EXPERIMENTAL OSTEOARTHRITIS MODELING: FROM SEARCHING OF “GOLD STANDARD” TO PHENOTYPIC PRINCIPLE



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The authors present a review of literature on experimental osteoarthritis (OA) within searching for its universal model. Classification, advantages, disadvantages, methodological inaccuracies of various authorial approaches from the point of view of conformity to human disease were identified based on analysis of the array of literature. Among techniques for OA modeling traumatic techniques were in most common use; among them "local" surgical manipulations, local devascularization, intraarticular injections of chemical-and-mechanical inducers and adjuvants which were followed up by gross changes in joint structures and, probably, severe pain. The influence of age and some genetic characteristics of cartilage structure were studied during experiments on laboratory animals with modified genetic apparatus. The methods of indirect "systemic" influence on joint structures are the most advanced in simulation of non-traumatic OA; however the etiological adequacy of proposed models is debatable. The concept of searching for the "gold standard" of the experimental model of OA formed earlier requires reconsideration because the modern identification of different OA subtypes leads to the development of new approaches on its reproducing in animals with ultimate imitation of a particular phenotype.

Full Text

Restricted Access

About the authors

K V Korochina

FSBEI HE “Orenburg State Medical University” of Ministry of Health of the Russian Federation

T V Chernysheva

FSBEI HE “Orenburg State Medical University” of Ministry of Health of the Russian Federation

I E Korochina

FSBEI HE “Orenburg State Medical University” of Ministry of Health of the Russian Federation

S Yu Shamaev

FSBEI HE “Orenburg State University”

References

  1. Ковалев Г.А., Введенский Б.П., Сандомирский Б.П. Технология моделирования остеоартроза крупных суставов // Биотехнология. 2010. Т. 3, № 4. С. 37-43. [Kovalev G.A., Vvedenskii B.P., Sandomirskii B.P. Technology of modeling of large joints osteoarthritis, Biotechnology. 2010. Vol. 3. Nо 4. рр. 37-40].
  2. Teeple E., Jay G.D., Elsaid K.A., Fleming B.C. Animal models of osteoarthritis: challenges of model selection and analysis // The AAPS journal. 2013. Vol. 15, Iss. 2. P. 438-446.
  3. Григорьева Е.А., Монина Е.В., Скаковский Э.Р. Анализ и выбор экспериментальной модели остеоартроза // Патологiя. 2014. Т. 2, № 31. С. 12-15. [Grygorieva O.A., Monina O.V., Skakovsky E.R. Analysis and selection of experimental models of osteoarthritis, Patology. 2014. Vol. 2, No 3. рр. 12-15].
  4. McCoy A.M. Animal models of osteoarthritis: comparisons and key considerations // Veterinary Pathology. 2015. Vol. 52, Iss. 5. P. 803-818.
  5. Kuyinu E.L., Narayanan G., Nair L.S., Laurencin C.T. Animal models of osteoarthritis: classification, update, and measurement of outcomes // J. Orthop. Surg. Res. 2016. Vol. 11. Р. 19.
  6. Blaker C.L., Clarke E.C., Little C.B. Using mouse models to investigate the pathophysiology, treatment, and prevention of post-traumatic osteoarthritis // J. Orthop. Res. 2017. Vol. 35, Iss. 3. P. 424-439.
  7. Tiraloche G., Girard C., Couinard L., Sampalis J., Moquin L., Ionescu M., Reiner A., Poole A.R., Laverty S. Effect of Oral Glucosamine on Cartilage Degradation in a Rabbit Model of Osteoarthritis // Arthritis Rheumatol. 2005. Vol. 52, Iss. 4. P. 1188-1128.
  8. Новочадов В.В., Крылов П.А., Зайцев В.Г. Неоднородность строения гиалинового хряща коленного сустава у интактных крыс и при экспериментальном остеоартрозе // Вестник Волгоградского государственного университета. 2014. Сер. 11, Естеств. науки. Т. 4, № 10. С. 7-16. [Novochadov V.V., Krylov P.A., Zaitsev V.G. The heterogeneity of hyaline cartilage structure of knee joint in intact rats and experimental osteoarthritis // Bulletin of Volgograd State University. 2014. Ser. 11, Estestv. nauki. Vol. 4, No 10. рр. 7-16].
  9. Boulocher C., Duclos M.E., Arnault F., Roualdes O., Fau D., Hartmann D.J., Roger T., Vignon E., Viguier E. Knee joint ultrasonography of the ACLT rabbit experimental model of osteoarthritis: relevance and effectiveness in detecting meniscal lesions // Osteoarthr. Cartil. 2008. Vol. 16 (4). Р. 470-479.
  10. Roos H., Lauren M., Adalberth T., Roos E.M., Jonsson K., Lohmander L.S. Knee osteoarthritis after meniscectomy: prevalence of radiographic changes after twenty-one years, compared with matched controls // Arthritis Rheum. 1998. Vol. 41 (4). Р. 687-693.
  11. McDermott ID, Amis А.А. The consequences of meniscectomy // J. Bone Joint Surg. Br. 2006. Vol. 88 (12). Р. 1549-1556.
  12. Janusz M.J., Bendele A.M., Brown K.K., Taiwo Y.O., Hsieh L., Heitmeyer S.A. Induction of osteoarthritis in the rat by surgical tear of the meniscus: Inhibition of joint damage by a matrix metalloproteinase inhibitor // Osteoarthr. Cartil. 2002. Vol. 10 (10). Р. 785-791.
  13. Слесаренко Н.А., Широкова Е.О. Репаративный остео- и хондрогенез в условиях индуцированного остеоартроза у лабораторных животных // Российский ветеринарный журнал. Мелкие домашние и дикие животные. 2012. № 1. С. 6-8. [Slesarenko N.A., Shirokova E.O. Reparative osteo- and chondrogenesis in conditions of induced osteoarthritis in laboratory animals, Russian Veterinary Journal. Small domesticated and wild animals. 2012. No 1. рр. 6-8].
  14. Naito K., Watari T., Muta T., Furuhata A., Iwase H., Igarashi M., Kurosawa H., Nagaoka I., Kaneko K. Low-intensity pulsed ultrasound (LIPUS) increases the articular cartilage type II collagen in a rat osteoarthritis model // J. Orthop. Res. 2010. Vol. 28 (3). Р. 361-369.
  15. Ступина Т.А., Петровская Н.В., Степанов М.А. Изучение регенерации хрящевой и костной ткани при моделировании щелевидного костно-хрящевого дефекта пателлярной поверхности мыщелков бедра в эксперименте // Международный журнал прикладных и фундаментальных исследований. 2015. Т. 5, № 1. С. 68-71. [Stupina T.A., Petrovskaya N.V., Stepanov M.A. The study of cartilage and bone tissue regeneration in modeling of slit-like osteochondral defect of patellar surface of femoral condyles in experiment, International Journal of Applied and Fundamental Research. 2015. Vol. 5, Nо 1, рр. 68-71].
  16. Шевцов В.И., Макушин В.Д., Степанов М.А., Ступина Т.А. К вопросу моделирования остеоартроза коленного сустава у собак для изучения патогенеза (экспериментально-морфологическое исследование) // Гений ортопедии. 2012. № 1. С. 38-42. [Shevtsov V.I., Makushin V.D., Stepanov M.A., Stupina T.A. On the question of knee osteoarthritis modeling in dogs for study of pathogenesis (experimental and morphological study). Genius of orthopedics. 2012. N 1. рр. 38-42].
  17. Gray R.G., Gottlleb N.L. Intra-articular corticosteroids. An Updated Assessment // Clin. Orthop. and Rel. Res. 1983. Vol. 177. Р. 235-263.
  18. Котельников Г.П., Ларцев Ю.В., Махова А.Н. Сравнительная оценка структурных изменений тканей сустава при различных моделях экспериментального артроза // Казанский медицинский журнал. 2006. Т. 87, № 1. С. 31-35. [Kotel'nikov G.P., Lartsev Yu.V., Makhova A.N. Comparative evaluation of structural changes in joint tissues in different models of experimental osteoarthritis, Kazan Medical Journal. 2006. Vol. 87, N 1. рр. 31-35].
  19. Guingamp C., Gegout-Pottie P., Philippe L., Terlain B., Netter P., Gillet P. Monoiodoacetate-induced experimental osteoarthritis. A dose-response study of loss of mobility, morphology, and biochemistry // Arthritis Rheum. 1997. Vol. 40, N 9. Р. 1670-1679.
  20. Введенский Б.П., Ковалев Г.А., Дедух Н.В., Гальченко С.Е., Сынчикова О.П., Сандомирский Б.П. Способ низкотемпературного моделирования деструктивно-дистрофического процесса в коленном суставе // Проблемы криобиологии. 2012. № 22 (3). С. 265. [Vvedenskii B.P., Kovalev G.A., Dedukh N.V., Gal'chenko S.Ye., Synchikova O.P., Sandomirskiy B.P. Method of low-temperature modeling of destructive-dystrophic process in knee joint, Problems of cryobiology. 2012. Vol. 22, Nо 3, рр. 265].
  21. Boni M., Lenzi L., Berlanda P. Balduini C., Aureli G., Rizzotti M., Mascarello F. Experimental arthrosis from intraarticular vitamin A injection in the rabbit. Morphological study; considerations on the pathogenesis of human arthrosis in relation to the experimental model // Ital. J. Orthop. Traumatol. 1977. Vol. 3 (1). Р. 5-26.
  22. Григорьева Е.А., Волошин Н.А. Лектингистохимические особенности суставного хряща крыс с моделированным остеоартрозом // Український морфологічний альманах. 2010. № 8 (2). С. 40-43. [Grigor'eva E.A., Voloshin N.A. Lectin-associated histochemical features of articular cartilage in rats with simulated osteoarthritis, Ukrainian morphological almanac. 2010. Vol. 8 (2). рр. 40-43].
  23. Adaes S., Mendonca M., Santos T.N., Castro-Lopes J.M., Ferreira-Gomes J., Neto F.L. Intra-articular injection of collagenase in the knee of rats as an alternative model to study nociception associated with osteoarthritis // Arthritis Res. Ther. 2014. Vol. 16 (1). R10.
  24. Ханиех С.Ф. Моделирование остеоартроза коленного сустава // Ветеринарная медицина. 2013. № 1. С. 21-22. [Khaniekh S.F. Knee osteoarthritis modeling, Veterinary Medicine. 2013. Vol. 1. рр. 21-22].
  25. Christiansen B.A., Guilak F., Lockwood K.A., Olson S.A., Pitsillides A.A., Sandell L.J., Silva M.J., van der Meulen M.C., Haudenschild D.R. Non-invasive mouse models of post-traumatic osteoarthritis // Osteoarthr. Cartil. 2015. Vol. 23, No 10. Р. 1627-1638.
  26. Lockwood K.A., Chu B.T., Anderson M.J., Haudenschild D.R., Christiansen B.A. Comparison of loading rate-dependent injury modes in a murine model of post-traumatic osteoarthritis // J. Orthop. Res. 2014. Vol. 32 (1). Р. 79-88.
  27. Kramer W.C., Hendricks K.J., Wang J. Pathogenetic mechanisms of posttraumatic osteoarthritis: opportunities for early intervention // Int. J. Clin. Exp. Med. 2011. Vol. 4, Nо 4. Р. 285-298.
  28. Furman B.D., Strand J., Hembree W.C., Ward B.D., Guilak F., Olson S.A. Joint degeneration following closed intraarticular fracture in the mouse knee: a model of posttraumatic arthritis // J. Orthop. Res. 2007. Vol. 25(5). Р. 578-592.
  29. Melville K.M., Robling A.G., van der Meulen M.C. In vivo axial loading of the mouse tibia // Methods Mol. Biol. 2015. Vol. 122. Р. 99-115.
  30. Poulet B., Hamilton R.W., Shefelbine S., Pitsillides A.A. Characterizing a novel and adjustable noninvasive murine joint loading model // Arthritis Rheum. 2011. Vol. 63 (1). Р. 137-147.
  31. Миронов С.П., Омельяненко Н.П., Шерепо К.М., Карпов И.Н., Семенова Л.А., Курпяков А.П. Морфология тканевых компонентов тазобедренного сустава у экспериментальных животных при моделировании остеоартроза // Вестник травматологии и ортопедии им. Н.И. Приорова. 2006. № 1. С. 57-63. [Mironov S.P., Omel'yanenko N.P., Sherepo K.M., Karpov I.N., Semenova L.A., Kurpyakov A.P. Morphology of hip joint tissue components in experimental animals in osteoarthritis modeling, Bulletin of traumatology and orthopedics named after N.I. Priorov. 2006. No 1. рр. 57-63].
  32. Dai G., Wang S., Li J., Liu C., Liu Q. The validity of osteoarthritis model induced by bilateral ovariectomy in guinea pig // J. Huazhong Univ. Sci. Technol. 2006. Vol. 26, No 6. Р. 716-719.
  33. Щеглакова Г.Ю., Бабичев Ю.И. Гипотиреоз как одна из причин развития остеоартроза височно-нижнечелюстного сустава // Врач-аспирант. 2011. Т. 4, № 47. С. 652-657. [Shcheglakova G.Yu., Babichev Yu.I. Hypothyroidism as one of reasons for osteoarthritis development in temporomandibular joint, A postgraduate. 2011. Vol. 4, No 47. рр. 652-657].
  34. Зупанец И.А., Зимин С.М. Терапевтическая эффективность оригинального комбинированного хондропротектора на модели системного стероидного артроза у крыс // Актуальні проблеми сучасної медицини: Вісник української медичної стоматологічної академії. 2014. Т. 14 (4). С. 196-201. [Zupanets I.A., Zimin S.M. Therapeutic efficacy of the original combined chondroprotector on model of systemic steroid osteoarthritis in rats // Actual problems of modern medicine: Bulletin of Ukrainian Medical Stomatological Academy. 2014. Vol. 14 (4). рр. 196-201].
  35. Brunner A.M., Henn C.M., Drewniak E.I., Lesieur-Brooks A., Machan J., Crisco J.J., Ehrlich M.G. High dietary fat and the development of osteoarthritis in a rabbit model // Osteoarthr. Cartil. 2012. Vol. 20, No 6. Р. 584-592.
  36. Griffin T.M., Huebner J.L., Kraus V.B., Yan Z., Guilak F. Induction of osteoarthritis and metabolic inflammation by a very high-fat diet in mice: Effects of short-term exercise // Arthritis Rheum. 2012. Vol. 64, No 2. Р. 443-453.
