Effect of 3-formylchromone derivatives on neuroinflammation reactions and JNK and NF-κB regulatory pathways

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: Neuroinflammation is a significant component of the pathogenesis of cerebral ischemia. The JNK and NF-κB signaling pathways play a leading role in the progression of brain tissue inflammation, which may represent a promising target for therapeutic effects.

AIM: To evaluate the effect of new derivatives of 3-formylchromone on the course of neuroinflammation reactions and the activity of JNK and NF-κB translational pathways in brain tissue in rats with cerebral ischemia.

MATERIALS AND METHODS: Cerebral ischemia was modeled in Wistar rats by irreversible right-sided occlusion of the middle cerebral artery. The studied compounds and the reference (ethylmethylhydroxypyridine succinate) were administered per os at doses of 30 and 100 mg/kg, respectively. After 72 hours of ischemia, changes in the concentration of proinflammatory cytokines were evaluated in the cerebrospinal fluid: IL-6, IL-1β, IL-8 and TNF-α. The content of JNK and NF-κB in brain tissue was determined by enzyme immunoassay.

RESULTS: The use of the test compounds 3FC1, 3FC2, 3FC4 and 3FC5, as well as the reference medicine, contributed to a decrease in the content of proinflammatory markers in the liquor. At the same time, the most significant decrease was noted when the compound 3FC5 was administered to animals, namely, the concentration of IL-1β, IL-6, IL-8 and TNF-α was lower relative to similar indicators of the group of animals without treatment by 30.0% (p < 0.05); 64.5% (p < 0.05); 48.5% (p < 0.05) and 56.6% (p < 0.05), respectively. The use of the fluorine-containing compound 3FC3 did not significantly affect the course of brain tissue inflammation reactions in rats. Evaluation of changes in the activity of JNK and NF-κB showed that the studied substances inhibit the NF-κB translational pathway and do not affect JNK, which is probably due to the activation of these signaling pathways and the antioxidant potential of the studied molecules.

CONCLUSIONS: The use of compounds that are derivatives of 3-formylchromone in conditions of experimental cerebral ischemia contributes to the reduction of neuroinflammation reactions by inhibiting the NF-κB pathway, without affecting the activity of the JNK-dependent signaling system. The substance with the highest pharmacological effects is the compound 3FC5, which contains a spatially hindered phenolic hydroxyl in its structure.

Full Text

Restricted Access

About the authors

Dmitry I. Pozdnyakov

Pyatigorsk Medical and Pharmaceutical Institute, Branch of the Volgograd State Medical University

Author for correspondence.
Email: pozdniackow.dmitry@yandex.ru
ORCID iD: 0000-0002-5595-8182
SPIN-code: 6764-0279

Cand. Sci. (Pharm.), Assistant Professor of the Department of Pharmacology with a Course of Clinical Pharmacology

Russian Federation, Pyatigorsk

References

  1. Hayashi K, Nikolos F, Lee YC, et al. Tipping the immunostimulatory and inhibitory DAMP balance to harness immunogenic cell death. Nat Commun. 2020;11(1):6299. doi: 10.1038/s41467-020-19970-9
  2. Jayaraj RL, Azimullah S, Beiram R, et al. Neuroinflammation: friend and foe for ischemic stroke. J Neuroinflammation. 2019;16(1):142. doi: 10.1186/s12974-019-1516-2
  3. Maida CD, Norrito RL, Daidone M, et al. Neuroinflammatory mechanisms in ischemic stroke: focus on cardioembolic stroke, background, and therapeutic approaches. Int J Mol Sci. 2020;21(18):6454. doi: 10.3390/ijms21186454
  4. Garcia-Bonilla L, Moore JM, Racchumi G, et al. Inducible nitric oxide synthase in neutrophils and endothelium contributes to ischemic brain injury in mice. J Immunol. 2014;193(5):2531–2537. doi: 10.4049/jimmunol.1400918
  5. Mázala DA, Grange RW, Chin ER. The role of proteases in excitation-contraction coupling failure in muscular dystrophy. Am J Physiol Cell Physiol. 2015;308(1):C33–C40. doi: 10.1152/ajpcell.00267.2013
  6. Dong X, Gao J, Zhang CY, et al. Neutrophil membrane-derived nanovesicles alleviate inflammation to protect mouse brain injury from ischemic stroke. ACS Nano. 2019;13(2):1272–1283. doi: 10.1021/acsnano.8b06572
  7. Emsley HC, Smith CJ, Georgiou RF, et al. A randomised phase II study of interleukin-1 receptor antagonist in acute stroke patients. J Neurol Neurosurg Psychiatry. 2005;76(10):1366–1372. doi: 10.1136/jnnp.2004.054882
  8. Tuttolomondo A, Di Sciacca R, Di Raimondo D, et al. Inflammation as a therapeutic target in acute ischemic stroke treatment. Curr Top Med Chem. 2009;9(14):1240–1260. doi: 10.2174/156802609789869619
  9. Bath PM, Iddenden R, Bath FJ, et al. Tirilazad for acute ischaemic stroke. Cochrane Database Syst Rev. 2001;(4):CD002087. doi: 10.1002/14651858.CD002087
  10. Seregin VI, Dronova TV. The use of mexidol in intensive care of acute severe ischemic stroke. Zh Nevrol Psikhiatr Im SS Korsakova. 2015;115(3 Pt 2):85–87. (In Russ.) doi: 10.17116/jnevro20151153285-87
  11. Lees KR, Diener HC, Asplund K, et al. UK-279,276, a neutrophil inhibitory glycoprotein, in acute stroke: tolerability and pharmacokinetics. Stroke. 2003;34(7):1704–1709. doi: 10.1161/01.STR.0000078563.72650.61
  12. Pozdnyakov DI, Voronkov AV, Rukovitsyna VM. Chromon-3-aldehyde derivatives restore mitochondrial function in rat cerebral ischemia. Iran J Basic Med Sci. 2020;23(9):1172–1183. doi: 10.22038/ijbms.2020.46369.10710
  13. Percie du Sert N, Hurst V, Ahluwalia A, et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biol. 2020;18(7):e3000410. doi: 10.1371/journal.pbio.3000410
  14. Tamura A, Graham DI, McCulloch J, Teasdale GM. Focal cerebral ischaemia in the rat: 1. Description of technique and early neuropathological consequences following middle cerebral artery occlusion. J Cereb Blood Flow Metab. 1981;1(1):53–60. doi: 10.1038/jcbfm.1981.6
  15. Pozdnyakov DI. The use of 4-hydroxy-3,5-di-tert butylcoric acid reduces the intensity of neuroinflammation in rats with cerebral ischemia. Transbaikalian Medical Bulletin. 2021;1:59–67. (In Russ.) doi: 10.52485/19986173_2021_1_59
  16. Voronkov AV, Pozdnyakov DI, Oganesyan ET, et al. Antiapoptotic effect of 3-formylchromone derivatives in conditions of experimental cerebral ischemia. Experimental and clinical pharmacology. 2021;84(7):6–10. (In Russ.) doi: 10.30906/0869-2092-2021-84-7-6-10
  17. Li Y, Zhang B, Liu XW, et al. An applicable method of drawing cerebrospinal fluid in rats. J Chem Neuroanat. 2016;74:18–20. doi: 10.1016/j.jchemneu.2016.01.009
  18. Sun J, Nan G. The mitogen-activated protein kinase (MAPK) signaling pathway as a discovery target in stroke. J Mol Neurosci. 2016;59(1):90–98. doi: 10.1007/s12031-016-0717-8
  19. Harari OA, Liao JK. NF-κB and innate immunity in ischemic stroke. Ann NY Acad Sci. 2010;1207:32–40. doi: 10.1111/j.1749-6632.2010.05735.x
  20. Chen T, Zhang X, Zhu G, et al. Quercetin inhibits TNF-α induced HUVECs apoptosis and inflammation via downregulating NF-κB and AP-1 signaling pathway in vitro. Medicine (Baltimore). 2020;99(38):e22241. doi: 10.1097/MD.0000000000022241
  21. Al-Rasheed NM, Fadda LM, Al-Rasheed NM, et al. Down-regulation of NFKB, Bax, TGF-β, Smad-2mRNA expression in the livers of carbon tetrachloride treated rats using different natural antioxidants. Brazilian Archives of Biology and Technology. 2016;59. doi: 10.1590/1678-4324-2016150553
  22. Torshin IJ, Gromova OA, Sardaryan IS, et al. Comparative chemoreactome analysis of mexidol. Pharmacokinetics and Pharmacodynamics. 2016;(4):19–30. (In Russ.)
  23. Yang ZH, Lu YJ, Gu KP, et al. Effect of ulinastatin on myocardial ischemia-reperfusion injury through JNK and P38 MAPK signaling pathways. Eur Rev Med Pharmacol Sci. 2019;23(19):8658–8664. doi: 10.26355/eurrev_201910_19183
  24. Oganesyan ET, Shatokhin SS, Glushko AA. Using quantum-chemical parameters for predicting anti-radical (НО∙) activity of related structures containing a cinnamic mold fragment I. derivatives of cinnamic acid, chalcon and flavanon. Pharmacy and Pharmacology. 2019;7(1):53–66. (In Russ.) doi: 10.19163/2307-9266-2019-7-1-53-66

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Design of study: 3FC1, 3FC2, 3FC3, 3FC4, 3FC5 — investigated organic compounds; EMHPS — ethylmethylhydroxypyridine succinate; JNK — c-Jun N-terminal kinase; NF-κB — nuclear factor κB; IL — interleukin; TNF-α — tumor necrosis factor

Download (234KB)
3. Fig. 2. Changes in the concentration of NF-κB in brain tissue in rats against the background of administration of the tested compounds (3FC1, 3FC2, 3FC3, 3FC4, 3FC5) and ethylmethylhydroxypyridine succinate (EHMPS). Statistically significant (Newman–Keuls test, p < 0.05): # sham-operated (SO) rats group; * negative control (NC) rats group; ∆ animals treated by EHMPS; µ animals treated by compound 3FC5

Download (75KB)
4. Fig. 3. Changes in the concentration of JNK in brain tissue in rats against the background of the administration of the tested compounds (3FC1, 3FC2, 3FC3, 3FC4, 3FC5) and ethylmethylhydroxypyridine succinate (EHMPS). # Statistically significant relative to the sham-operated (SO) of rats (Newman–Keuls test, p < 0.05). NC — negative control rats group

Download (89KB)

Copyright (c) 2022 Pozdnyakov D.I.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 74760 от 29.12.2018 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies