Impact of physico-chemical properties of non-viral nucleic acid nano- and microcarriers on oral delivery: Current status and Challenges



Cite item

Full Text

Abstract

Oral delivery of nucleic acid (NA) therapeutics offers a promising, non-invasive approach for treating gastrointestinal (GI) diseases such as inflammatory bowel disease (IBD), colorectal cancer (CRC), and infections, as well as systemic conditions like diabetes and hemophilia. However, the gastrointestinal tract (GIT) presents significant barriers, including harsh pH, enzymatic degradation, and mucosal layers, which challenge the stability, bioavailability, and targeting of NAs. This review explores the impact of physico-chemical properties of non-viral nano- and microcarriers on overcoming these barriers for effective oral NA delivery. We discuss various carrier systems, including polymeric, lipid-based, and metal-organic frameworks (MOFs), focusing on their design strategies for site-specific delivery to the stomach, small intestine, and colon. Key advancements, such as mucoadhesive and pH-responsive carriers, are highlighted alongside in vivo studies demonstrating their efficacy in preclinical models. Despite progress, challenges in scalability, regulatory approval, and clinical translation remain. This review underscores the potential of optimized NA delivery systems to transform clinical practice while identifying future directions for research and development.

Full Text

Restricted Access

About the authors

Rime Hafsa Djazouli

Peter the Great St. Petersburg Polytechnic University

Email: dzhazuli.rh@edu.spbstu.ru
ORCID iD: 0009-0004-9861-1631
Russian Federation, Politekhnicheskaya Ulitsa, 29, St Petersburg, 195251

Darya R Akhmetova

Peter the Great St. Petersburg Polytechnic University; ITMO University

Email: akhmetova.lab.dr@gmail.com
ORCID iD: 0009-0003-2808-4795
Russian Federation, Politekhnicheskaya Ulitsa, 29, St Petersburg, 195251;Kronverkskiy Prospekt, 49, St Petersburg, 197101

Anna S Rogova

Peter the Great St. Petersburg Polytechnic University

Email: anna.aroo@mail.ru
ORCID iD: 0000-0001-5116-9007
Russian Federation, Politekhnicheskaya Ulitsa, 29, St Petersburg, 195251

Alexandra V Brodskaia

Peter the Great St.Petersburg Polytechnic University;
Smorodincev Research Institute of Influenza

Author for correspondence.
Email: Alexandra.b_05@mail.ru
ORCID iD: 0000-0001-5130-3755

Доцент ВШБСиТ

Институт Биомедицинских Систем и Биотехнологий

Politekhnicheskaya Ulitsa, 29, St Petersburg, 195251;197022 St. Petersburg st. prof. Popova 15/17

References

  1. Wang F, Zuroske T, Watts JK. RNA therapeutics on the rise. Nat Rev Drug Discov 2020;19. https://doi.org/10.1038/d41573-020-00078-0.
  2. Chen F, Liu Q, Xiong Y, Xu L. Nucleic acid strategies for infectious disease treatments: The nanoparticle-based oral delivery route. Front Pharmacol 2022;13. https://doi.org/10.3389/fphar.2022.984981.
  3. Lo S, Mahmoudi E, Fauzi MB. Applications of drug delivery systems, organic, and inorganic nanomaterials in wound healing. Discover Nano 2023;18. https://doi.org/10.1186/s11671-023-03880-y.
  4. Cheng CJ, Tietjen GT, Saucier-Sawyer JK, Saltzman WM. A holistic approach to targeting disease with polymeric nanoparticles. Nat Rev Drug Discov 2015;14. https://doi.org/10.1038/nrd4503.
  5. Kaczmarek JC, Kowalski PS, Anderson DG. Advances in the delivery of RNA therapeutics: From concept to clinical reality. Genome Med 2017;9. https://doi.org/10.1186/s13073-017-0450-0.
  6. Wilson DS, Dalmasso G, Wang L, Sitaraman S V., Merlin D, Murthy N. Orally delivered thioketal nanoparticles loaded with TNF-α-siRNA target inflammation and inhibit gene expression in the intestines. Nat Mater 2010;9. https://doi.org/10.1038/nmat2859.
  7. Ball RL, Knapp CM, Whitehead KA. Lipidoid nanoparticles for siRNA delivery to the intestinal epithelium: In vitro investigations in a CACO-2 model. PLoS One 2015;10. https://doi.org/10.1371/journal.pone.0133154.
  8. Dawson M, Krauland E, Wirtz D, Hanes J. Transport of polymeric nanoparticle gene carriers in gastric mucus. Biotechnol Prog 2004;20. https://doi.org/10.1021/bp0342553.
  9. Lin PY, Chiu YL, Huang JH, Chuang EY, Mi FL, Lin KJ, et al. Oral Nonviral Gene Delivery for Chronic Protein Replacement Therapy. Advanced Science 2018;5. https://doi.org/10.1002/advs.201701079.
  10. Laroui H, Viennois E, Xiao B, Canup BSB, Geem D, Denning TL, et al. Fab’-bearing siRNA TNFα-loaded nanoparticles targeted to colonic macrophages offer an effective therapy for experimental colitis. Journal of Controlled Release 2014;186. https://doi.org/10.1016/j.jconrel.2014.04.046.
  11. Cui W, Guo Z, Chen X, Yan R, Ma W, Yang X, et al. Targeting modulation of intestinal flora through oral route by an antimicrobial nucleic acid-loaded exosome-like nanovesicles to improve Parkinson’s disease. Sci Bull (Beijing) 2024;69:3925–35. https://doi.org/10.1016/J.SCIB.2024.10.027.
  12. Kriegel C, Amiji M. Oral TNF-α gene silencing using a polymeric microsphere-based delivery system for the treatment of inflammatory bowel disease. Journal of Controlled Release 2011;150. https://doi.org/10.1016/j.jconrel.2010.10.002.
  13. Guo J, O’Mahony AM, Cheng WP, O’Driscoll CM. Amphiphilic polyallylamine based polymeric micelles for siRNA delivery to the gastrointestinal tract: In vitro investigations. Int J Pharm 2013;447. https://doi.org/10.1016/j.ijpharm.2013.02.050.
  14. Suchaoin W, Mahmood A, Netsomboon K, Bernkop-Schnürch A. Zeta-potential-changing nanoparticles conjugated with cell-penetrating peptides for enhanced transfection efficiency. Nanomedicine 2017;12. https://doi.org/10.2217/nnm-2016-0345.
  15. Tong L, Hao H, Zhang Z, Lv Y, Liang X, Liu Q, et al. Milk-derived extracellular vesicles alleviate ulcerative colitis by regulating the gut immunity and reshaping the gut microbiota. Theranostics 2021;11. https://doi.org/10.7150/THNO.62046.
  16. O’Driscoll CM, Bernkop-Schnürch A, Friedl JD, Préat V, Jannin V. Oral delivery of non-viral nucleic acid-based therapeutics - do we have the guts for this? European Journal of Pharmaceutical Sciences 2019;133. https://doi.org/10.1016/j.ejps.2019.03.027.
  17. Laroui H, Geem D, Xiao B, Viennois E, Rakhya P, Denning T, et al. Targeting intestinal inflammation with CD98 siRNA/PEI-loaded nanoparticles. Molecular Therapy 2014;22. https://doi.org/10.1038/mt.2013.214.
  18. Shtykalova S, Deviatkin D, Freund S, Egorova A, Kiselev A. Non-Viral Carriers for Nucleic Acids Delivery: Fundamentals and Current Applications. Life 2023;13. https://doi.org/10.3390/life13040903.
  19. Li R, Rscpharma /, Walia S, Mehta MJ. Recent progress on nanosystems for nucleic acid delivery. RSC Pharmaceutics 2024;1:645–74. https://doi.org/10.1039/D4PM00009A.
  20. Kumari N, Siddhanta K, Panja S, Joshi V, Jogdeo C, Kapoor E, et al. Oral Delivery of Nucleic Acid Therapies for Local and Systemic Action. Pharm Res 2023;40. https://doi.org/10.1007/s11095-022-03415-7.
  21. Ball RL, Bajaj P, Whitehead KA. Oral delivery of siRNA lipid nanoparticles: Fate in the GI tract. Sci Rep 2018;8. https://doi.org/10.1038/s41598-018-20632-6.
  22. Jiang X, Wang N, Liu C, Zhuo Y, Liang L, Gan Y, et al. Oral delivery of nucleic acid therapeutics: Challenges, strategies, and opportunities. Drug Discov Today 2023;28. https://doi.org/10.1016/j.drudis.2023.103507.
  23. Kriegel C, Attarwala H, Amiji M. Multi-compartmental oral delivery systems for nucleic acid therapy in the gastrointestinal tract. Adv Drug Deliv Rev 2013;65. https://doi.org/10.1016/j.addr.2012.11.003.
  24. Johansson MEV, Sjövall H, Hansson GC. The gastrointestinal mucus system in health and disease. Nat Rev Gastroenterol Hepatol 2013;10. https://doi.org/10.1038/nrgastro.2013.35.
  25. Lai SK, Wang YY, Hanes J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv Drug Deliv Rev 2009;61. https://doi.org/10.1016/j.addr.2008.11.002.
  26. Sosnik A, Das Neves J, Sarmento B. Mucoadhesive polymers in the design of nano-drug delivery systems for administration by non-parenteral routes: A review. Prog Polym Sci 2014;39. https://doi.org/10.1016/j.progpolymsci.2014.07.010.
  27. Bai H, Lester GMS, Petishnok LC, Dean DA. Cytoplasmic transport and nuclear import of plasmid DNA. Biosci Rep 2017;37. https://doi.org/10.1042/BSR20160616.
  28. Durymanov M, Reineke J. Non-viral delivery of nucleic acids: Insight into mechanisms of overcoming intracellular barriers. Front Pharmacol 2018;9. https://doi.org/10.3389/fphar.2018.00971.
  29. Zheng B, Liu D, Qin X, Zhang D, Zhang P. Mucoadhesive-to-Mucopenetrating Nanoparticles for Mucosal Drug Delivery: A Mini Review. Int J Nanomedicine 2025;20:2241–52. https://doi.org/10.2147/IJN.S505427.
  30. Ismail EA, Devnarain N, Govender T, Omolo CA. Stimuli-responsive and biomimetic delivery systems for sepsis and related complications. Journal of Controlled Release 2022;352. https://doi.org/10.1016/j.jconrel.2022.11.013.
  31. Oyama D, Matayoshi K, Kanetaka S, Nitta C, Koide H, Minami K, et al. Enhanced oral insulin delivery with charge-reversible lipid nanoparticles. Biochem Biophys Res Commun 2025;750. https://doi.org/10.1016/J.BBRC.2025.151420,.
  32. SR C, MNP L, AE O, DC P. Anatomy, Abdomen and Pelvis: Stomach. StatPearls 2025.
  33. I O, J G, KR S, F T. Physiology, Gastrointestinal. StatPearls 2025.
  34. Hua S. Advances in Oral Drug Delivery for Regional Targeting in the Gastrointestinal Tract - Influence of Physiological, Pathophysiological and Pharmaceutical Factors. Front Pharmacol 2020;11. https://doi.org/10.3389/fphar.2020.00524.
  35. Mudie DM, Amidon GL, Amidon GE. Physiological Parameters for Oral Delivery and In vitro Testing. Mol Pharm 2010;7:1388. https://doi.org/10.1021/MP100149J.
  36. Wang D, Jiang Q, Dong Z, Meng T, Hu F, Wang J, et al. Nanocarriers transport across the gastrointestinal barriers: The contribution to oral bioavailability via blood circulation and lymphatic pathway. Adv Drug Deliv Rev 2023;203. https://doi.org/10.1016/j.addr.2023.115130.
  37. Afrin H, Geetha Bai R, Kumar R, Ahmad SS, Agarwal SK, Nurunnabi M. Oral delivery of RNAi for cancer therapy. Cancer and Metastasis Reviews 2023;42:699–724. https://doi.org/10.1007/S10555-023-10099-X,.
  38. Zhao C, Yang J, Chen M, Chen W, Yang X, Ye H, et al. Synthetic Lignin-Derived Therapeutic Nano Reagent as Intestinal pH-Sensitive Drug Carriers Capable of Bypassing the Gastric Acid Environment for Colitis Treatment. ACS Nano 2023;17. https://doi.org/10.1021/acsnano.2c11188.
  39. Adebisi A, Conway BR. Gastroretentive microparticles for drug delivery applications. J Microencapsul 2011;28. https://doi.org/10.3109/02652048.2011.590613.
  40. Vasir JK, Tambwekar K, Garg S. Bioadhesive microspheres as a controlled drug delivery system. Int J Pharm 2003;255. https://doi.org/10.1016/S0378-5173(03)00087-5.
  41. Xie Y, Zhou NJ, Gong YF, Zhou XJ, Chen J, Hu SJ, et al. Th immune response induced by H pylori vaccine with chitosan as adjuvant and its relation to immune protection. World J Gastroenterol 2007;13. https://doi.org/10.3748/wjg.v13.i10.1547.
  42. Ramteke S, Ganesh N, Bhattacharya S, Jain NK. Amoxicillin, clarithromycin, and omeprazole based targeted nanoparticles for the treatment of H. pylori Targeted nanoparticles for the treatment of H. pylori. J Drug Target 2009;17. https://doi.org/10.1080/10611860902718649.
  43. Chen Y, Sun L, Guo D, Wu Z, Chen W. Co-delivery of hypoxia inducible factor-1α small interfering RNA and 5-fluorouracil to overcome drug resistance in gastric cancer SGC-7901 cells. Journal of Gene Medicine 2017;19. https://doi.org/10.1002/jgm.2998.
  44. Ballarín-González B, Dagnaes-Hansen F, Fenton RA, Gao S, Hein S, Dong M, et al. Protection and systemic translocation of siRNA following oral administration of chitosan/siRNA nanoparticles. Mol Ther Nucleic Acids 2013;2. https://doi.org/10.1038/mtna.2013.2.
  45. Sogias IA, Williams AC, Khutoryanskiy V V. Why is chitosan mucoadhesive? Biomacromolecules 2008;9. https://doi.org/10.1021/bm800276d.
  46. Huo J. Effects of chitosan nanoparticle-mediated BRAF siRNA interference on invasion and metastasis of gastric cancer cells. Artif Cells Nanomed Biotechnol 2016;44. https://doi.org/10.3109/21691401.2015.1019666.
  47. Zheng F, Shi XW, Yang GF, Gong LL, Yuan HY, Cui YJ, et al. Chitosan nanoparticle as gene therapy vector via gastrointestinal mucosa administration: Results of an in vitro and in vivo study. Life Sci 2007;80. https://doi.org/10.1016/j.lfs.2006.09.040.
  48. Lin YH, Chen ZR, Lai CH, Hsieh CH, Feng CL. Active Targeted Nanoparticles for Oral Administration of Gastric Cancer Therapy. Biomacromolecules 2015;16. https://doi.org/10.1021/acs.biomac.5b00907.
  49. Andreani T, de Souza AL uiza R, Kiill CP, Lorenzón EN, Fangueiro JF, Calpena AC ristina, et al. Preparation and characterization of PEG-coated silica nanoparticles for oral insulin delivery. Int J Pharm 2014;473. https://doi.org/10.1016/j.ijpharm.2014.07.049.
  50. Chang CH, Lin YH, Yeh CL, Chen YC, Chiou SF, Hsu YM, et al. Nanoparticles incorporated in pH-sensitive hydrogels as amoxicillin delivery for eradication of Helicobacter pylori. Biomacromolecules 2010;11. https://doi.org/10.1021/bm900985h.
  51. Wang J, Tauchi Y, Deguchi Y, Morimoto K, Tabata Y, Ikada Y. Positively charged gelatin microspheres as gastric mucoadhesive drug delivery system for eradication of H. pylori. Drug Delivery: Journal of Delivery and Targeting of Therapeutic Agents 2000;7. https://doi.org/10.1080/107175400455173.
  52. Ndong Ntoutoume GMA, Grassot V, Brégier F, Chabanais J, Petit JM, Granet R, et al. PEI-cellulose nanocrystal hybrids as efficient siRNA delivery agents—Synthesis, physicochemical characterization and in vitro evaluation. Carbohydr Polym 2017;164. https://doi.org/10.1016/j.carbpol.2017.02.004.
  53. Suwannateep N, Banlunara W, Wanichwecharungruang SP, Chiablaem K, Lirdprapamongkol K, Svasti J. Mucoadhesive curcumin nanospheres: Biological activity, adhesion to stomach mucosa and release of curcumin into the circulation. Journal of Controlled Release 2011;151. https://doi.org/10.1016/j.jconrel.2011.01.011.
  54. JT C, A N, AE O, M B. Anatomy, Abdomen and Pelvis, Small Intestine. StatPearls 2025.
  55. Poudel S, Napit PR, Briski KP, Mattheolabakis G. Oral delivery of nucleic acids with passive and active targeting to the intestinal tissue using polymer-based nanocarriers. Pharmaceutics 2021;13. https://doi.org/10.3390/PHARMACEUTICS13071075.
  56. Bhavsar MD, Amiji MM. Gastrointestinal distribution and in vivo gene transfection studies with nanoparticles-in-microsphere oral system (NiMOS). Journal of Controlled Release 2007;119. https://doi.org/10.1016/j.jconrel.2007.03.006.
  57. Liu C, Kou Y, Zhang X, Cheng H, Chen X, Mao S. Strategies and industrial perspectives to improve oral absorption of biological macromolecules. Expert Opin Drug Deliv 2018;15. https://doi.org/10.1080/17425247.2017.1395853.
  58. Long P, Zhang Q, Xue M, Cao G, Li C, Chen W, et al. Tomato lectin-modified nanoemulsion-encapsulated MAGE1-HSP70/SEA complex protein vaccine: Targeting intestinal M cells following peroral administration. Biomedicine and Pharmacotherapy 2019;115. https://doi.org/10.1016/j.biopha.2019.108886.
  59. Bies C, Lehr CM, Woodley JF. Lectin-mediated drug targeting: History and applications. Adv Drug Deliv Rev 2004;56. https://doi.org/10.1016/j.addr.2003.10.030.
  60. Murthy A, Ravi PR, Kathuria H, Vats R. Self-assembled lecithin-chitosan nanoparticles improve the oral bioavailability and alter the pharmacokinetics of raloxifene. Int J Pharm 2020;588. https://doi.org/10.1016/j.ijpharm.2020.119731.
  61. Bravo-Osuna I, Millotti G, Vauthier C, Ponchel G. In vitro evaluation of calcium binding capacity of chitosan and thiolated chitosan poly(isobutyl cyanoacrylate) core-shell nanoparticles. Int J Pharm 2007;338. https://doi.org/10.1016/j.ijpharm.2007.01.039.
  62. Knipe JM, Strong LE, Peppas NA. Enzyme- and pH-Responsive Microencapsulated Nanogels for Oral Delivery of siRNA to Induce TNF-α Knockdown in the Intestine. Biomacromolecules 2016;17. https://doi.org/10.1021/acs.biomac.5b01518.
  63. Wu MX, Yang YW. Metal–Organic Framework (MOF)-Based Drug/Cargo Delivery and Cancer Therapy. Advanced Materials 2017;29. https://doi.org/10.1002/adma.201606134.
  64. Zhou Y, Liu L, Cao Y, Yu S, He C, Chen X. A Nanocomposite Vehicle Based on Metal-Organic Framework Nanoparticle Incorporated Biodegradable Microspheres for Enhanced Oral Insulin Delivery. ACS Appl Mater Interfaces 2020;12. https://doi.org/10.1021/acsami.0c04303.
  65. Anderson JM, Shive MS. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev 2012;64. https://doi.org/10.1016/j.addr.2012.09.004.
  66. Yu M, Song W, Tian F, Dai Z, Zhu Q, Ahmad E, et al. Temperature- and rigidity-mediated rapid transport of lipid nanovesicles in hydrogels. Proc Natl Acad Sci U S A 2019;116. https://doi.org/10.1073/pnas.1818924116.
  67. Kim W, Lee Y, Jeong S, Nam J, Lee S, Jung Y. Colonic delivery of celecoxib is a potential pharmaceutical strategy for repositioning the selective COX-2 inhibitor as an anti-colitic agent. Arch Pharm Res 2015;38. https://doi.org/10.1007/s12272-015-0602-y.
  68. Jain SK, Tiwari A, Jain A, Verma A, Saraf S, Panda PK, et al. Application potential of polymeric nanoconstructs for colon-specific drug delivery. Multifunctional Nanocarriers for Contemporary Healthcare Applications, 2018. https://doi.org/10.4018/978-1-5225-4781-5.ch002.
  69. Ghosh D, Peng X, Leal J, Mohanty RP. Peptides as drug delivery vehicles across biological barriers. J Pharm Investig 2018;48. https://doi.org/10.1007/s40005-017-0374-0.
  70. Pelaseyed T, Bergström JH, Gustafsson JK, Ermund A, Birchenough GMH, Schütte A, et al. The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system. Immunol Rev 2014;260. https://doi.org/10.1111/imr.12182.
  71. Williams BA, Grant LJ, Gidley MJ, Mikkelsen D. Gut fermentation of dietary fibres: Physico-chemistry of plant cell walls and implications for health. Int J Mol Sci 2017;18. https://doi.org/10.3390/ijms18102203.
  72. Qiao H, Fang D, Chen J, Sun Y, Kang C, Di L, et al. Orally delivered polycurcumin responsive to bacterial reduction for targeted therapy of inflammatory bowel disease. Drug Deliv 2017;24. https://doi.org/10.1080/10717544.2016.1245367.
  73. Zhang M, Merlin D. Nanoparticle-based oral drug delivery systems targeting the colon for treatment of ulcerative colitis. Inflamm Bowel Dis 2018;24. https://doi.org/10.1093/ibd/izy123.
  74. Li M, Liu Y, Weigmann B. Biodegradable Polymeric Nanoparticles Loaded with Flavonoids: A Promising Therapy for Inflammatory Bowel Disease. Int J Mol Sci 2023;24. https://doi.org/10.3390/ijms24054454.
  75. Ibaraki H, Hatakeyama N, Takeda A, Arima N, Kanazawa T. Multifunctional peptide carrier-modified polymer micelle accelerates oral siRNA-delivery to the colon and improves gene silencing-mediated therapeutic effects in ulcerative colitis. J Drug Deliv Sci Technol 2022;73. https://doi.org/10.1016/j.jddst.2022.103481.
  76. Zu M, Ma Y, Cannup B, Xie D, Jung Y, Zhang J, et al. Oral delivery of natural active small molecules by polymeric nanoparticles for the treatment of inflammatory bowel diseases. Adv Drug Deliv Rev 2021;176. https://doi.org/10.1016/j.addr.2021.113887.
  77. Wei W, Lv PP, Chen XM, Yue ZG, Fu Q, Liu SY, et al. Codelivery of mTERT siRNA and paclitaxel by chitosan-based nanoparticles promoted synergistic tumor suppression. Biomaterials 2013;34. https://doi.org/10.1016/j.biomaterials.2013.02.030.
  78. Tahara K, Samura S, Tsuji K, Yamamoto H, Tsukada Y, Bando Y, et al. Oral nuclear factor-κB decoy oligonucleotides delivery system with chitosan modified poly(d,l-lactide-co-glycolide) nanospheres for inflammatory bowel disease. Biomaterials 2011;32. https://doi.org/10.1016/j.biomaterials.2010.09.034.
  79. Wang Y, Mo Y, Sun Y, Li J, An Y, Feng N, et al. Intestinal nanoparticle delivery and cellular response: a review of the bidirectional nanoparticle-cell interplay in mucosa based on physiochemical properties. Journal of Nanobiotechnology 2024 22:1 2024;22:1–23. https://doi.org/10.1186/S12951-024-02930-6.
  80. Ezati P, Khan A, Rhim JW, Kim JT, Molaei R. pH-Responsive strips integrated with resazurin and carbon dots for monitoring shrimp freshness. Colloids Surf B Biointerfaces 2023;221. https://doi.org/10.1016/j.colsurfb.2022.113013.
  81. Huai M, Pei M, Pan J, Zhu Y, Chen Y, Du P, et al. Oral colon-targeted responsive alginate/hyaluronic acid-based hydrogel propels the application of infliximab in colitis. Int J Biol Macromol 2023;249. https://doi.org/10.1016/j.ijbiomac.2023.125952.
  82. Sun Q, Chen J, Zhao Q, He Z, Tang L, Pu Y, et al. Bio-adhesive and ROS-scavenging hydrogel microspheres for targeted ulcerative colitis therapy. Int J Pharm 2023;639. https://doi.org/10.1016/j.ijpharm.2023.122962.
  83. Lei H, Liu Y, Li J, Chen J, Chen L, Liu Y, et al. Colon-targeted dual-coating MOF nanoparticles for the delivery of curcumin with anti-inflammatory properties in the treatment of ulcerative colitis. Colloids Surf B Biointerfaces 2025;250:114545. https://doi.org/10.1016/J.COLSURFB.2025.114545.
  84. He D, Li ZH, Wang M, Kong D, Guo W, Xia X, et al. Metal-organic-framework-based sitagliptin-release platform for multieffective radiation-induced intestinal injury targeting therapy and intestinal flora protective capabilities. Journal of Nanobiotechnology 2024;22:1–12. https://doi.org/10.1186/S12951-024-02854-1/FIGURES/5.
  85. Kulkarni JA, Witzigmann D, Thomson SB, Chen S, Leavitt BR, Cullis PR, et al. The current landscape of nucleic acid therapeutics. Nat Nanotechnol 2021;16. https://doi.org/10.1038/s41565-021-00898-0.
  86. Bhavsar MD, Amiji MM. Oral IL-10 gene delivery in a microsphere-based formulation for local transfection and therapeutic efficacy in inflammatory bowel disease. Gene Ther 2008;15. https://doi.org/10.1038/gt.2008.67.
  87. Kriegel C, Amiji MM. Dual TNF-α/Cyclin D1 gene silencing with an oral polymeric microparticle system as a novel strategy for the treatment of inflammatory bowel disease. Clin Transl Gastroenterol 2011;2. https://doi.org/10.1038/ctg.2011.1.
  88. Laroui H, Theiss AL, Yan Y, Dalmasso G, Nguyen HTT, Sitaraman S V., et al. Functional TNFα gene silencing mediated by polyethyleneimine/TNFα siRNA nanocomplexes in inflamed colon. Biomaterials 2011;32. https://doi.org/10.1016/j.biomaterials.2010.09.062.
  89. Yin L, Song Z, Qu Q, Kim KH, Zheng N, Yao C, et al. Supramolecular self-assembled nanoparticles mediate oral delivery of therapeutic TNF-α siRNA against systemic inflammation. Angewandte Chemie - International Edition 2013;52. https://doi.org/10.1002/anie.201209991.
  90. Zhang M, Wang X, Han MK, Collins JF, Merlin D. Oral administration of ginger-derived nanolipids loaded with siRNA as a novel approach for efficient siRNA drug delivery to treat ulcerative colitis. Nanomedicine 2017;12. https://doi.org/10.2217/nnm-2017-0196.
  91. Mohammadi G, Sotoudehnia Koranni Z, Jebali A. The oral vaccine based on self-replicating RNA lipid nanoparticles can simultaneously neutralize both SARS-CoV-2 variants alpha and delta. Int Immunopharmacol 2021;101. https://doi.org/10.1016/j.intimp.2021.108231.
  92. Xiang Y, Oo NNL, Lee JP, Li Z, Loh XJ. Recent development of synthetic nonviral systems for sustained gene delivery. Drug Discov Today 2017;22. https://doi.org/10.1016/j.drudis.2017.04.001.
  93. Bowman K, Sarkar R, Raut S, Leong KW. Gene transfer to hemophilia A mice via oral delivery of FVIII-chitosan nanoparticles. Journal of Controlled Release 2008;132. https://doi.org/10.1016/j.jconrel.2008.06.019.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 74760 от 29.12.2018 г.