  37. Sekar S., Shafie S.R., Prasadam I., Crawford R., Panchal S.K., Brown L., Xiao Y. Saturated fatty acids induce development of both metabolic syndrome and osteoarthritis in rats // Sci. Rep. 2017. Vol. 7. Р. 46457.
  38. Mooney R.A., Sampson E.R., Lerea J., Rosier R.N., Zuscik M.J. High-fat diet accelerates progression of osteoarthritis after meniscal/ligamentous injury // Arthritis Res. Ther. 2011. Vol. 13 (6). R198.
  39. Griffin T.M., Huebner J.L., Kraus V.B., Guilak F. Extreme obesity due to impaired leptin signaling in mice does not cause knee osteoarthritis // Arthritis Rheum. 2009. Vol. 60 (10). Р. 2935-2944.
  40. Способ экспериментального моделирования деформирующего остеоартроза: пат. 2205458 Рос. Федерация: МПК 7 С 1 G 09 B 23/28 / Тиханов В.И., Бурлаков В.Н., Воронин Н.И., Дудариков С.А.; заявитель Амурская государственная медицинская академия. № 2001128561/14; заявл. 22.10.2001; опубл. 27.05.03. [A method for experimental modeling of deforming osteoarthritis: pat. 2205458 Ros. Federatsiya: MPK 7 S 1 G 09 B 23/28 / Tikhanov V.I., Burlakov V.N., Voronin N.I., Dudarikov S.A.; zayavitel' Amurskaya gosudarstvennaya meditsinskaya akademiya. № 2001128561/14; zayavl. 22.10.2001; opubl. 27.05.03].
  41. Amira G., Goldfarb A.W., Nyska M., Redlich M., Nyska A., Nitzan D.W. 2-Butoxyethanol model of haemolysis and disseminated thrombosis in female rats: a preliminary study of the vascular mechanism of osteoarthritis in the temporomandibular joint // Br. J. Oral. Maxillofac. Surg. 2011. Vol. 49. Р. 21-25.
  42. Новочадов В.В., Гайфуллин Н.М., Фролов Д.М. Ремоделирование суставного хряща в условиях эндогенной интоксикации // Фундаментальные исследования. 2012. № 10. С. 271-275. [Novochadov V.V., Gaifullin N.M., Frolov D.M. Remodeling of articular cartilage in conditions of endogenous intoxication // Fundamental research. 2012. No 10. рр. 271-275].
  43. Korochina K.V., Polyakova V.S., Korochina I.E. Morphology of Synovial Membrane and Articular Cartilage in the Knee Joint in Experimental Chronic Heart Failure // Bull. Exp. Biol. Med. 2016. Vol. 160, No 3. Р. 376-380.
  44. Pritzker K.P., Gay S., Jimenez S.A., Ostergaard K., Pelletier J.P., Revell P.A., Salter D., van den Berg W.B. Osteoarthritis cartilage histopathology: grading and staging // Osteoarthr. Cartil. 2006. Vol. 14, No 1. Р. 13-29.
  45. Способ моделирования остеоартроза: пат. 2587039 С1 RU: МПК G09B 23/28 / Корочина К.В., Полякова В.С., Корочина И.Э.; заявитель и патентообладатель ГБОУ ВПО Оренб. гос. мед. ун-т Минздрава России/ RU. № 2015107821/14; заявл. 05.03.2015; опубл. 10.06.2016, Бюл. № 16. 21 с. [A method of experimental osteoarthritis modeling: pat. 2587039 S1 RU: MPK G09B 23/28 / Korochina K.V., Polyakova V.S., Korochina I.E.; zayavitel' i patentoobladatel' GBOU VPO Orenb. gos. med. un-t Minzdrava Rossii/ RU. № 2015107821/14; zayavl. 05.03.2015; opubl. 10.06.2016, Byul. No 16. 21 s.].
  46. Korochina K., Polyakova V., Korochina I., Chernysheva T. Morphological differences in early experimental osteoarthritis of various origins // Ревматология. 2017. № 15 (1). С. 31-32 [Korochina K., Polyakova V., Korochina I., Chernysheva T. Morphological differences in early experimental osteoarthritis of various origins, Revmatologiya. 2017. No 15 (1). рр. 31-32].
  47. Korochina K.V., Korochina I.E., Polyakova V.S. Creation of optimal experimental conditions for new biological model of early osteoarthritis formation // Abstracts Osteoarthr. Cartil. 2016. Vol. 25. S. 321.
  48. Cui X.G., Wang F., Sun J.M., Jiang Z.S., Wang Y., Yang X.X. Whole mitochondrial genome sequence for an osteoarthritis model of spontaneous mice DBA/1 strain // Mitochondrial DNA A DNA Mapp Seq. Anal. 2016. Vol. 27, No 6. Р. 4142-4143.
  49. Horcajada M.N., Sanchez C., Membrez Scalfo F., Drion P., Comblain F., Taralla S., Donneau A.F., Offord E.A., Henrotin Y. Oleuropein or rutin consumption decreases the spontaneous development of osteoarthritis in the Hartley guinea pig // Osteoarthr. Cartil. 2015. Vol. 23, No 1. Р. 94-102.
  50. Arzi B., Wisner E.R., Huey D.J., Kass P.H., Hu J., Athanasiou K.A. Naturally-occurring osteoarthritis in the domestic rabbit: possible implications for bioengineering research // Lab Anim. 2011. Vol. 41 (1). Р. 20-25.
  51. Moreau M., Pelletier J.P., Lussier B., d'Anjou M.A., Blond L., Pelletier J.M., del Castillo J.R., Troncy E. A posteriori comparison of natural and surgical destabilization models of canine osteoarthritis // Biomed. Res. Int. 2013. Article ID 180453. 12 p.
  52. Mason R.M., Chambers M.G., Flannelly J., Gaffen J.D., Dudhia J., Bayliss M.T. The STR/ort mouse and its use as a model of osteoarthritis // Osteoarthr. Cartil. 2001. Vol. 9 (2). Р. 85-91.
  53. Miller R.E., Lu Y., Tortorella M.D., Malfait A.M. Genetically engineered mouse models reveal the importance of proteases as osteoarthritis drug targets // Curr Rheumatol Rep. 2013. Vol. 15 (8). Р. 350.
  54. Allen K.D., Griffin T.M., Rodriguiz R.M., Wetsel W.C., Kraus V.B., Huebner J.L., Boyd L.M., Setton L.A. Decreased physical function and increased pain sensitivity in mice deficient for type IX collagen // Arthritis Rheum. 2009. Vol. 60(9). Р. 2684-2693.
  55. Sun L., Wang X., Kaplan D.L. A 3D cartilage - Inflammatory cell culture system for the modeling of human osteoarthritis // Biomaterials. 2011. Vol. 32(24). Р. 5581-5589.
  56. Lozito Т.P., Alexander P.G., Lin H., Gottardi R., Cheng A. W-M., Rocky S.T. Three-dimensional osteochondral microtissue to model pathogenesis of osteoarthritis // Stem Cell Res Ther. 2013. Vol. 4 (Suppl. 1). S. 6.
  57. Ежов М.Ю., Берендеев Н.Н., Петров С.В. Математическая модель развития изменений в суставных тканях при различных по интенсивности физических нагрузках // Фундаментальные исследования. 2013. Т. 7, № 3. Р. 550-554. [Ezhov M.Yu., Berendeev N.N., Petrov S.V. Mathematical model of development of articular tissues changes at various intensity of physical activity, Fundamental research. 2013. Vol. 7, No 3. рр. 550-554].
  58. Mootanah R., Imhauser C.W., Reisse F., Carpanen D., Walker R.W., Koff M.F., Lenhoff M.W., Rozbruch S.R., Fragomen A.T., Dewan Z., Kirane Y.M., Cheah K., Dowell J.K., Hillstrom H.J. Development and validation of a computational model of the knee joint for the evaluation of surgical treatments for osteoarthritis // Comput. Methods Biomech. Biomed. Engin. 2014. Vol. 17, No 13. Р. 1502-1517.
  59. Cherkasskiy L., Caffrey J.P., Szewczyk A.F., Cory E., Bomar J.D., Farnsworth C.L., Jeffords M., Wenger D.R., Sah R.L., Upasani V.V. Patient-specific 3D models aid planning for triplane proximal femoral osteotomy in slipped capital femoral epiphysis // J. Child. Orthop. 2017. Vol. 11, No 2. Р. 147-153.
  60. Ebinger T., Goetz J., Dolan L., Phisitkul P. 3D Model Analysis of Existing CT Syndesmosis Measurements // Iowa Orthop. J. 2013. Vol. 33. Р. 40-46.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Korochina K.V., Chernysheva T.V., Korochina I.E., Shamaev S.Y.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 74760 от 29.12.2018 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies