Platelets and other cells interactions in the atherosclerosis development

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Atherosclerosis of the blood vessels is one of the main causes of severe chronic vascular pathologies, which quite often lead to the fatal end. It is well known that the development of atherosclerosis is an inflammatory process going through several stages until the formation of an atherosclerotic plaque. The latter, due to increased instability, would come off and cause thromboembolism. Low density lipoproteins, endothelium, platelets, neutrophils, monocytes / macrophages and smooth muscle cells of the vessel wall are all active participants in the development of atherosclerosis. Thus, they trigger and carry out the process by forming a platelet thrombus on the surface of the ulcerated calcified atherosclerotic plaque. In the recent time interest in the role of platelets in inflammatory processes has grown immensely, first of all due to their ability to interact with cells participating in different stages of atherosclerosis development through adhesion, formation of aggregations, the exchange of exovesicles and microparticles, as well as through the mutually increasing secretion of cytokines, chemokines, growth factors and other chemical mediators. This review is devoted to the role of platelets in the formation and regulation of the multicellular ensemble and also local cell modules specific for each stage of atherosclerosis development.

Full Text

Restricted Access

About the authors

Nina S. Parfenova

Institute of Experimental Medicine

Author for correspondence.
Email: nina.parf@mail.ru
SPIN-code: 9415-0241
Scopus Author ID: 7003709364

