THE CHANGES OF PULMONARY MICROHEMODYNAMICS IN CASE OF EXPERIMENTAL PULMONRY THROMBOEMBOLISM IN RABBITS AFTER PRETREATMENT WITH CYCLOOXYGENASE-2 INHIBITORS



Cite item

Full Text

Abstract

Background In clinical practice, the problem of reducing pulmonary vascular resistance in case of pulmonary embolism in order to improve right ventricular myocardial contractility remains unsolved. Under these conditions, prostaglandin F and thromboxanes A2 and B2 are released by the endothelium, which are factors of pulmonary vascular constriction. Therefore, reducing their synthesis by inhibiting cyclooxygenase type 2 could be a way to influence on constrictor mechanisms.

Aim Study of changes of pulmonary microhemodynamics in modeling pulmonary thromboembolism in rabbits under conditions of using selective cyclooxygenase type 2 inhibitors nimesulide and celecoxib, as well as a water extract of Solanum nigrum (black nightshade) leaves.

Materials and methods The study was performed on perfused isolated lungs of rabbits in situ with stabilization of pulmonary blood flow with measurement of perfusion pressure in the pulmonary artery, determination of capillary hydrostatic resistance and capillary filtration coefficient by volumetry of extracorporeally circulating blood, as well as calculation of pulmonary vascular, pre- and post-capillary resistance.

Results The administration of the cyclooxygenase type 2 inhibitor nimesulide resulted in an increase in pulmonary artery pressure, capillary hydrostatic pressure, pulmonary vascular resistance, and pre- and postcapillary resistance. The treatment of celecoxib, nightshade water extract, and the calcium antagonist diltiazem resulted in a decrease in pulmonary artery pressure, pulmonary vascular and precapillary resistance. Nightshade extract also decreased capillary hydrostatic pressure and postcapillary resistance. During pulmonary artery embolization after pretreatment with indicated above drugs, the increases in pulmonary artery pressure, capillary hydrostatic pressure, and pulmonary vascular resistance, pre- and postcapillary resistance were less than in the control. The changes of the capillary filtration coefficient correlated with the value of the capillary hydrostatic pressure.

Conclusion The dilator effects of celecoxib and black nightshade water extract on pulmonary vessels are due not only to cyclooxygenase-2 inhibition, but also to the blocking effect of these drugs on voltage-dependent Ca2+ channels of smooth muscle cells of the pulmonary vessels. Celecoxib as well as gallic acid, catechin, epicatechin, and quercetin 3-O-glucuronide contained in the black nightshade water extract exhibit properties as L-type Ca2+ channel antagonists. Cyclooxygenase type 2 inhibitors reduce the permeability of the pulmonary vascular endothelium in case of experimental pulmonary thromboembolism. The practical significance of the study consists in the experimental substantiation of the possibility of developing new water-soluble inhibitors of cyclooxygenase type 2 and calcium antagonists based on components of the plant Solanum nigrum (black nightshade).

Full Text

Restricted Access

About the authors

Vadim Evlakhov

Federal State Budgetary Scientific Institution «Institute of Experimental Medicine», St. Petersburg, Russia;
1-st St. Petersburg Pavlov’s State Medical University, St. Petersburg, Russia.

Author for correspondence.
Email: viespbru@mail.ru
ORCID iD: 0000-0002-2521-8140
SPIN-code: 9072-4077

Docent of physiology, Doctor of Med. Sci., Head of the Department of the Physiology of Visceral System

Russian Federation, 197376, Saint-Petersburg, acad. Pavlov Str., 12

Tatiana Pavlovna Berezina

Federal Budgetary State scientific organization Institute of Experimental medicine

Email: retaber@mail.ru
ORCID iD: 0000-0003-0647-2458

кандидат биологических наук, научный сотрудник  лаборатории физиологии висцеральных систем им. К.М. Быкова 

Russian Federation, 197376, St. Petersburg, acad. Pavlov str., 12

Natalia Anatolievna Pasatetskaya

Federal Budgetary State scientific organization Institute of Experimental medicine

Email: npasatetckaia@yandex.ru
ORCID iD: 0000-0001-8979-6460

Candidate of Biological Sciences, Senior Research Fellow of the Laboratory of the Physiology of Visceral Systems named  acad. K.M. Bykov

Russian Federation, 197376, St. Petersburg, acad. Pavlov st., 12

Aleksey Igorevich Lopatin

Federal Budgetary State scientific organization Institute of Experimental medicine

Email: lopatin.alexey@yandex.ru
ORCID iD: 0009-0003-2746-2088

Junior Research Fellow of the Laboratory of the Physiology of Visceral Systems named  acad. K.M. Bykov

Russian Federation, 197376, St. Petersburg, acad. Pavlov St., 12

References

  1. Merit VT, Kirk ME, Schultz JG et al. Changes in Pulmonary Vascular Resistance and Obstruction Score Following Acute Pulmonary Embolism in Pigs. Crit Care Explor. 2024; 6(2):e1040.
  2. doi: 10.1097/CCE.0000000000001040
  3. Arrigo M, Price S, Harjola VP et al. Diagnosis and treatment of right ventricular failure secondary to acutely increased right ventricular afterload (acute cor pulmonale): a clinical consensus statement of the Association for Acute CardioVascular Care of the European Society of Cardiology. Eur Heart J Acute Cardiovasc Care. 2024; 13(3):304-312. doi: 10.1093/ehjacc/zuad157
  4. Smulders EM. Pathophysiology and treatment of haemodynamic instability in acute pulmonary embolism: the pivotal role of pulmonary vasoconstriction. Cardiovasc Res. 2000;48(1):23-33.
  5. doi: 10.1016/s0008-6363(00)00168-1
  6. Burrowes KS, Clark AR, Wilsher ML et al. Hypoxic pulmonary vasoconstriction as a contributor to response in acute pulmonary embolism. Ann Biomed Eng. 2014;42(8):1631-1643.
  7. doi: 10.1007/s10439-014-1011-y
  8. Lyhne MD, Kline JA, Nielsen-Kudsk JE, Andersen A. Pulmonary vasodilation in acute pulmo-nary embolism - a systematic review. Pulm Circ. 2020;10(1):2045894019899775.
  9. doi: 10.1177/2045894019899775
  10. Bautin АЕ, Osovskikh VV. Acute right ventricular failure. Messenger of Anesthesiology and Resuscitation. 2018; 15 (5):74-86. (in Russ.). doi: 10.21292/2078-5658-2018-15-5-74-86
  11. Chuchalin AG. Right ventricular failure. Pulmonology. 2019; 29 (2): 135–147. (in Russ.).
  12. doi: 10.18093/0869-0189-2019-29-2-135-147
  13. Levitt CV, Williams CA, Ahari J, Pourmand A. Approach to Decompensated Right Heart Failure in the Acute Setting. J Clin Med 2024;13(3):869. doi: 10.3390/jcm13030869
  14. Bhat T, Neuman A, Tantary M et al. Inhaled nitric oxide in acute pulmonary embolism: a sys-tematic review. Rev Cardiovas. Med 2015;16(1):1-8. doi: 10.3909/ricm0718
  15. Jones AE, Watts JA, Debelak JP et al. Inhibition of prostaglandin synthesis during polystyrene microsphere-induced pulmonary embolism in the rat. Am J Physiol Lung Cell Mol Physiol. 2003;284(6): L1072-L1081. doi: 10.1152/ajplung.00283.2002
  16. Kylhammar D, Rådegran G. Cyclooxygenase-2 inhibition and thromboxane A(2) receptor an-tagonism attenuate hypoxic pulmonary vasoconstriction in a porcine model. Acta Physiol (Oxf). 2012;205(4):507-519. doi: 10.1111/j.1748-1716.2012.02437.x
  17. Rakotoniaina Z, Guerard P, Lirussi F et al. Celecoxib but not the combination of celecoxib+atorvastatin prevents the development of monocrotaline-induced pulmonary hypertension in the rat. Naunyn Schmiedebergs Arch Pharmacol. 2008;378(3):241-251. doi: 10.1007/s00210-008-0298-3
  18. Peng CH, Cheng JJ, Yu MH et al. Solanum nigrum polyphenols reduce body weight and body fat by affecting adipocyte and lipid metabolism. Food Funct. 2020; 11(1): 483-492.
  19. doi: 10.1039/c9fo02240f
  20. Sohn US, Lee SE, Lee SH et al. The protective mechanism of quercetin-3-O-β-D-glucuronopyranoside (QGC) in H2O2-induced injury of feline esophageal epithelial cells. Arch Pharm Res. 2016;39(9):1324-1334. doi: 10.1007/s12272-016-0808-7
  21. Sharma D, Joshi M, Apparsundaram S et al. Solanum nigrum L. in COVID-19 and post-COVID complications: a propitious candidate. Mol Cell Biochem. 2023; 478 (10): 2221-2240.
  22. doi: 10.1007/s11010-022-04654-3
  23. Evlakhov VI, Berezina TP, Poyassov IZ, Ovsyannikov VI. Pulmonary Microcirculation during Experimental Pulmonary Thromboembolism under Conditions of Activation and Blockade of Mus-carinic Acetylcholine Receptors. Bull Exp Biol Med. 2021;171(2):198-201.
  24. doi: 10.1007/s10517-021-05194-4
  25. Evlakhov VI, Poyassov IZ, Berezina TP. Changes of Pulmonary Microhemodynamics in Exper-imental Pulmonary Thromboembolism after Pretreatment with K-Channel Activators. Bull Exp Biol Med. 2022; 173 (3):302-305. doi: 10.1007/s10517-022-05538-8
  26. Seedher N, Bhatia S. Solubility enhancement of Cox-2 inhibitors using various solvent systems. AAPS PharmSciTech. 2003; 4 (3):36-44. doi: 10.1208/pt040333
  27. Huang TH, Fang PH, Li JM et al. Cyclooxygenase-2 Activity Regulates Recruitment of VEGF-Secreting Ly6C high Monocytes in Ventilator-Induced Lung Injury. Int J Mol Sci. 2019; 20 (7):1771. doi: 10.3390/ijms20071771
  28. Wang Y, Yu D, Yu Y et al. Potential role of sympathetic activity on the pathogenesis of massive pulmonary embolism with circulatory shock in rabbits. Respir Res. 2019; 20 (1):97.
  29. doi: 10.1186/s12931-019-1069-z
  30. Aguirre-Vidal Y, Rodríguez-Ramos C, Mendieta L et al. Synergistic antiallodynic and antihyperalgesic interaction between L-DOPA and celecoxib in parkinsonian rats is mediated by NO-cGMP-ATP-sensitive K(+) channel. Eur J Pharmacol. 2020; 889:173537.
  31. doi: 10.1016/j.ejphar.2020.173537
  32. Khan HA, Alghamdi AA, Prasad NR et al. The Role of Mitochondrial Dysfunction in Cytotoxic Effects of Solanum nigrum Water Extracton MCF-7 and MDA-MB-231 Breast Cancer Cells. Front Biosci. (Landmark Ed). 2023; 28 (8): 180. doi: 10.31083/j.fbl2808180
  33. Dogné JM, Hanson J, de Leval X et al. From the design to the clinical application of thrombox-ane modulators. Curr Pharm Des. 2006;12 (8): 903-923. doi: 10.2174/138161206776055921
  34. Tian W, Jiang X, Sung YK et al. Leukotrienes in pulmonary arterial hypertension. Immunol Res. 2014;58 (2-3):387-393. doi: 10.1007/s12026-014-8492-5
  35. Frolov RV, Singh S. Evidence of more ion channels inhibited by celecoxib: Kv1.3 and L-type Ca (2+) channels. BMC Res Notes. 2015; 8:62. doi: 10.1186/s13104-015-1023-1
  36. Shapiro MS. An ion channel hypothesis to explain divergent cardiovascular safety of cyclooxy-genase-2 inhibitors: the answer to a hotly debated puzzle? Mol Pharmacol. 2009;76(5):942-945. doi: 10.1124/mol.109.059683
  37. Day RW. Differences in the acute pulmonary vascular effects of oxygen with nitric oxide and diltiazem: implications for the long-term treatment of pulmonary arterial hypertension. Congenit Heart Dis. 2013; 8: 71-77. doi: 10.1111/j.1747-0803.2012.00704.x
  38. Merkus D, de Beer VJ, Houweling B, Duncker DJ Control of pulmonary vascular tone during exercise in health and pulmonary hypertension. Pharmacology & Therapeutics. 2008; 119:242–263. doi: 10.1016/j.pharmthera.2008.04.003
  39. Schmidt M, Christiansen CF, Horváth-Puhó E et al. Non-steroidal anti-inflammatory drug use and risk of venous thromboembolism. J Thromb Haemost. 2011;9(7):1326-1333.
  40. doi: 10.1111/j.1538-7836.2011.04354.x
  41. Sohrabipour S, Kharazmi F, Soltani N, Kamalinejad M Biphasic effect of Solanum nigrum fruit aqueous extract on vascular mesenteric beds in non-diabetic and streptozotocin-induced diabetic rats. Pharmacognosy Res. 2014;6 (2):148-152. doi: 10.4103/0974-8490.129036
  42. Schmeck J, Konrad C, Schöffel S et al. Interaction of acetylcholine and endothelin-1 in the modulation of pulmonary arterial pressure. Crit Care Med. 2000; 28(12):3869-3875.
  43. doi: 10.1097/00003246-200012000-00022
  44. Suri S, Taylor MA, Verity A et al. A comparative study of the effects of quercetin and its glucuronide and sulfate metabolites on human neutrophil function in vitro. Biochem Pharmacol. 2008;76(5): 645-653. doi: 10.1016/j.bcp.2008.06.010
  45. Ugan Y, Nazıroğlu M, Şahin M, Aykur MJ. Anti-tumor Necrosis Factor Alpha (Infliximab) At-tenuates Apoptosis, Oxidative Stress, and Calcium Ion Entry Through Modulation of Cati-on Channels in Neutrophils of Patients with Ankylosing Spondylitis. Membr Biol. 2016; 249 (4): 437-447. doi: 10.1007/s00232-016-9884-3
  46. Kim S, Hong KB, Jo K, Suh HJ. Quercetin-3-O-glucuronide in the Ethanol Extract of Lotus Leaf (Nelumbo nucifera) Enhances Sleep Quantity and Quality in a Rodent Model via a GABAergic Mechanism. Molecules. 2021;26(10):3023. doi: 10.3390/molecules26103023
  47. Bojić MG, Todorović L, Santrač A et al. Vasodilatory effects of a variety of positive allosteric modulators of GABA(A) receptors on rat thoracic aorta. Eur J Pharmacol. 2021;899:174023.
  48. doi: 1010.1016/j.ejphar.2021.174023
  49. Earl DE, Tietz EI. Inhibition of recombinant L-type voltage-gated calcium channels by positive allosteric modulators of GABAA receptors. J Pharmacol Exp Ther. 2011;337(1):301-311.
  50. doi: 10.1124/jpet.110.178244
  51. Marinko M, Jankovic G, Nenezic D et al. (-)-Epicatechin-induced relaxation of isolated human saphenous vein: Roles of K(+) and Ca(2+) channels. Phytother Res. 2018;32(2): 267-275.
  52. doi: 10.1002/ptr.5969
  53. de Oliveira LM, de Oliveira TS, da Costa RM et al. The vasorelaxant effect of gallic acid involves endothelium-dependent and -independent mechanisms. Vascul Pharmacol. 2016; 81:69-74. doi: 10.1016/j.vph.2015.10.010
  54. Tessier J, Green C, Padgett D et al. Contributions of histamine, prostanoids, and neurokinins to edema elicited by edema toxin from Bacillus anthracis. Infect Immun. 2007;75(4):1895-1903. doi: 10.1128/IAI.01632-06

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 74760 от 29.12.2018 г.