PERSPECTIVE DIRECTION OF USING FLAGELLIN BASED DRUGS

Open Access Open Access
Restricted Access Subscription Access

Abstract


This article reviews modern scientific literature devoted to the study of the biological activity of flagellin to develop on its basis new effective medicines. One of the most promising areas of research is the use of recombinant flagellin as adjuvant in vaccines against the causative agents of different infectious diseases first of all against influenza. The characteristics of the recent flagellin containing vaccines and data on immunogenicity studies of new hybrid molecules are presented. Several influenza vaccines developed by VaxInnate Corporation (USA) undergo different phases of clinical trials. The effectiveness of Russian influenza vaccines (Russian Institute of influenza) is currently being studied in animals. The second most important direction is based on the study and use of radioprotective properties flagellin. Currently in the world there is one flagellin based drug entolimod (Cleveland BioLabs, USA), which radioprotective efficiency was studied in experiments on mice and primates. The overview analyzed the study of the mechanisms of the radioprotective action of flagellin based drugs as a TLR5 agonists presented by different authors. Also results of researches proving the potential of flagellin and its derivatives as radiation countermeasure agents are reviewed.

G A Sofronov

S.M. Kirov Military Medical Academy; Institute of Experimental Medicine

Full member of the RAS

E V Murzina

S.M. Kirov Military Medical Academy

V N Bolekhan

S.M. Kirov Military Medical Academy

O M Veselova

S.M. Kirov Military Medical Academy

A S Simbirtsev

Institute of Experimental Medicine; Research Institute of Highly Pure Biopreparations

corresponding member of the RAS

  1. Honko A.N., Mizel S.B. Effects of flagellin on innate and adaptive immunity // Immun. Research. 2005. Vol. 33, No 1. P. 83-l01.
  2. Mizel S.B., Bates J.T. Flagellin as an adjuvant: cellular mechanisms and potential // J. Immunol. 2010. Vol. 185, No 10. P. 5677-5682.
  3. Rossez Y., Wolfson E.B., Holmes A., Gally D.L., Holden N.J. Bacterial flagella: twist and stick, or dodge across the kingdoms // PLOS Pathol. 2015. Vol. 11, No 1. e1004483. Режим доступа: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4295861/
  4. Fröhlich E.E., Mayerhofer R., Holzer P. Reevaluating the hype: four bacterial metabolites under scrutiny // Eur. J. Microbiol. Immunol. 2015. Vol. 5, No 1. Р. 113.
  5. Dowling J.K., Mansell A. Toll-like receptors: the swiss army knife of immunity and vaccine development // Clin. Transl. Immunol. 2016. Vol. 5, No 5. e85. Режим доступа: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4910119/
  6. Ciacci-Woolwine F., Blomfield I.C., Richardson S.H., Mizel S.B. Salmonella flagellin induces tumor necrosis factor alpha in a human promonocytic cell line // Infect. Immun. 1998. Vol. 66, No 3. Р. 1127-1134.
  7. Vijay-Kumar M., Wu H., Jones R., Grant G., Babbin B., King T.P., Kelly D., Gewirtz A.T., Neish A.S. Flagellin suppresses epithelial apoptosis and limits disease during enteric infection // Am. J. Pathol. 2006. Vol. 169, No 5. Р. 1686-1700.
  8. Gewirtz A.T., Navas T.A., Lyons S., Godowski P.J., Madara J.L. Cutting edge: bacterial Flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression // J. Immunol. 2001. Vol. 167, No 4. Р. 1882-1885.
  9. Hayashi F., Smith K.D., Ozinsky A., Hawn T.R., Yi E.C., Goodlett D.R., Eng J.K., Akira S., Underhill D.M., Anderem A. The innate immune response to bacterial-flagellin is mediated by Toll-like receptor 5 // Nature. 2001. Vol. 410, No 6832. Р. 1099-1103.
  10. Vijay-Kumar M., Aitken J.D., Sanders C.J., Frias A., Sloane V.M., Xu J., Neish A.S., Rojas M., Gewirtz A.T. Flagellin treatment protects against chemicals, bacteria, viruses, and radiation // J. Immunol. 2008. Vol. 180, No 12. P. 8280-8285.
  11. Vijay-Kumar M., Carvalho F.A., Aitken J.D., Fifadara N.H., Gewirtz A.T. TLR5 or NLRC4 is necessary and sufficient for promotion of humoral immunity by flagellin // Eur. J. Immunol. 2010. Vol. 40, No 12. Р. 3528-3534.
  12. Kofoed E.M., Vance R.E. Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity // Nature. 2011. Vol. 477, No 7366. Р. 592-595.
  13. Zhao Y., Yang J., Shi J., Gong Y.N., Lu Q., Xu H., Liu L., Shao F. The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus // Nature. 2011. Vol. 477, No 7366. Р. 596-600.
  14. López-Yglesias A.H., Zhao X., Quarles E.K., Lai M.A., VandenBos T., Strong R.K., Smith K.D. Flagellin induces antibody responses through a TLR5- and inflammasome-independent pathway // J. Immunol. 2014. Vol. 192, No 4. Р. 1587-1596.
  15. Yonekura K., Maki-Yonekura S., Namba K. Complete atomic model of the bacterial flagellar filament by electron cryomicroscopy // Nature. 2003. Vol. 424. Р. 643-650.
  16. Song W.S., Yoon S.I. Crystal structure of FliC flagellin from Pseudomonas aeruginosa and its implication in TLR5 binding and formation of the flagellar filament // Biochem. Biophys. Res. Commun. 2014. Vol. 444, No 2. Р. 109-115.
  17. Lu Y., Swartz J.R. Functional properties of Flagellin as a stimulator of innate immunity // Sci. Rep. 2016. Vol. 12, No 6. P. 18379. Режим доступа: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4709591/
  18. Lightfield K.L., Persson J., Brubaker S.W., Witt C.E., von Moltke J., Dunipace E.A., Henry T., Sun Y.H., Cado D., Dietrich W.F., Monack D.M., Tsolis R.M., Vance R.E. Critical function for Naip5 in inflammasome activation by a conserved carboxy-terminal domain of Flagellin // Nat. Immunol. 2008. Vol. 9, No 10. Р. 1171-1178.
  19. Burdelya L.G., Krivokrysenko V.I., Tallant T.C., Strom E., Gleiberman A.S., Gupta D., Kurmasov O.V., Fort F.L., Osterman A.L., Didonato J.A., Feinstein E., Gudkov A.V. An agonist of toll-like receptor 5 has radioprotective activity in mouse and primate models // Science. 2008. Vol. 320, No 5873. Р. 226-230.
  20. Song L., Zhang Y., Yun N.E., Poussard A. L., Smith J. N., Smith J. K., Borisevich V., Linde J. J. et al. Superior efficacy of a recombinant flagellin:H5N1 HA globular head vaccine is determined by the placement of the globular head within Flagellin // Vaccine. 2009. Vol. 27, No 42. P. 5875-5884.
  21. Bennett K.M., Gorham R.D., Gusti V., Gusti V., Trinh L., Motikis D., Lo D. D. Hybrid flagellin as a T cell independent vaccine scaffold // BMC Biotechnol. 2015. Vol. 15. P. 71. Режим доступа: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4534063/
  22. Tanomand A., Farajnia S., Peerayeh S.N., Majidi J. Cloning, expression and characterization of recombinant exotoxin A-flagellin fusion protein as a new vaccine candidate against Pseudomonas aeruginosa infections // Iran. Biomed. J. 2013. Vol. 17, No 1. P. 17.
  23. McEwen J., Levi R., Horwitz R.J., Arnon R. Synthetic recombinant vaccine expressing influenza haemagglutinin epitope in Salmonella flagellin leads to partial protection in mice // Vaccine. 1992. Vol. 10, No 6. Р. 405-411.
  24. Levi R., Arnon R. Synthetic recombinant influenza vaccine induces efficient long-term immunity and cross-strain protection // Vaccine. 1996. Vol. 14, No 1. Р. 85-92.
  25. Cuadros C., Lopez-Hernandez F.J., Dominguez A.L., McClelland M., Lustgarten J. Flagellin fusion proteins as adjuvants or vaccines induce specific immune responses // Infect. Immun. 2004. Vol. 72, No 5. Р. 2810-2816.
  26. Bates J.T., Honko A.N., Graff A.H., Kock N.D., Mizel S.B. Mucosal adjuvant activity of flagellin in aged mice // Mech. Ageing Dev. 2008. Vol. 129, No 5. Р. 271-281.
  27. Honko A.N., Sriranganathan N., Lees C.J., Mizel S.B. Flagellin is an effective adjuvant for immunization against lethal respiratory challenge with Yersinia pestis // Infect. Immun. 2006. Vol. 74, No 2. Р. 1113-1120.
  28. Turley C.B., Rupp R.E., Johnson C., Taylor D.N., Wolfson J., Tussey L., Kavita U., Stanberry L., Shaw A. Safety and immunogenicity of a recombinant M2e-flagellin influenza vaccine (STF2.4xM2e) in healthy adults // Vaccine. 2011. Vol. 29, No 32. Р. 5145-5152.
  29. Weimer E.T., Ervin S.E., Wozniak D.J., Mizel S.B. Immunization of young African green monkeys with OprF epitope 8-OprI-type A- and B-flagellin fusion proteins promotes the production of protective antibodies against nonmucoid Pseudomonas aeruginosa // Vaccine. 2009. Vol. 27, No 48. Р. 6762-6769.
  30. Taylor D.N., Treanor J.J., Strout C., Johnson C., Fitzgerald T., Kavita U., Ozer K., Tussey L., Shaw A. Induction of a potent immune response in the elderly using the TLR-5 agonist, flagellin, with a recombinant hemagglutinin influenza-flagellin fusion vaccine (VAX125, STF2.HA1 SI) // Vaccine. 2011. Vol. 29, No 31. Р. 4897-4902.
  31. Tussey L., Strout C., Davis M., Johnson C.,Luckinger G., Umlauf S., Song L., Liu G., Abraham K., White C.J. Phase 1 safety and immunogenicity study of a quadrivalent seasonal flu vaccine comprising recombinant hemagglutinin-flagellin fusion proteins // Open Forum Infect. Dis. 2016. Vol. 3, No 1. ofw015. Режим доступа: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4766387/
  32. Huleatt J.W., Nakaar V., Desai P., Huang Y., Hewitt D., Jacobs A., Tang J., McDonald W., Song L., Evans R.K., Umlauf S., Tussey L., Powell T.J. Potent immunogenicity and efficacy of a universal influenza vaccine candidate comprising a recombinant fusion protein linking influenza M2 to TLR5 ligand flagellin // Vaccine. 2008. Vol. 26, No 2. P. 201-214.
  33. Asadi Karam M.R., Oloomi M., Mahdavi M., Habibi M., Bouzari S. Vaccination with recombinant FimH fused with flagellin enhances cellular and humoral immunity against urinary tract infection in mice // Vaccine. 2013. Vol. 31, No 8. Р. 1210-1216.
  34. Степанова Л.А., Ковалева А.А., Потапчук М.В., Коротков А.В., Куприянов В.В., Блохина Е.А., Котляров Р.Ю., Цыбалова Л.М. Иммуногенные свойства рекомбинантных белков, включающих эктодомен белка М2 вируса гриппа А // Вопр. вирусол. 2013. Т. 58, № 3. С. 2125 [Stepanova L.A., Kovaleva A.A., Potapchuk M.V., Korotkov A.V., Kupriyanov V.V., Blohina E.A., Kotlyarov R.Yu., Cybalova L.M., Immunogenicity of recombinant proteins including ectodomian of M2 influenza virus A, Vopr. Virusol. 2013. vol. 58. No 3. pp. 2125].
  35. Delavari S., Sohrabi M., Ardestani M.S., Faezi S., Tebianian M., Taghizadeh M., Shajiei S.Y., Moghaddampour M., Mahdavi M. Pseudomonas aeruginosa flagellin as an adjuvant: superiority of a conjugated form offlagellin versus a mixture with a human immunodeficiency virus type 1 vaccine candidate in the induction of immune responses // J. Med. Microbiol. 2015. Vol. 64, No 11. P. 1361-1368.
  36. Степанова Л.А., Сергеева М.В., Шуклина М.А., Шалджян А.А., Потапчук М.В., Коротков А.В., Цыбалова Л.М. Гибридный белок на основе второй субъединицы гемагглютинина вирусов гриппа А/H2N2 формирует перекрестный иммунитет // Acta Naturae (русскоязычная версия). 2016. Т. 8, No 2 (29). С. 129140 [Stepanova L.A., Sergeeva M.V., Shuklina M.A., Shaldzhyan A.A., Potapchuk M.V., Korotkov A.V., Cybalova L.M. A fusion protein based on the second subunit of hemagglutinin of influenza A/H2N2 viruses provides cross immunity. Acta Naturae (russkoyazychnaya versiya). 2016. vol. 8. No 2 (29). pp. 129140.].
  37. Farajnia S., Peerayeh S. N., Tanomand A., Majidi J., Goudarzi G., NagHili B., Rahbarnia L. Protective efficacy of recombinant exotoxin A-flagellin fusion protein against Pseudomonas aeruginosa infections // Can. J. Microbiol. 2015. Vol. 61, No 1. P. 6064.
  38. Behrouz B., Mahdavi M., Amirmozafari N., Fatemi M.J., Irajian G., Bahroudi M., Hashemi F.B. Immunogenicity of Pseudomonas aeruginosa recombinant b-type flagellin as a vaccine candidate: Protective efficacy in a murine burn wound sepsis model // Burns. 2016. doi: 10.1016/j.burns.2016.03.015.
  39. Духовлинов И.В., Богомолова Е.Г., Федорова Е.А., Симбирцев А.С. Исследование протективной эффективности кандидатной вакцины против ротавирусной инфекции на основе рекомбинантного белка FliCVP6VP8 // Мед. иммунол. 2016. Т. 18, No 5. С. 417-424. doi: 10.15789/1563-0625-2016-5-417-424 [Dukhovlinov I.V., Bogomolova E.G., Fedorova E.A., Simbirtsev A.S. Protective activity study of a candidate vaccine against rotavirus infection based on recombinant protein FliCVP6VP8, Medical Immunology (Russia). 2016. Vol. 18 (5). рр. 417-424. (In Russ.) doi: 10.15789/1563-0625-2016-5-417-424].