MD, Cand. Sci. (Med.), Senior Research Associate

Russian Federation, 12, Academician Pavlov Str., Saint Petersburg, 197376

References

  1. Tabas I, Lichtman AH. Monocyte-macrophages and T cells in atherosclerosis. Immunity. 2017;47(4):621–634. doi: 10.1016/j.immuni.2017.09.008
  2. Parfenova NS. The role of endothelium in atherogenesis: dependence of atherosclerosis development on the properties of vessel endothelium. Medical Academic Journal. 2020;20(1):23–36. (In Russ.). doi: 10.17816/MAJ25755
  3. Fung KYY, Fairn GD, Lee WL. Transcellular vesicular transport in epithelial and endothelial cells: Challenges and opportunities. Traffic. 2018;19(1):5–18. doi: 10.1111/tra.12533
  4. Parton RG, Tillu VA, Collins BM. Caveolae. Curr Biol. 2018;28(8):R402–R405. doi: 10.1016/j.cub.2017. 11.075
  5. Badrnya S, Schrottmaier WC, Kral JB, et al. Platelets mediate oxidized low-density lipoprotein-induced monocyte extravasation and foam cell formation. Arterioscler Thromb Vasc Biol. 2014;34(3):571–580. doi: 10.1161/ATVBAHA.113.302919
  6. Chatterjee M, Gawaz M. Platelets in atherosclerosis. In: Platelets in Thrombotic and Non-Thrombotic Disorders. Springer; 2017. P. 993–1013. doi: 10.1007/978-3-319-47462-5_66
  7. Farmer DGS, Kennedy S. RAGE, vascular tone and vascular disease. Pharmacol Ther. 2009;124(2):185–194. doi: 10.1016/j.pharmthera.2009.06.013
  8. Fuentes E, Rojas A, Palomo I. Role of multiligand/RAGE axis in platelet activation. Thromb Res. 2014;133(3):308–314. doi: 10.1016/j.thromres.2013.11.007
  9. Wang JH, Zhang YW, Zhang P, et al. CD40 ligand as a potential biomarker for atherosclerotic instability. Neurol Res. 2013;35(7):693–700. doi: 10.1179/1743132813Y.0000000190
  10. Pereira-da-Silva T, Napoleão P, Pinheiro T, et al. The Pro-inflammatory Soluble CD40 Ligand is associated with the systemic extent of stable atherosclerosis. Medicina (Kaunas). 2021;57(1):39. doi: 10.3390/medicina57010039
  11. Ashino T, Yamamoto M, Yoshida T, Numazawa S. Redox-sensitive transcription factor Nrf2 regulates vascular smooth muscle cell migration and neointimal hyperplasia. Arterioscler Thromb Vasc Biel. 2013;33(4):760–768. doi: 10.1161/ATVBAHA.112.300614
  12. Sorokin V, Vickneson K, Kofidis T, et al. Role of vascular smooth muscle cell plasticity and interactions in vessel wall inflammation. Front Immunol. 2020;11:599415. doi: 10.3389/fimmu.2020.599415
  13. Grootaert MOJ, Moulis M, Roth L, et al. Vascular smooth muscle cell death, autophagy and senescence in atherosclerosis. Cardiovasc Res. 2018;114(4):622–634. doi: 10.1093/cvr/cvy007
  14. Gistera A, Hansson GK. The immunology of atherosclerosis. Nat Rev Nephrol. 2017;13(6):368–380. doi: 10.1038/nrneph.2017.51
  15. Rossaint J, Margraf A, Zarbock A. Role of platelets in leukocyte recruitment and resolution of inflammation. Rev Front Immunol. 2018;9:2712. doi: 10.3389/fimmu.2018.02712
  16. Lim GB. Pro-inflammatory atherogenic role of platelets. Nat Rev Cardiol. 2020;17(1):6–7. doi: 10.1038/s41569-019-0312-0
  17. Frostegård J, Ulfgren A-K, Nyberg P, et al. Cytokine expression in advanced human atherosclerotic plaques: dominance of pro-inflammatory (Th1) and macrophage-stimulating cytokines. Atherosclerosis. 1999;145(1):33–43. doi: 10.1016/s0021-9150(99)00011-8
  18. Duchen J, von Hundelshausen P. Platelet-derived chemokines in atherosclerosis. Hamostaseologie. 2015;35(2):137–141. doi: 10.5482/HAMO-14-11-0058
  19. Koupenova M, Clancy L, Corkrey HA, Freedman JE. Circulating platelets as mediators of immunity, inflammation, and thrombosis. Circ Res. 2018;122(2):337–351. DOI: 10.1161/ CIRCRESAHA.117.310795
  20. Serebryanaya NB, Shanin SN, Fomicheva EE, Yakutseni PP. Blood platelets as activators and regulators of inflammatory and immune reactions. Part 1. Dasic characteristics of platelets as inflammatory cells. Medical Immunology (Russia). 2018;20(6):785–796. (In Russ.). doi: 10.15789/1563-0625-2018-6-785-796
  21. Machlus KR, Italiano JE Jr. The incredible journey: from megakaryocyte development to platelet formation. J Cell Biol. 2013;201(6):785–796. doi: 10.1083/jcb.201304054
  22. Cunin P, Bouslama R, Machlus KR, et al. Megakaryocyte emperipolesis mediates membrane transfer from intracytoplasmic neutrophils to platelets. Elife. 2019;8:e44031. doi: 10.7554/eLife.44031
  23. Rapkiewicz AV, Mai X, Carsons SE, et al. Megakaryocytes and platelet-fibrin thrombi characterize multi-organ thrombosis at autopsy in COVID-19: A case series. EClinicalMedcine. 2020;24:100434. doi: 10.1016/j.eclinm.2020.100434
  24. Liu Y, Sun W, Guo Y, et al. Association between platelete’s parametrs and mortalitiy in coronavirus disease 2019: Retrospective cohort study. Platelets. 2020;31(4):490–496. doi: 10.1080/09537104.2020.1754383
  25. Xu P, Zhou Q, Xu J. Mechanism of thrombocytopenia in COVID-19 patients. Ann Hematol. 2020;99(6):1205–1208. doi: 10.1007/s00277-020-04019-0
  26. Takahashi A, Tsujino T, Yamaguchi S, et al. Distribution of platelets, transforming growth factor-beta1, platelet-derived growth factor-BB, vascular endothelial growth factor and matrix metalloprotease-9 in advanced platelet-rich fibrin and concentrated growth factor matrices. J Investig Clin Dent. 2019;10(4):e12458. DOI: 101111/jicd.12458
  27. Corbett BF, Luz S, Arner J, et al. Sphingosine-1-phosphate receptor 3 in the medial prefrontal cortex promotes stress resilience by reducing inflammatory processes. Nat Commun. 2019;10(1):3146. doi: 10.1038/s41467-019-10904-8
  28. Awojoodu AO, Ogle ME, Sefcik LS, et al. Sphingosine 1-phosphate receptor 3 regulates recruitment of anti-inflammatory monocytes to microvessels during implant arteriogenesis. Proc Natl Acad Sci USA. 2013;110(34):13785–13790. doi: 10.1073/pnas.1221309110
  29. Duerschmied D, Suidan GL, Demers M, et al. Platelet serotonin promotes the recruitment of neutrophils to sites of acute inflammation in mice. Blood. 2013;121(6):1008–1015. doi: 10.1182/blood-2012-06-437392
  30. Hansen CE, Qiu Y, McCarty OJT, Lam WA. Platelet mechanotransduction. Annu Rev Biomed Eng. 2018;20:253–275. doi: 10.1146/annurev-bioeng-062117-121215
  31. Dehghani T, Panitch A. Endothelial cells, neutrophils and platelets: getting to the bottom of an inflammatory triangle. Open Biol. 2020;10(10):200161. doi: 10.1098/rsob.200161
  32. Kuravi SJ, Harrison P, Rainger GE, Nash GB. Ability of platelet-derived extracellular vesicles to promote neutrophil-endothelial cell interactions. Inflammation. 2019;42(1):290–305. doi: 10.1007/s10753-018-0893-5
  33. Kojok K, El-Kadiry AE, Merhi Y. Role of NF-κB in platelet function. Int J Mol Sci. 2019;20(17):4185. doi: 10.3390/ijms20174185
  34. Gaertner F, Ahmad Z, Rosenberger G, et al. Migrating platelets are mechano-scavengers that collect and bundle bacteria. Cell. 2017;171(6):1368–1382.e23. doi: 10.1016/j.cell.2017.11.001
  35. Gros A, Ollivier V, Ho-Tin-Noe B. Platelets in inflammation: regulation of leukocyte activities and vascular repair. Front Immunol. 2015;5:678. doi: 10.3389/fimmu.2014.00678
  36. Müller JP, Mielke S, Löf A, et al. Force sensing by the vascular protein von Willebrand factor is tuned by a strong intermonomer interaction. Proc Natl Acad Sci USA. 2016;113(5):1208–1213. doi: 10.1073/pnas.1516214113
  37. Nikolai L, Schiefelbein K, Lipsky M, et al. Vascular surveillance by haptotactic blood platelets in inflammation and infection. Nat Commun. 2020;11(1):5778. doi: 10.1038/s41467-020-19515-0
  38. Zuchtriegel G, Uhl B, Puhr-Westerheide D. Platelets guide leukocytes to their sites of extravasation. PLoS Biol. 2016;14(5):e1002459. doi: 10.1371/journal.pbio.1002459
  39. Hillgruber C, Pöppelmann B, Weishaupt C, et al. Blocking neutrophil diapedesis prevents hemorrhage during thrombocytopenia. J Exp Med. 2015;212(8):1255–1266. doi: 10.1084/jem.20142076
  40. Ho-Tin-Noé B, Boulaftali Y, Camerer E. Platelets and vascular integrity: how platelets prevent bleeding in inflammation. Blood. 2018;131(3):277–288. doi: 10.1182/blood-2017-06-742676
  41. Masselli E, Pozzi G, Vaccarezza M, et al. ROS in platelet biology: functional aspects and methodological insights. Int J Mol Sci. 2020;21(14):4866. doi: 10.3390/ijms21144866
  42. Lisman T. Platelet-neutrophil interactions as drivers of inflammatory and thrombotic disease. Cell Tissue Res. 2018;371(3):567–576. doi: 10.1007/s00441-017-2727-4
  43. Warnatsch A, Ioannou M, Wang Q, Papayannopoulos V. Inflammation. Neutrophil extracellular traps license macrophages for cytokine production in atherosclerosis. Science. 2015;349(6245):316–320. doi: 10.1126/science.aaa8064
  44. Barrett TJ, Schlegel M, Zhou F, et al. Platelet regulation of myeloid suppressor of cytokine signaling 3 accelerates atherosclerosis. Sci Transl Med. 2019;11(517):eaax0481. doi: 10.1126/scitranslmed.aax0481
  45. Polasky C, Wendt F, Pries R, Wollenberg B. Platelet induced functional alteration of CD4+ and CD8+ T cells in HNSCC. Int J Mol Sci. 2020;21(20):7507. doi: 10.3390/ijms21207507
  46. Collin J, Gössl M, Matsuo Y, et al. Osteogenic monocytes within the coronary circulation and their association with plaque vulnerability in patients with early atherosclerosis. Int J Cardiol. 2015;181:57–64. doi: 10.1016/j.ijcard.2014.11.156
  47. Cochain C, Vafadarnejad E, Arampatzi P, et al. Single-cell RNA-seq reveals the transcriptional landscape and heterogeneity of aortic macrophages in murine atherosclerosis. Circ Res. 2018;122(12):1661–1674. doi: 10.1161/CIRCRESAHA.117.312509
  48. Kapellos TS, Bonaguro L, Gemünd I, et al. Human monocyte subsets and phenotypes in major chronic inflammatory diseases. Front Immunol. 2019;10:2035. doi: 10.3389/fimmu.2019.02035
  49. Guilliams M, Mildner A, Yona S. Developmental and functional heterogeneity of monocytes. Immunity. 2018;49(4): 595–613. doi: 10.1016/j.immuni.2018.10.005
  50. Loguinova M, Pinegina N, Kogan K, et al. Monocytes of different subsets in complexes with platelets in patients with myocardial infarction. Thromb Haemost. 2018;118(11):1969–1981. doi: 10.1055/s-0038-1673342
  51. Tsuji T, Nagata K, Koike J, et al. Induction of superoxide anion production from monocytes an neutrophils by activated platelets through the P-selectin-sialyl Lewis X interaction. J Leukoc Biol. 1994;56(5):583–587. doi: 10.1002/jlb.56.5.583
  52. Clark SR, Ma AC, Tavener SA, et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med. 2007;13(4):463–469. doi: 10.1038/nm1565
  53. Carestia A, Kaufman T, Rivadeneyra L, et al. Mediators and molecular pathways involved in the regulation of neutrophil extracellular trap formation mediated by activated platelets. J Leukoc Biol. 2016;99(1):153–162. doi: 10.1189/jlb.3A0415-161R
  54. Fuchs TA, Brill A, Duerschmied D, et al. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci USA. 2010;107(36):15880–15885. doi: 10.1073/pnas.1005743107
  55. Bennett MR, Sinha S, Owens GK. Vascular smooth muscle cells in atherosclerosis. Circ Res. 2016;118(4):692–702. doi: 10.1161/CIRCRESAHA.115.306361
  56. Durham AL, Speer MY, Scatena M, et al. Role of smooth muscle cells in vascular calcification: implications in atherosclerosis and arterial stiffness. Cardiovasc Res. 2018;114(4):590–600. doi: 10.1093/cvr/cvy010

Copyright (c) 2021 Parfenova N.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies