SYNERGIC EFFECT OF EXOGENOUS P53 AND SODIUM BUTYRATE ON TUMOR CELL SURVIVAL



Cite item

Full Text

Abstract

Relevance: The P53 protein is a transcription factor that regulates the expression of genes associated with a variety of cellular functions, including cell cycle arrest, apoptosis, cell proliferation, DNA repair, etc. The status of a “guardian of the genome” and a multifunctional tumor suppressor makes P53 an attractive and promising target for cancer therapy.

Aim: The aim of the study was to analyze the effect of the combined effects of transfection of a plasmid encoding the p53 gene (genetic method), the histone deacetylase inhibitor sodium butyrate (epigenetic regulation) and co-cultivation with exosomes secreted by cells with wild type P53 (modeling of intercellular communication) on the survival of cell lines of various human tumors.

Materials and methods: The study was conducted on four continuous cell lines: wild type P53 is expressed in cells of the HeLa (epithelioid carcinoma of the cervix) and HT-1080 (fibrosarcoma) lines, cells of two other lines K562 (chronic myelogenous leukemia) and Gl-V (primary culture of glioma cells) it is not contained (P53-/-).

Cells were transfected with a P53-GFP plasmid created in our laboratory, encoding the P53 protein carrying green fluorescent protein (GFP) at the N-terminus. Successful transfection was monitored by P53-GFP protein expression using a confocal microscope. The level of P53 protein in cells was determined by immunoblotting. To quantify proliferation and cell cycle parameters under deacetylase inhibition conditions, sodium butyrate (NaBu) was added to the culture medium to a final concentration of 2.5 mM. Analysis was performed using a manual automatic cell counter, flow cytometry technique, or the ability of cells to form colonies. Exosomes were isolated from the accumulated conditioned medium by ultracentrifugation. The concentration of exosomes was determined using a nanoparticle size and concentration analyzer Malvern Panalytical NanoSight LM10.

Results: The result was highly dependent on the P53 status in the cancer cells analyzed using only one of the above approaches. The combination of correction of the epigenetic profile by inhibiting the activity of deacetylases with genetic regulation or with exosomes from cells with wild type P53 demonstrated a significant synergistic effect and increased the efficiency of suppressing tumor cell growth several times compared to the use of monotherapy.

Full Text

Restricted Access

About the authors

Roman Kovalev

National Research Center "Kurchatov Institute" B.P.Konstantinov St Petersburg Nuclear Physics Institute

Email: kovalev_ra@pnpi.nrcki.ru
ORCID iD: 0000-0003-2214-0269
SPIN-code: 1386-2357
Scopus Author ID: 55634543500

Младший научный сотрудник

Russian Federation, Gatchina, Russia, 188300

Elena Semenova

National Research Center "Kurchatov Institute" B.P.Konstantinov St Petersburg Nuclear Physics Institute

Email: semenova_el.spb@mail.ru
ORCID iD: 0000-0003-0852-6595
SPIN-code: 2758-6825
Scopus Author ID: 7102695886

Научный сотрудник

Russian Federation, Gatchina, Russia, 188300

Tatyana Shtam

National Research Center "Kurchatov Institute" B.P.Konstantinov St Petersburg Nuclear Physics Institute

Email: Shtam_ta@pnpi.nrcki.ru
ORCID iD: 0000-0003-0651-4785
SPIN-code: 3738-8187
Scopus Author ID: 6508065266

Старший научный сотрудник

Russian Federation, Gatchina, Russia, 188300

Vladimir Burdakov

National Research Center "Kurchatov Institute" B.P.Konstantinov St Petersburg Nuclear Physics Institute

Email: Burdakov_vs@pnpi.nrcki.ru
ORCID iD: 0000-0001-6025-7367
SPIN-code: 8832-9047
Scopus Author ID: 55347037600

Младший научный сотрудник

Russian Federation, Gatchina, Russia, 188300

Elena Varfolomeeva

National Research Center "Kurchatov Institute" B.P.Konstantinov St Petersburg Nuclear Physics Institute

Author for correspondence.
Email: Varfolomeeva_EY@pnpi.nrcki.ru
ORCID iD: 0000-0003-3287-4709
SPIN-code: 9426-1667
Scopus Author ID: 6701723593

Старший научный сотрудник

Gatchina, Russia, 188300

References

  1. Brown C.J., Lain S., Verma C.S. et al. Awakening guardian angels: Drugging the p53 pathway // Nat. Rev. Cancer. 2009. Vol. 9, No. 12. P. 862–873. doi: 10.1038/nrc2763.
  2. Levine A.J., Oren M. The first 30 years of p53: growing ever more complex // Nat. Rev. Cancer. 2009. Vol. 9, No. 10. P. 749-758. doi: 10.1038/nrc2723.
  3. Goh A.M., Coffill C.R., Lane D.P. The role of mutant p53 in human cancer // J. Pathol. 2011. Vol. 223, No. 2. P. 116-126. doi: 10.1002/PATH.2784.
  4. Vousden K.H., Prives C. Blinded by the light: the growing complexity of p53 // Cell. 2009. Vol. 137 No. 3. P. 413-431. doi: 10.1016/j.cell.2009.04.037.
  5. Li X.L., Zhou J., Chen Z.R. et al. P53 mutations in colorectal cancer - molecular pathogenesis and pharmacological reactivation // World J Gastroenterol. 2015. Vol. 21, No. 1. P. 84-93. doi: 10.3748/wjg. v21.i1.84.
  6. Makarov E.M., Shtam T.A., Kovalev R.A. et al. The rare nonsense mutation in p53 triggers alternative splicing to produce a protein capable of inducing apoptosis // PLOS ONE. 2017. Vol. 12, No. 9, P. e0185126. doi: 10.1371/journal.pone.0185126.
  7. Ventura A., Kirsch D.G., McLaughlin M.E. et al. Restoration of p53 function leads to tumour regression in vivo // Nature. 2007. Vol. 445, No. 7128. P. 661–665. doi: 10.1038/nature05541.
  8. Xue W., Zender L., Miething C. et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas // Nature. 2007. Vol. 445, No. 7128. P. 656–660. doi: 10.1038/nature05529.
  9. Lane D.P., Cheok C.F., Lain S. P53-based cancer therapy // Cold Spring Harb. Perspect. Biol. 2010. Vol. 2, No. 9. P. a001222. doi: 10.1101/cshperspect. a001222.
  10. Turner B.M. Reading signals on the nucleosome with a new nomenclature for modified histones // Nat. Struct. Mol. Biol. 2005. Vol. 12, No. 2. P. 110-112. doi: 10.1038/nsmb0205-110.
  11. Semenova E.V., Filatov M.V. Genetic and epigenetic markers of gliomas // Cell and Tissue Biology. 2013. Vol. 7, No 4. P. 303-313.
  12. Ohashi M., Kanai F., Ueno H. et al. Adenovirus mediated p53 tumour suppressor gene therapy for human gastric cancer cells in vitro and in vivo // Gut. 1999. Vol. 44, No. 3. P. 366-371. doi: 10.1136/gut.44.3.366.
  13. Terui T., Murakami K., Takimoto R. et al. Induction of PIG3 and NOXA through acetylation of p53 at 320 and 373 lysine residues as a mechanism for apoptotic cell death by histone deacetylase inhibitors // Cancer Res. 2003. Vol. 63, No. 24. P. 8948-8954.
  14. Bandyopadhyay D., Mishra A., Medrano E. Overexpression of histone deacetylase 1 confers resistance to sodium butyrate- mediated apoptosis in melanoma cells through a p53-mediated pathway // Cancer Res. 2004. Vol. 64, No. 21. P. 7706-7710. doi: 10.1158/0008-5472.CAN-03-3897.
  15. Marouco D., Garabadgiu A.V., Melino G. et al. Lysine-specific modifications of p53: a matter of life and death? // Oncotarget. 2013. Vol. 4, No. 10. P. 1556-1571. doi: 10.18632/oncotarget.1436.
  16. Xie C., Wu B., Chen B. et al. Histone deacetylase inhibitor sodium butyrate suppresses proliferation and promotes apoptosis in osteosarcoma cells by regulation of the MDM2-p53 signaling // Onco Targets Ther. 2016. Vol. 9. P. 4005-4013. doi: 10.2147/OTT.S105418.
  17. Kovalev R.A., Shtam T.A., Karelov D.V. et al. Histone deacetylase inhibitors cause the TP53-dependent induction of p21/Waf1 in tumor cells carrying mutations in TP53 // Cell Tiss. Biol. 2015. Vol. 9, No. 3. P. 191–197. doi: 10.1134/S1990519X15030086.
  18. Kovalеv R.A., Stam T.A., Ibatulin F.M. et al. Possibilities of epigenetic anti-tumor therapy in in-vitro models // Vopr. Onkol. 2012. Vol. 58, No. 6. P. 800-807.
  19. Sossai P. Butyric acid: what is the future for this old substance? // Swiss Med. Wkly. 2012. Vol. 142: w13596. doi: 10.4414/smw.2012.13596.
  20. Mu D., Gao Z., Guo H. et al. Sodium butyrate induces growth inhibition and apoptosis in human prostate cancer DU145 cells by up-regulation of the expression of annexin A1 // PLoS One. 2013. Vol. 8, No. 9. P. e74922. doi: 10.1371/journal.pone.0074922.
  21. Bukreeva E.I., Aksenov N.D., Bardin A.A. et al. Effect of histone deacetylase inhibitor sodium butyrate (NaB) on transformants E1a+cHa-Ras expressing wild type p53 with suppressed transactivation function // Cell and Tissue Biology. 2009. Vol. 3, No. 5. P. 445-453.
  22. Guo H., Choudhury Y., Yang J. et al. Antiglioma effects of combined use of a baculovirual vector expressing wild-type p53 and sodium butyrate // J. Gene Med. 2011. Vol. 13, No. 1. P. 26-36. doi: 10.1002/jgm.1522.
  23. Minucci S., Pelicci P.G. Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer // Nat. Rev. Cancer. 2006. Vol. 6, No. 1. P. 38-51. doi: 10.1038/nrc1779.
  24. Yoo C.B., Jones P.A. Epigenetic therapy of cancer: past, present and future // Nat Rev Drug Discov. 2006. Vol. 5, No. 1. P. 37-50. doi: 10.1038/nrd1930.
  25. Yu J, Qiu S, Ge Q. et al. A novel SAHA-bendamustine hybrid induces apoptosis of leukemia cells // Oncotarget. 2015. Vol. 6, No. 24. P. 20121-31. doi: 10.18632/oncotarget.4041.
  26. Qiu L., Kelso M.J., Hansen C. et al. Anti-tumour activity in vitro and in vivo of selective differentiating agents containing hydroxamate // Br. J. Cancer. 1999. Vol. 80, No. 8. P. 1252-1258. doi: 10.1038/sj.bjc.6690493.
  27. Lee J.H., Choy M. L., Ngo L. et al. Histone deacetylase inhibitor induces DNA damage, which normal but not transformed cells can repair // Proc. Natl. Acad. Sci. USA. 2010. Vol. 107, No. 33. P. 14639-14644. doi: 10.1073/pnas.1008522107.
  28. Grange C., Tapparo M., Collino F. et al. Microvesicles released from human renal cancer stem cells stimulate angiogenesis and formation of lung premetastatic niche // Cancer Res. 2011. Vol. 71, No. 15. P. 5346-5356. doi: 10.1158/0008-5472.CAN-11-0241.
  29. Kobayashi M., Salomon C., Tapia J. et al. Ovarian cancer cell invasiveness is associated with discordant exosomal sequestration of Let-7 miRNA and miR-200 // J. Transl. Med. 2014. Vol. 12. P. 4. doi: 10.1186/1479-5876-12-4.
  30. Kovalev R.A., Burdakov V.S., Varfolomeeva E.Y. et al. Exosomes infl uence the engraftment of tumor cell lines in athymic mice BALB/c nude // Biosci. Biotech. Res. Comm. 2018. Vol.11, No. 4. P. 535-54. doi: 10.21786/bbrc/11.4/1.
  31. Raimondo F., Morosi L., Chinello C. et al. Advances in membranous vesicle and exosome proteomics improving biological understanding and biomarker discovery // Proteomics. 2011. Vol. 11, No. 4. P. 709-720. doi: 10.1002/pmic.201000422.
  32. Ung T.H., Madsen H.J., Hellwinkel J.E. et al. Exosome proteomics reveals transcriptional regulator proteins with potential to mediate downstream pathways // Cancer science. 2014. Vol. 105, No. 11. P. 1384-1392. doi: 10.1111/cas.12534.
  33. Yu S., Cao H., Shen B. et al. Tumor-derived exosomes in cancer progression and treatment failure // Oncotarget. 2015. Vol. 6, No. 35. P. 37151-37168. doi: 10.18632/oncotarget.6022.
  34. Webber J., Yeung V., Clayton A. Extracellular vesicles as modulators of the cancer microenvironment // Semin. Cell Dev. Biol. 2015. Vol. 40. P. 27-34. doi: 10.1016/j.semcdb.2015.01.013.
  35. Jørgensen M.M., Bæk R., Varming K. Potentials and capabilities of the extracellular vesicle (EV) array // J. Extracell. Vesicles. 2015. Vol. 4. P. 26048. doi: 10.3402/jev.v4.26048.
  36. Fujita Y., Yoshioka Y., Ochiya T. Extracellular vesicle transfer of cancer pathogenic components // Cancer Sci. 2016. Vol. 107, No 4. P. 385-90. doi: 10.1111/cas.12896.
  37. Shtam T.A., Kovalev R.A., Varfolomeeva E.Y. et al. Exosomes are natural carriers of exogenous siRNA to human cells in vitro // Cell Commun. Signal. 2013. Vol. 11. P. 88. doi: 10.1186/1478-811X-11-88.
  38. Burdakov V.S., · Kovalev R.A., · Pantina R.A. et al. Exosomes transfer p53 between cells and can suppress growth and proliferation of p53-negative cells // Cell and Tissue Biology. 2018. Vol. 12. P.20-26. doi: 10.1134/S1990519X18010030.
  39. Urata Y.N., Takeshita F., Tanaka H. et al. Targeted knockdown of the kinetochore protein D40/Knl-1 inhibits human cancer in a p53 status-independent manner // Sci. Rep. 2015. Vol. 5. P. 13676. doi: 10.1038/srep13676.
  40. Neubauer A., He M., Schmidt C.A. et al. Genetic alterations in the p53 gene in the blast crisis of chronic myelogeneous leukemia - analysis by polymerase chain reaction-based techniques // Leukemia. 1993. Vol. 7, No. 4. P. 593-600.
  41. Filatov M.V., Pantina R.A., Noskin L.A. Methods for registration of spontaneous DNA instability in mammalian cells // Mutat. Res. 1998. Vol. 403, No. 1-2. P. 95-101. doi: 10.1016/s0027-5107(98)00056-6.
  42. Belloc F., Dumain P., Boisseau M.R. at al. A flow cytometric method using Hoechst 33342 and propidium iodide for simultaneous cell cycle analysis and apoptosis determination in unfixed cells // Cytometry. 1994. Vol. 17, No. 1. P.59-65. doi: 10.1002/cyto.990170108.
  43. Naryzhny S.N. Blue Dry Western: Simple, economic, informative, and fast way of immunodetection // Anal. Biochem. 2009. Vol. 392, No. 1. P. 90-95. doi: 10.1016/j.ab.2009.05.037.
  44. Kastenhuber E.R., Lowe S.W. Putting p53 in context // Cell. 2017. Vol. 170, No. 6. P. 1062–1078. doi: 10.1016/j.cell.2017.08.028.
  45. Zhang S., Carlsen L., Hernandez Borrero L. et al. Advanced strategies for therapeutic targeting of wild-type and mutant p53 in cancer // Biomolecules. 2022. Vol. 12, No. 4. P. 548. doi: 10.3390/biom12040548.
  46. Tchelebi L., Ashamalla H., Graves P.R. Mutant p53 and the response to chemotherapy and radiation // Subcell Biochem. 2014. Vol. 85. P. 133-59. doi: 10.1007/978-94-017-9211-0_8.
  47. Saldaña-Meyer R., Recillas-Targa F. Transcriptional and epigenetic regulation of the p53 tumor suppressor gene // Epigenetics. 2011. Vol. 6, No. 9. P. 1068-77. doi: 10.4161/epi.6.9.16683.
  48. Hao Q., Lu H., Zhou X. A potential synthetic lethal strategy with PARP inhibitors: Perspective on ‘Inactivation of the tumor suppressor p53 by long noncoding RNA RMRP’ // J. Mol. Cell Biol. 2021. Vol. 13, No. 9. P. 690–692. doi: 10.1093/jmcb/mjab049.
  49. Tazawa H., Kagawa S., Fujiwara T. Advances in adenovirus-mediated p53 cancer gene therapy // Expert Opin. Biol. Ther. 2013. Vol. 13, No. 11. P. 1569-83. doi: 10.1517/14712598.2013.845662.
  50. Pagliaro L.C., Keyhani A., Williams D. et al. Repeated intravesical instillations of an adenoviral vector in patients with locally advanced bladder cancer: a phase I study of p53 gene therapy // J. Clin. Oncol. 2003. Vol. 21, No. 12. P. 2247-53. doi: 10.1200/JCO.2003.09.138.
  51. Gabrilovich D.I. INGN 201 (Advexin): adenoviral p53 gene therapy for cancer // Expert Opin. Biol. Ther. 2006. Vol. 6, No. 8. P. 823-832. doi: 10.1517/14712598.6.8.823.
  52. Valente J.F.A., Queiroz J.A., Sousa F. p53 as the focus of gene therapy: past, present and future // Curr. Drug Targets. 2018. Vol. 19, No. 15. P. 1801-1817. doi: 10.2174/1389450119666180115165447.
  53. Kijima M., Yoshida M., Sugita K. et al. Trapoxin, an antitumor cyclic tetrapeptide, is an irreversible inhibitor of mammalian histone deacetylase // J. Biol. Chem. 1993. Vol. 268, No. 30. P. 22429-35.
  54. Hsi L.C., Xi X., Lotan R. et al. The histone deacetylase inhibitor suberoylanilide hydroxamic acid induces apoptosis via induction of 15-lipoxygenase-1 in colorectal cancer cells // Cancer Res. 2004. Vol. 64, No. 23. P. 8778-81. doi: 10.1158/0008-5472.CAN-04-1867.
  55. Takimoto R., Kato J., Terui T. et al. Augmentation of antitumor effects of p53 gene therapy by combination with HDAC inhibitor // Cancer Biol. Ther. 2005. Vol. 4, No. 4. P. 421-428. doi: 10.4161/cbt.4.4.1620.
  56. Lain S., Hollick J.J., Campbell J. et al. Discovery, in vivo activity, and mechanism of action of a small-molecule p53 activator // Cancer Cell. 2008. Vol. 13, No. 5. P. 454-63. doi: 10.1016/j.ccr.2008.03.004.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 74760 от 29.12.2018 г.