  40. Xiao X.X., Zhang Y., Liu J.X., Wei Q.L., Yin X.P. Immunoenhancement with flagellin as an adjuvant to whole-killed rabies vaccine in mice // Arch. Virol. 2016. Vol. 161, No 3. P. 685691.
  41. Lee S.E., Hong S.H., Verma V., Lee Y.S., Duong T.N., Jeong K., Uthaman S., Sung Y.C., Lee J.T., Park I. K., Nin J.J., Rhee J.H. Flagellin is strong vaginal adjuvant of a therapeutic vaccine for genital cancer // Oncoimmunology. 2015. Vol. 5, No 2. e1081328. Режим доступа: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4801456/
  42. Lee S.E., Nquyen C.T., Kim S.Y., Thi T.N., Rhee J.H. Tetanus toxin fragment C fused to flagellin makes a potent mucosal vaccine // Clin. Exp. Vaccine Rec. 2015. Vol. 4, No 1. P. 5967.
  43. Porte U.S., Fougeron D., Munoz-Wolf N., Tabareau J., Georgel A. F., Wallet F., Paget C., Trotein F., Chabalgoity J. A., Carnoy C., Sirard J. C. A Toll-Like receptor 5 agonist improves the efficacy of antibiotics in treatment of primary and influenza virus-associated pneumococcal mouse infections // Antimicrob. Agents Chemother. 2015. Vol. 59, No 10. P. 60646072.
  44. Schulke S., Wolfheimer S., Gadermaier G., et al. Prevention of intestinal allergy in mice by rflaA:Ova is associated with enforced antigen processing and TLR5-dependent IL-10 secretion by mDC // PLoS One. 2014. Vol. 9, No 2. e87822. Режим доступа: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3917841/
  45. Shim J.U., Lee S. E., Hwang W., Lee C., Park J.W., Sohn J.H., Nam J.H., Kim Y., Rhee J.H., Im S.H., Koh Y.I. Flagellin suppresses experimental asthma by generating regulatory dendritic cells and T cells // J. Allergy Clin. Immunol. 2016. Vol. 137, No 2. P. 426-435.
  46. Krivokrysenko V.I., Shakhov A.N., Singh V.K., Bone F., Kononov Y., Shyshynova I., Cheney A., Maitra R.K., Purmal A., Whitnall M.H., Gudkov A.V., Feinstein E. Identification of granulocyte colony-stimulating factor and interleukin-6 as candidate biomarkers of CBLB502 efficacy as a medical radiation countermeasure // J. Pharmacol. Exp. Ther. 2012. Vol. 343, No 2. Р. 497-508.
  47. Krivokrysenko V.I., Toshkov I.A., Gleiberman A.S., Krasnov P., Shyshynova I., Bespalov I., Maitra R.K., Narizhneva N.V., Sighn V.K., Whitnall M.H., Purmal A.A., Shakhov A.N., Gudkov A.V., Feinstein E. The toll-like receptor 5 agonist Enolimod mitigates lethal acute radiation syndrome in none-Human primates // Plos One. 2015. Vol. 10, No 9. e0135388. Режим доступа: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4569586/pdf/pone.0135388.pdf
  48. Chen H., Wang Z.D., Chen M.S., Zhang X.Q., Shen L.P., Chen Y. Activation of Toll-like receptors by intestinal microflora reduces radiation-induced DNA damage in mice // Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2014. Vol. 774. P. 2228.
  49. Epperly M.W., Sikora C.A., DeFilippi S.J., Gretton J.A., Zhan Q., Kufe D.W., Greenberger J.S. Manganese superoxide dismutase (SOD2) inhibits radiation-induced apoptosis by stabilization of the mitochondrial membrane // Radiat. Res. 2002. Vol. 157, No 5. Р. 568-577.
  50. Li W., Ge C., Yang L., Wang R., Lu Y., Gao Y., Li Z., Wu Y., Zheng X., Wang Z., Zhang C. CBLB502, an agonist of Toll-like receptor 5, has antioxidant and scavenging free radicals activities in vitro // Int. J. Biol. Macromol. 2016. Vol. 82. P. 97103.
  51. Wang Z.D., Qiao Y.L., Tian X.F., Zhang X.O., Zhou S.X., Liu H.X., Chen Y. Toll-like receptor 5 agonism protects mice from radiation pneumonitis and pulmonary fibrosis // Asian. Pac. J. Cancer Prev. 2012. Vol. 13, No 9. P. 47634767.
  52. Burdelya L.G., Gleiberman A.S., Toshkov I., Aygun-Sunar S., Bapardekar M., Manderacheid-Kern P., Krivokrysenko V.I., Feinstein E., Gudkov A.V. Toll-like receptor 5 agonist protects mice from dermatitis and oral mucositis caused by local radiation: implications for head-and-neck cancer radiotherapy // Int. J. Radiat. Oncol. Biol. Phys. 2012. Vol. 83, No 1. P. 228-234.
  53. Zhou S.X., Li F.S., Qiao Y.L., Zhang X.Q., Wang Z.D. Toll-like receptor 5 agonist inhibition of growth of A549 lung cancer cells in vivo in a Myd88 dependent manner // Asian Pac. J. Cancer Prev. 2012. Vol. 13, No 6. P. 2807-2812.
  54. Fukuzawa N., Petro M., Baldwin W.M., Gudkov A.V., Fairchild R.L. A TLR5 agonist inhibits acute renal ischemic failure // J. Immunol. 2011. Vol. 187, No 7. Р. 3831-3839.
  55. Kojouharov B.M., Brackett C.M., Veith J.M., Jonson C.P., Gitlin I.I., Toshkov I.A., Gleiberman A.S., Gudkov A.V., Burdelya L.G. Toll-like receptor-5 agonist Entolimod broadens the therapeutic window of 5-fluorouracil by reducing its toxicity to normal tissues in mice // Oncotarget. 2014. Vol. 5, No 3. Р. 802-814.
  56. Burdelya L.G., Brackett C.M., Kojouharov B., Gitlin I.I., Leonova K.I., Gleiberman A.S., Aygun-Sunar S., Veith J., Johnson C., et al. Central role of liver in anticancer and radioprotective activities of Toll-like receptor 5 agonist // Proc. Natl. Acad. Sci. USA. 2013. Vol. 110, No 20. Р. 1857-1866.
  57. Rhee S.H., Im E., Riegler M., Kokkotou E., O’brien M., Pothoulakis C. Pathophysiological role of Toll-like receptor 5 engagement by bacterial flagellin in colonic inflammation // Proc. Natl. Acad. Sci. USA. 2005. Vol. 102, No 38. Р. 13610-13615.
  58. Blohmke C.J., Victor R.E., Hirschfeld A.F., Elias I.M., Hancock D.G., Lane C.R., Davidson A.G., Wilcox P.G., Smith K.D., Overhage J., Hancock R.E., Turvey S.E. Innate immunity mediated by TLR5 as a novel antiinflammatory target for cystic fibrosis lung disease // J. Immunol. 2008. Vol. 180, No 11. Р. 7764-7773.
  59. Xiao Y., Liu F., Yang J., Zhong M., Zhang E., Li Y., Zhou D., Cao Y., Li W., Yu J., Yang Y., Yan H. Over-activation of TLR5 signaling by high-dose flagellin induces liver injury in mice // Cell Mol. Immunol. 2015. Vol. 12, No 6. P. 729742.
  60. Официальный сайт Cleveland BioLabs, Inc. [Электронный ресурс]. Режим доступа: URL: http://www.cbiolabs.com (Дата обращения 10.08.2016).
  61. Аль-Шехадат Р.И., Матюнина Е.А., Шарафутдинова Т.А., Пигарева Н.В., Климов Н.А., Петров А.В., Симбирцев А.С. Получение и изучение свойств рекомбинантного бактериального флагеллина // Хим. и биол. безопас. 2012. Спец. вып. С. 109-116. [Al'-Shekhadat R.I., Matyunina E.A., Sharafutdinova T.A., Pigareva N.V., Klimov N.A., Petrov A.V., Simbircev A.S. Poluchenie i izuchenie svojstv rekombinantnogo bakterial'nogo flagellina, Him. i biol. bezopas. 2012. Spec. vyp. рр. 109-116.]
  62. Гребенюк А.Н., Аксенова Н.В., Петров А.В., Аль-Шехадат Р.И., Климов Н.А., Симбирцев А.С. Получение различных вариантов рекомбинантного флагеллина и оценка их радиозащитной эффективности // Вестн. Рос. военно-мед. акад. 2013. Т. 43, № 3. С. 75-80 [Grebenyuk A.N., Aksenova N.V., Petrov A.V., Al'-Shekhadat R.I., Klimov N.A., Simbircev A.S. Obtaining different variants of recombinant flagellin and evaluation of their radioprotective efficiency, Vestnik Rossijskoj voenno-medicinskoj akademii. 2013. Vol. 43. No 3. pp. 75-80.]

Views

Abstract - 70

PDF (Russian) - 0

PlumX

Refbacks

  • There are currently no refbacks.

Copyright (c) 2017 Sofronov G.A., Murzina E.V., Bolekhan V.N., Veselova O.M., Simbirtsev A.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.