссияСписок литературы
- 1. Hong L., Luo S.H., Yu C.H., и др. Functional Nanomaterials and Their Potential Applications in Antibacterial Therapy. Pharm Nanotechnol.2019. Vol. 7, N 2. P.129-146. doi: 10.2174/2211738507666190320160802
- 2. Betts J.W., Hornsey M., La Ragione R.M. Novel Antibacterials: Alternatives to Traditional Antibiotics. Advances in microbial physiology. 2018. Vol. 73. P. 123-169. doi: 10.1016/bs.ampbs.2018.06.001
- 3. Bruna T., Maldonado-Bravo F., Jara P., Caro N. Silver nanoparticles and their antibacterial applications. Int J Mol Sci. 2021. Vol. 22, N 13. P. 7202. doi: 10.3390/ijms22137202
- 4. Kowalczyk P., Szymczak M., Maciejewska M., и др. All that glitters is not silver-A new look at microbiological and medical applications of silver nanoparticles. Int J Mol Sci. 2021. Vol. 22, N 2. P. 1-29. doi: 10.3390/ijms22020854
- 5. Deshmukh S.P., Patil S.M., Mullani S.B., Delekar S.D. Silver nanoparticles as an effective disinfectant: A review. Mater Sci Eng C. 2019. Vol. 97. P. 954-965. doi: 10.1016/j.msec.2018.12.102
- 6. Li L., Stoiber M., Wimmer A., и др. To What Extent Can Full-Scale Wastewater Treatment Plant Effluent Influence the Occurrence of Silver-Based Nanoparticles in Surface Waters? Environ Sci Technol. 2016. Vol. 50, N 12. P. 6327-6333. doi: 10.1021/acs.est.6b00694
- 7. Li P., Su M., Wang X., и др. Environmental fate and behavior of silver nanoparticles in natural estuarine systems. J Environ Sci. 2020. Vol. 88. P. 248-259. doi: 10.1016/j.jes.2019.09.013
- 8. Wimmer A., Urstoeger A., Funck N.C., и др. What happens to silver-based nanoparticles if they meet seawater? Water Res. 2020. Vol. 171. P. 115399. doi: 10.1016/j.watres.2019.115399
- 9. Lee J.H., Mun J, Park J.D., Yu I.J.. A health surveillance case study on workers who manufacture silver nanomaterials. Nanotoxicology. 2012. Vol. 6, N 6. P. 667-669. doi: 10.3109/17435390.2011.600840
- 10. Ferdous Z., Nemmar A. Health Impact of Silver Nanoparticles: A Review of the Biodistribution and Toxicity Following Various Routes of Exposure. Int J Mol Sci. 2020. Vol. 21, N 7. P. 2375. doi: 10.3390/ijms21072375
- 11. Tran Q.H., Nguyen V.Q., Le A.T. Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives. Adv Nat Sci Nanosci Nanotechnol. 2013. Vol. 4, N 3. P. 033001. doi: 10.1088/2043-6262/4/3/033001
- 12. Yaqoob A.A., Umar K., Ibrahim M.N.M. Silver nanoparticles: various methods of synthesis, size affecting factors and their potential applications–a review. Appl Nanosci. 2020. Vol. 10, N 5. P.1369-1378. doi: 10.1007/s13204-020-01318-w
- 13. Zhang X.F., Liu Z.G., Shen W., Gurunathan S. Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches. Int J Mol Sci. 2016. Vol. 17, N 9. P. 1534. doi: 10.3390/ijms17091534
- 14. Elsupikhe RF, Shameli K, Ahmad MB, Ibrahim NA, Zainudin N. Green sonochemical synthesis of silver nanoparticles at varying concentrations of κ-carrageenan. Nanoscale Res Lett. 2015;10(1):302. doi: 10.1186/s11671-015-0916-1
- 15. Dung Dang T.M., Tuyet Le T.T., Fribourg-Blanc E., Dang M.C. Influence of surfactant on the preparation of silver nanoparticles by polyol method. Adv Nat Sci Nanosci Nanotechnol. 2012. Vol. 3, N 3, P. 035004. doi: 10.1088/2043-6262/3/3/035004
- 16. Krutyakov Y.A., Kudrinskiy A.A., Olenin A.Y., Lisichkin G.V. Synthesis and properties of silver nanoparticles: advances and prospects. Russ Chem Rev. 2008. Vol. 77, N 3. P. 233-257. doi: 10.1070/RC2008v077n03ABEH003751
- 17. Nam K.T., Lee Y.J., Krauland E.M., Kottmann S.T., Belcher A.M. Peptide-Mediated Reduction of Silver Ions on Engineered Biological Scaffolds. ACS Nano. 2008. Vol. 2, N 7. P. 1480-1486. doi: 10.1021/nn800018n
- 18. Sintubin L., De Windt W., Dick J., и др.. Lactic acid bacteria as reducing and capping agent for the fast and efficient production of silver nanoparticles. Appl Microbiol Biotechnol. 2009. Vol. 84, N 4. P. 741-749. doi: 10.1007/s00253-009-2032-6
- 19. Balaji D.S., Basavaraja S., Deshpande R., Mahesh D.B., Prabhakar B.K., Venkataraman A. Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloids Surfaces B Biointerfaces. 2009. Vol. 68, N 1. P. 88-92. doi: 10.1016/j.colsurfb.2008.09.022
- 20. Chung I.M., Park I., Seung-Hyun K., Thiruvengadam M., Rajakumar G. Plant-Mediated Synthesis of Silver Nanoparticles: Their Characteristic Properties and Therapeutic Applications. Nanoscale Res Lett. 2016. Vol.11, N 1. P. 40. doi: 10.1186/s11671-016-1257-4
- 21. Korshed P., Li L, Liu Z., Mironov A., Wang T. Size-dependent antibacterial activity for laser‐generated silver nanoparticles. J Interdiscip Nanomedicine. 2019;. Vol. 4, N 1. P. 24-33. doi: 10.1002/jin2.54
- 22. Cavassin E.D., de Figueiredo L.F.P., Otoch J.P., и др. Comparison of methods to detect the in vitro activity of silver nanoparticles (AgNP) against multidrug resistant bacteria. J Nanobiotechnology. 2015. Vol. 13, N 1. P. 64. doi: 10.1186/s12951-015-0120-6
- 23. Marambio-Jones .C., Hoek E.M.V. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanoparticle Res. 2010. Vol. 12, N 5. P. 1531-1551. doi: 10.1007/s11051-010-9900-y
- 24. Qing Y., Cheng L., Li R., и др. Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. Int J Nanomedicine. 2018. Vol. 13 P. 3311-3327. doi: 10.2147/IJN.S165125
- 25. Dakal T.C., Kumar A., Majumdar R.S., Yadav V. Mechanistic Basis of Antimicrobial Actions of Silver Nanoparticles. Front Microbiol. 2016. Vol. 7. P. 1831. doi: 10.3389/fmicb.2016.01831
- 26. Swolana D., Wojtyczka R.D. Activity of Silver Nanoparticles against Staphylococcus spp. Int J Mol Sci. 2022. Vol. 23, N 8. P. 4298. doi: 10.3390/ijms23084298
- 27. Klueh U., Wagner V., Kelly S., Johnson A., Bryers J.D. Efficacy of silver-coated fabric to prevent bacterial colonization and subsequent device-based biofilm formation. J Biomed Mater Res. 2000. Vol. 53, N 6. P. 621-631. doi: 10.1002/1097-4636(2000)53:6<621::AID-JBM2>3.0.CO;2-Q
- 28. Yamanaka M., Hara K., Kudo J. Bactericidal Actions of a Silver Ion Solution on Escherichia coli , Studied by Energy-Filtering Transmission Electron Microscopy and Proteomic Analysis. Appl Environ Microbiol. 2005. Vol. 71, N 11. P. 7589-7593. doi: 10.1128/AEM.71.11.7589-7593.2005
- 29. Durán N., Marcato P.D., Conti R. De, Alves O.L., Costa F.T.M, Brocchi M. Potential use of silver nanoparticles on pathogenic bacteria, their toxicity and possible mechanisms of action. J Braz Chem Soc. 2010. Vol. 21, N 6. P. 949-959. doi: 10.1590/S0103-50532010000600002
- 30. Slawson R.M., Lee H., Trevors J.T. Bacterial interactions with silver. Biol Met. 1990. Vol. , N 3-4. P. 151-154. doi: 10.1007/BF01140573
- 31. Panzner M.J., Bilinovich S.M., Parker J.A., и др. Isomorphic deactivation of a Pseudomonas aeruginosa oxidoreductase: The crystal structure of Ag(I) metallated azurin at 1.7Å. J Inorg Biochem. 2013. Vol. 128. P. 11-16. doi: 10.1016/j.jinorgbio.2013.07.011
- 32. Pal S., Tak Y.K., Song J.M. Does the Antibacterial Activity of Silver Nanoparticles Depend on the Shape of the Nanoparticle? A Study of the Gram-Negative Bacterium Escherichia coli. Appl Environ Microbiol. 2007. Vol. 73, N 6. P. 1712-1720. doi: 10.1128/AEM.02218-06
- 33. Tang S., Zheng J. Antibacterial Activity of Silver Nanoparticles: Structural Effects. Adv Healthc Mater. 2018. Vol. 7, N 13. P. 1701503 doi: 10.1002/adhm.201701503
- 34. Wang L., Hu C., Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomedicine. 2017. Vol. 12. P. 1227-1249. doi: 10.2147/IJN.S121956
- 35. Jo D.H. Kim J.H., Lee T.G., Kim J.H. Size, surface charge, and shape determine therapeutic effects of nanoparticles on brain and retinal diseases. Nanomedicine Nanotechnology, Biol Med. 2015. Vol. 11, N 7. P. 1603-1611. doi: 10.1016/j.nano.2015.04.015
- 36. Xu L., Wang Y.Y., Huang J., Chen C.Y., Wang Z.X., Xie H. Silver nanoparticles: Synthesis, medical applications and biosafety. Theranostics. 2020. Vol. 10, N 20. P. 8996-9031. doi: 10.7150/thno.45413
- 37. Sharma V.K., Zboril R. Silver Nanoparticles in Natural Environment: Formation, Fate, and Toxicity. Bioactivity of Engineered Nanoparticles. 2017. P. 239-258. doi: 10.1007/978-981-10-5864-6_10
- 38. Burkowska-But A., Sionkowski G., Walczak M. Influence of stabilizers on the antimicrobial properties of silver nanoparticles introduced into natural water. J Environ Sci. 2014. Vol. 26, N 3. P. 542-549. doi: 10.1016/S1001-0742(13)60451-9
- 39. dos Santos C.A., Jozala A..F, Pessoa Jr A., Seckler M.M. Antimicrobial effectiveness of silver nanoparticles co-stabilized by the bioactive copolymer pluronic F68. J Nanobiotechnology. 2012. Vol. 10, N 1. P. 43. doi: 10.1186/1477-3155-10-43
- 40. Silver S. Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiol Rev. 2003. Vol. 27, N 2-3. P. 341-353. doi: 10.1016/S0168-6445(03)00047-0
- 41. Clement J.L., Jarrett P.S. Antibacterial Silver. Met Based Drugs. 1994. Vol. 1, N 5-6. P. 467-482. doi: 10.1155/MBD.1994.467
- 42. von Rozycki T., Nies D.H. Cupriavidus metallidurans: evolution of a metal-resistant bacterium. Antonie Van Leeuwenhoek. 2009. Vol. 96, N 2. P. 115-139. doi: 10.1007/s10482-008-9284-5
- 43. Nies D.H. The biological chemistry of the transition metal “transportome” of Cupriavidus metallidurans. Metallomics. 2016. Vol. 8, N 5. P. 481-507. doi: 10.1039/C5MT00320B
- 44. Pelgrift R.Y., Friedman A.J. Nanotechnology as a therapeutic tool to combat microbial resistance. Adv Drug Deliv Rev. 2013. Vol. 65, N 13-14. P. 1803-1815. doi: 10.1016/j.addr.2013.07.011
- 45. Markowska K., Grudniak A.M., Wolska K.I. Silver nanoparticles as an alternative strategy against bacterial biofilms. Acta Biochim Pol. 2013. Vol. 60, N 4. P. 523-530.
- 46. Percival S.L., Bowler P.G., Russell D. Bacterial resistance to silver in wound care. J Hosp Infect. 2005. Vol. 60, N 1. P. 1-7. doi: 10.1016/j.jhin.2004.11.014
- 47. Donlan R.M. Biofilms: Microbial Life on Surfaces. Emerg Infect Dis. 2002. Vol. 8, N 9. P. 881-890. doi: 10.3201/eid0809.020063
- 48. Flemming H.C., Wingender J. The biofilm matrix. Nat Rev Microbiol. 2010. Vol. 8, N 9.P. 623-633. doi: 10.1038/nrmicro2415
- 49. Gjermansen M., Ragas P., Sternberg C., Molin S., Tolker-Nielsen T. Characterization of starvation-induced dispersion in Pseudomonas putida biofilms. Environ Microbiol. 2005. Vol. 7, N 6. P. 894-904. doi: 10.1111/j.1462-2920.2005.00775.x
- 50. Reid D.W., Withers N.J., Francis L., Wilson J.W., Kotsimbos T.C. Iron Deficiency in Cystic Fibrosis. Chest. 2002. Vol. 121, N 1. P. 48-54. doi: 10.1378/chest.121.1.48
- 51. Di Martino P., Fursy R., Bret L., Sundararaju B., Phillips R.S. Indole can act as an extracellular signal to regulate biofilm formation of Escherichia coli and other indole-producing bacteria. Can J Microbiol. 2003. Vol. 49, N 7. P. 443-449. doi: 10.1139/w03-056
- 52. Patel C.N., Wortham B.W., Lines J.L., Fetherston J.D., Perry R.D., Oliveira M.A. Polyamines Are Essential for the Formation of Plague Biofilm. J Bacteriol. 2006. Vol. 188, N 7. P. 2355-2363. doi: 10.1128/JB.188.7.2355-2363.2006
- 53. Karatan E., Watnick P. Signals, Regulatory Networks, and Materials That Build and Break Bacterial Biofilms. Microbiol Mol Biol Rev. 2009. Vol. 73, N 2. P. 310-347. doi: 10.1128/MMBR.00041-08
- 54. Haussler S., Fuqua C. Biofilms 2012: New Discoveries and Significant Wrinkles in a Dynamic Field. J Bacteriol. 2013. Vol. 195, N 13. P. 2947-2958. doi: 10.1128/JB.00239-13
- 55. Webster T.J., Seil I. Antimicrobial applications of nanotechnology: methods and literature. Int J Nanomedicine. 2012. P. 2767-2781. doi: 10.2147/IJN.S24805
- 56. Fabrega J., Renshaw J.C., Lead J.R. Interactions of Silver Nanoparticles with Pseudomonas putida Biofilms. Environ Sci Technol. 2009. Vol. 43, N 23. P. 9004-9009. doi: 10.1021/es901706j
- 57. Kalishwaralal K., BarathManiKanth S. Pandian S.R.K., Deepak V., Gurunathan S. Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis. Colloids Surfaces B Biointerfaces. 2010. Vol. 79, N 2. P. 340-344. doi: 10.1016/j.colsurfb.2010.04.014
- 58. Martinez-Gutierrez F., Boegli L., Agostinho A., и др. Anti-biofilm activity of silver nanoparticles against different microorganisms. Biofouling. 2013. Vol. 29, N 6. P. 651-660. doi: 10.1080/08927014.2013.794225
- 59. Islam M.S., Larimer C., Ojha A., Nettleship I. Antimycobacterial efficacy of silver nanoparticles as deposited on porous membrane filters. Mater Sci Eng C. 2013. Vol. 33, N 8. P. 4575-4581. doi: 10.1016/j.msec.2013.07.013
- 60. Knetsch M.L.W., Koole L.H. New Strategies in the Development of Antimicrobial Coatings: The Example of Increasing Usage of Silver and Silver Nanoparticles. Polymers (Basel). 2011. Vol. 3, N 1. P. 340-366. doi: 10.3390/polym3010340
- 61. Rai M., Yadav A., Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv. 2009. Vol. 27, N 1. P. 76-83. doi: 10.1016/j.biotechadv.2008.09.002
- 62. Chen M., Yu Q., Sun H. Novel Strategies for the Prevention and Treatment of Biofilm Related Infections. Int J Mol Sci. 2013. Vol. 14, N 9. P. 18488-18501. doi: 10.3390/ijms140918488
- 63. Liu T., Zhang L., Joo D., Sun S.C. NF-κB signaling in inflammation. Signal Transduct Target Ther. 2017. Vol. 2, N 1. P. 17023. doi: 10.1038/sigtrans.2017.23
- 64. Gonzalez-Carter D.A., Leo B.F., Ruenraroengsak P., и др. Silver nanoparticles reduce brain inflammation and related neurotoxicity through induction of H2S-synthesizing enzymes. Sci Rep. 2017. Vol. 7, N 1. P. 42871. doi: 10.1038/srep42871
- 65. Adhya A., Bain J., Dutta G., и др. Healing of burn wounds by topical treatment: A randomized controlled comparison between silver sulfadiazine and nano-crystalline silver. J Basic Clin Pharm. 2015. Vol. 6, N 1. P. 29. doi: 10.4103/0976-0105.145776
- 66. Boonkaew B., Suwanpreuksa P., Cuttle L., Barber P.M., Supaphol P. Hydrogels containing silver nanoparticles for burn wounds show antimicrobial activity without cytotoxicity. J Appl Polym Sci. 2014. Vol. 131, N 9. doi: 10.1002/app.40215
- 67. Marcato P.D., De Paula L.B., Melo P.S., и др. In Vivo Evaluation of Complex Biogenic Silver Nanoparticle and Enoxaparin in Wound Healing. J Nanomater. 2015. Vol. 2015. P. 1-10. doi: 10.1155/2015/439820
- 68. Hebeish A., El-Rafie M.H., EL-Sheikh M.A., Seleem A.A., El-Naggar M.E. Antimicrobial wound dressing and anti-inflammatory efficacy of silver nanoparticles. Int J Biol Macromol. 2014. Vol. 65. P. 509-515. doi: 10.1016/j.ijbiomac.2014.01.071
- 69. Rigo C., Ferroni L., Tocco I., и др. Active Silver Nanoparticles for Wound Healing. Int J Mol Sci. 2013. Vol. 14, N 3. P. 4817-4840. doi: 10.3390/ijms14034817
- 70. Galandáková A., Franková J., Ambrožová N., и др. Effects of silver nanoparticles on human dermal fibroblasts and epidermal keratinocytes. Hum Exp Toxicol. 2016. Vol. 35, N 9. P. 946-957. doi: 10.1177/0960327115611969
- 71. Franková J., Pivodová V., Vágnerová H., Juránová J., Ulrichová J. Effects of silver nanoparticles on primary cell cultures of fibroblasts and keratinocytes in a wound-healing model. J Appl Biomater Funct Mater. 2016. Vol. 14, N 2. P. 137-142. doi: 10.5301/jabfm.5000268
- 72. Yeasmin S., Datta H.K., Chaudhuri S., Malik D., Bandyopadhyay A. In-vitro anti-cancer activity of shape controlled silver nanoparticles (AgNPs) in various organ specific cell lines. J Mol Liq. 2017. Vol. 242. P. 757-766. doi: 10.1016/j.molliq.2017.06.047
- 73. Wang Z., Chen C., Wang Y., и др. Ångstrom‐Scale Silver Particles as a Promising Agent for Low‐Toxicity Broad‐Spectrum Potent Anticancer Therapy. Adv Funct Mater. 2019. Vol. 29, N 23. P. 1808556. doi: 10.1002/adfm.201808556
- 74. Barabadi H., Hosseini O., Damavandi Kamali K., и др. Emerging Theranostic Silver Nanomaterials to Combat Lung Cancer: A Systematic Review. J Clust Sci. 2020. Vol. 31, N 1. P. 1-10. doi: 10.1007/s10876-019-01639-z
- 75. Chen B., Zhang Y., Yang Y., и др. Involvement of telomerase activity inhibition and telomere dysfunction in silver nanoparticles anticancer effects. Nanomedicine. 2018. Vol. 13, N 16. P. 2067-2082. doi: 10.2217/nnm-2018-0036
- 76. Yang T., Yao Q., Cao F., Liu Q., Liu B., Wang X. Silver nanoparticles inhibit the function of hypoxia-inducible factor-1 and target genes: insight into the cytotoxicity and antiangiogenesis. Int J Nanomedicine. 2016. Vol. 11. P. 6679-6692. doi: 10.2147/IJN.S109695
- 77. Quail D.F., Joyce J.A. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013. Vol. 19, N 11. P. 1423-1437. doi: 10.1038/nm.3394
- 78. Joyce J.A., Pollard J.W. Microenvironmental regulation of metastasis. Nat Rev Cancer. 2009. Vol. 9, N 4. P. 239-252. doi: 10.1038/nrc2618
- 79. Kim Y., Lin Q., Glazer P., Yun Z. Hypoxic Tumor Microenvironment and Cancer Cell Differentiation. Curr Mol Med. 2009. Vol. 9, N 4. P. 425-434. doi: 10.2174/156652409788167113
- 80. Kemp M.M., Kumar A., Mousa S., и др. Gold and silver nanoparticles conjugated with heparin derivative possess anti-angiogenesis properties. Nanotechnology. 2009. Vol. 20, N 45. P. 455104. doi: 10.1088/0957-4484/20/45/455104
- 81. Eom H.J., Choi J. p38 MAPK Activation, DNA Damage, Cell Cycle Arrest and Apoptosis As Mechanisms of Toxicity of Silver Nanoparticles in Jurkat T Cells. Environ Sci Technol. 2010. Vol. 44, N 21. P. 8337-8342. doi: 10.1021/es1020668
- 82. Pei J., Fu B., Jiang L., Sun T. Biosynthesis, characterization, and anticancer effect of plant-mediated silver nanoparticles using Coptis chinensis. Int J Nanomedicine. 2019;Vol. 14. P. 1969-1978. doi: 10.2147/IJN.S188235
- 83. Hashemi Goradel N., Ghiyami‐Hour F., Jahangiri S., и др. Nanoparticles as new tools for inhibition of cancer angiogenesis. J Cell Physiol. 2018. Vol. 233, N 4. P. 2902-2910. doi: 10.1002/jcp.26029
- 84. Zhao Y., Adjei A.A. Targeting Angiogenesis in Cancer Therapy: Moving Beyond Vascular Endothelial Growth Factor. Oncologist. 2015. Vol. 20, N 6. P. 660-673. doi: 10.1634/theoncologist.2014-0465
- 85. Buttacavoli M., Albanese N.N., Di Cara G., и др. Anticancer activity of biogenerated silver nanoparticles: an integrated proteomic investigation. Oncotarget. 2018. Vol. 9, N 11. P. 9685-9705. doi: 10.18632/oncotarget.23859
- 86. Fulbright L.E., Ellermann M., Arthur J.C. The microbiome and the hallmarks of cancer. PLOS Pathog. 2017. Vol. 13, N. 9. P. e1006480. doi: 10.1371/journal.ppat.1006480
- 87. Gurunathan S., Lee K.J., Kalishwaralal K., Sheikpranbabu S. Vaidyanathan R., Eom S.H. Antiangiogenic properties of silver nanoparticles. Biomaterials. 2009. Vol. 30, N 31. P. 6341-6350. doi: 10.1016/j.biomaterials.2009.08.008
- 88. Kalishwaralal K., Banumathi E., Pandian S.R.K., и др. Silver nanoparticles inhibit VEGF induced cell proliferation and migration in bovine retinal endothelial cells. Colloids Surfaces B Biointerfaces. 2009. Vol. 73, N 1. P. 51-57. doi: 10.1016/j.colsurfb.2009.04.025
- 89. Singh, S.P., Bhargava, C.S., Dubey, V., и др. Silver nanoparticles: Biomedical applications, toxicity, and safety issues. Int J Res Pharm Pharm. 2017. Vol. 4, N 2. P. 1-10.
- 90. Lansdown A.B.G. Silver in Health Care: Antimicrobial Effects and Safety in Use. Biofunctional Textiles and the Skin. 2006. Vol. 33. P. 17-34. doi: 10.1159/000093928
- 91. Ahamed M., AlSalhi M.S., Siddiqui M.K.J. Silver nanoparticle applications and human health. Clin Chim Acta. 2010. Vol. 411, N 23-24. P. 1841-1848. doi: 10.1016/j.cca.2010.08.016
- 92. Korani M., Rezayat M., Gilani K. Acute and subchronic dermal toxicity of nanosilver in guinea pig. Int J Nanomedicine. 2011. P. 855. doi: 10.2147/IJN.S17065
- 93. Wong K.K.Y., Liu X. Silver nanoparticles—the real “silver bullet” in clinical medicine? Medchemcomm. 2010. Vol. 1, N 2. P. 125. doi: 10.1039/c0md00069h
- 94. Tak Y.K., Pal S., Naoghare P.K., Rangasamy S., Song J.M. Shape-Dependent Skin Penetration of Silver Nanoparticles: Does It Really Matter? Sci Rep. 2015. Vol. 5, N 1. P. 16908. doi: 10.1038/srep16908
- 95. Szmyd R., Goralczyk A.G., Skalniak L., и др. Effect of silver nanoparticles on human primary keratinocytes. Biological Chemistry. 2013. Vol. 394, N 1. P. 113-123. doi: 10.1515/hsz-2012-0202
- 96. De Jong W.H., Van Der Ven L.T.M., Sleijffers A., и др. Systemic and immunotoxicity of silver nanoparticles in an intravenous 28 days repeated dose toxicity study in rats. Biomaterials. 2013. Vol. 34, N 33. P. 8333-8343. doi: 10.1016/j.biomaterials.2013.06.048
- 97. Xue Y., Zhang S., Huang Y., и др. Acute toxic effects and gender-related biokinetics of silver nanoparticles following an intravenous injection in mice. J Appl Toxicol. 2012. Vol. 32, N 11. P. 890-899. doi: 10.1002/jat.2742
- 98. Kim W.Y., Kim J., Park J.D., Ryu H.Y., Yu I.J. Histological Study of Gender Differences in Accumulation of Silver Nanoparticles in Kidneys of Fischer 344 Rats. J Toxicol Environ Heal Part A. 2009. Vol. 72, N 21-22. P. 1279-1284. doi: 10.1080/15287390903212287
- 99. Kim Y.S., Kim J.S., Cho H.S., и др. Twenty-Eight-Day Oral Toxicity, Genotoxicity, and Gender-Related Tissue Distribution of Silver Nanoparticles in Sprague-Dawley Rats. Inhal Toxicol. 2008. Vol. 20, N 6. P. 575-583. doi: 10.1080/08958370701874663
- 100. Kim Y.S., Song M.Y., Park J.D., и др. Subchronic oral toxicity of silver nanoparticles. Part Fibre Toxicol. 2010. Vol. 7, N 1. P. 20. doi: 10.1186/1743-8977-7-20
- 101. Song K.S., Sung J.H., Ji J.H., и др. Recovery from silver-nanoparticle-exposure-induced lung inflammation and lung function changes in Sprague Dawley rats. Nanotoxicology. 2013. Vol. 7, N 2. P. 169-180. doi: 10.3109/17435390.2011.648223
- 102. Lee J.H., Sung J.H., Ryu H.R., и др. Tissue distribution of gold and silver after subacute intravenous injection of co-administered gold and silver nanoparticles of similar sizes. Arch Toxicol. 2018. Vol. 92, N 4. P. 1393-1405. doi: 10.1007/s00204-018-2173-4
- 103. Lee J.H., Kim Y.S., Song K.S., и др. Biopersistence of silver nanoparticles in tissues from Sprague–Dawley rats. Part Fibre Toxicol. 2013. Vol. 10, N 1. P. 36. doi: 10.1186/1743-8977-10-36
- 104. Braydich-Stolle L., Hussain S., Schlager J.J., Hofmann M.C.. In Vitro Cytotoxicity of Nanoparticles in Mammalian Germline Stem Cells. Toxicol Sci. 2005. Vol. 88, N 2. P. 412-419. doi: 10.1093/toxsci/kfi256
- 105. Maillard J.Y., Hartemann P. Silver as an antimicrobial: facts and gaps in knowledge. Crit Rev Microbiol. 2013. Vol. 39, N 4. P. 373-383. doi: 10.3109/1040841X.2012.713323
- 106. Sung J.H., Ji J.H., Park J.D., и др. Subchronic Inhalation Toxicity of Silver Nanoparticles. Toxicol Sci. 2009. Vol. 108, N 2. P. 452-461. doi: 10.1093/toxsci/kfn246
- 107. Khatoon N., Alam H., Khan A., Raza K., Sardar M. Ampicillin Silver Nanoformulations against Multidrug resistant bacteria. Sci Rep. 2019. Vol. 1. P. 6848. doi: 10.1038/s41598-019-43309-0
- 108. Batul R., Bhave M., Yu A. Investigation of Antimicrobial Effects of Polydopamine-Based Composite Coatings. Molecules. 2023. Vol. 28, N 11. P. 4258. doi: 10.3390/molecules28114258
- 109. Deng H., McShan D., Zhang Y., и др. Mechanistic Study of the Synergistic Antibacterial Activity of Combined Silver Nanoparticles and Common Antibiotics. Environ Sci Technol. 2016. Vol. 50, N 16. P. 8840-8848. doi: 10.1021/acs.est.6b00998
- 110. Wang Y.W., Tang H., Wu D., и др. Enhanced bactericidal toxicity of silver nanoparticles by the antibiotic gentamicin. Environ Sci Nano. 2016. Vol. 3, N 4. P. 788-798. doi: 10.1039/C6EN00031B
- 111. Li Y., Xiang Q., Zhang Q., Huang Y., Su Z. Overview on the recent study of antimicrobial peptides: Origins, functions, relative mechanisms and application. Peptides. 2012. Vol. 37, N 2. P. 207-215. doi: 10.1016/j.peptides.2012.07.001
- 112. Tosi M.F. Innate immune responses to infection. J Allergy Clin Immunol. 2005. Vol. 116, N 2. P. 241-249. doi: 10.1016/j.jaci.2005.05.036
- 113. Zharkova M.S., Golubeva O.Y., Orlov D.S., и др. Silver Nanoparticles Functionalized With Antimicrobial Polypeptides: Benefits and Possible Pitfalls of a Novel Anti-infective Tool. Front Microbiol. 2021. Vol. 12. P. 750556.doi: 10.3389/fmicb.2021.750556
- 114. Masimen M.A.A., Harun N.A., Maulidiani M., Ismail W.I.W. Overcoming Methicillin-Resistance Staphylococcus aureus (MRSA) Using Antimicrobial Peptides-Silver Nanoparticles. Antibiotics. 2022. Vol. 11, N 7. P. 951. doi: 10.3390/antibiotics11070951
- 115. Jin Y., Yang Y., Duan W., Qu X., Wu J. Synergistic and On-Demand Release of Ag-AMPs Loaded on Porous Silicon Nanocarriers for Antibacteria and Wound Healing. ACS Appl Mater Interfaces. 2021. Vol. 13, N 14. P. 16127-16141. doi: 10.1021/acsami.1c02161
- 116. Jin Y., Duan W., Wo F., Wu J. Two-Dimensional Fluorescent Strategy Based on Porous Silicon Quantum Dots for Metal-Ion Detection and Recognition. ACS Appl Nano Mater. 2019. Vol. 2, N 10. P. 6110-6115. doi: 10.1021/acsanm.9b01647
- 117. Gao J., Na H., Zhong R., и др. One step synthesis of antimicrobial peptide protected silver nanoparticles: The core-shell mutual enhancement of antibacterial activity. Colloids Surfaces B Biointerfaces. 2020. Vol. 186. P. 110704. doi: 10.1016/j.colsurfb.2019.110704
- 118. Zhen J.B., Kang P.W., Zhao M.H., Yang K.W. Silver Nanoparticle Conjugated Star PCL- b -AMPs Copolymer as Nanocomposite Exhibits Efficient Antibacterial Properties. Bioconjug Chem. 2020. Vol. 31, N 1. P. 51-63. doi: 10.1021/acs.bioconjchem.9b00739
- 119. Xu J., Li Y., Wang H., Zhu M., Feng W., Liang G. Enhanced Antibacterial and Anti-Biofilm Activities of Antimicrobial Peptides Modified Silver Nanoparticles. Int J Nanomedicine. 2021;Vol. 16. P. 4831-4846. doi: 10.2147/IJN.S315839
- 120. Zheng K., Setyawati M.I., Lim T.P., Leong D.T., Xie J. Antimicrobial Cluster Bombs: Silver Nanoclusters Packed with Daptomycin. ACS Nano. 2016. Vol. 10, N 8. P. 7934-7942. doi: 10.1021/acsnano.6b03862
- 121. Ye Z., Sang T., Li K., и др. Hybrid nanocoatings of self-assembled organic-inorganic amphiphiles for prevention of implant infections. Acta Biomater. 2022. Vol. 140. P. 338-349. doi: 10.1016/j.actbio.2021.12.008
Дополнительные файлы

Примечание
Growing bacterial resistance to conventional antibiotics is a serious problem of contemporary medicine. Nanoparticles are now widely used in various branches of industry and in medicine. The antibacterial potential of silver nanoparticles is extensive and spreads to Gram-negative and Gram-positive bacteria, including multidrug-resistant strains, and bacteria in biofilms. Silver nanoparticles have multiple targets of antibacterial action therefore the microbial resistance to them is hardly developing. In addition, other types of biological activity have been described for silver: wound-healing, anti-inflammatory, anti-tumor. Such diverse biological properties, as well as potential toxicity of silver nanoparticles, are determined by their size and shape, the method of nanpoparticles synthesis and the type of stabilizing agent. However, despite the undoubted advantages of these nanomaterials, there are still problems with their application in medicine due to some undesirable effects on living objects. This review provides information on methods for modifying silver nanoparticles with antibacterial agents, such as antibiotics, antimicrobial peptides, which demonstrate a synergistic and additive effects against pathogenic bacteria, taken in combinations with nanoparticles as well as increase their antimicrobial activity and ensure stability when used as complexes with these nanomaterials. Thus, composites of silver nanoparticles with organic biocompatible preparations can be considering as a promising base for creating new effective antimicrobial drugs devoid of undesirable properties.