Involvement of interferon-gamma and tumor necrosis factor-alpha in the formation of unstable atherosclerotic plaque
- Authors: Snegova V.A.1, Pigarevsky P.V.1, Maltseva S.V.1, Yakovleva O.G.1
-
Affiliations:
- Institute of Experimental Medicine
- Issue: Vol 24, No 1 (2024)
- Pages: 59-66
- Section: Analytical reviews
- Published: 11.09.2024
- URL: https://journals.eco-vector.com/MAJ/article/view/629096
- DOI: https://doi.org/10.17816/MAJ629096
- ID: 629096
Cite item
Abstract
Research on the role of various interleukins in atherosclerosis has shown that pro-inflammatory cytokines contribute to disease progression and destabilization of atherosclerotic plaques. The review presents the latest data from the scientific literature and the study’s own findings on the effects of pro-inflammatory cytokines INF-γ and TNF-α on the formation of unstable atherosclerotic lesions. It has been shown that the deterioration of the unstable plaque cap strength and its destruction can be associated with an increase in concentration, activation and action of powerful pro-inflammatory cytokines INF-γ and TNF-α in the vascular wall.
Full Text

About the authors
Vlada A. Snegova
Institute of Experimental Medicine
Email: biolaber@inbox.ru
ORCID iD: 0000-0002-9925-2886
SPIN-code: 8088-4446
Cand. Sci. (Biology), Senior Research Associate, Department of Biochemestry
Russian Federation, 12 Academician Pavlov St., Saint Petersburg, 197022Peter V. Pigarevsky
Institute of Experimental Medicine
Author for correspondence.
Email: pigarevsky@mail.ru
ORCID iD: 0000-0002-5906-6771
SPIN-code: 8636-4271
Dr. Sci. (Biology), Head of the Laboratory of Atherosclerosis named after N.N. Anichkov, Department of Biochemistry
Russian Federation, 12 Academician Pavlov St., Saint Petersburg, 197022Svetlana V. Maltseva
Institute of Experimental Medicine
Email: moon25@rambler.ru
ORCID iD: 0000-0001-7680-8485
SPIN-code: 8367-9096
Cand. Sci. (Biology), Researcher Associate, Department of Biochemestry
Russian Federation, 12 Academician Pavlov St., Saint Petersburg, 197022Olga G. Yakovleva
Institute of Experimental Medicine
Email: emalonett@yandex.ru
ORCID iD: 0000-0002-6248-9468
Cand. Sci. (Biology), Senior Research Associate, Department of Biochemistry
Russian Federation, 12 Academician Pavlov St., Saint Petersburg, 197022References
- Nagornev V, Anestiady V, Zota E. Pathomorphosis of atherosclerosis (immunoaspects). Saint Petersburg: Tsentral’naya tipografiya; 2008. 318 p. (In Russ.)
- Pigarevsky PV. Antigens and their role in immunoinflammatory responses in human atherogenesis. Medical Academic Journal. 2010;10(4):210–217. EDN: TJECWN
- Ji Q, Cheng G, Ma N, et al. Circulating Th1, Th2, and Th17 levels in hypertensive patients. Dis Markers. 2017;2017:1–12. doi: 10.1155/2017/7146290
- Gordienko A, Serdyukov D. Initial atherosclerosis: risk factors, diagnosis, prevention, treatment. Saint Petersburg: SpetsLit; 2020. 119 p. EDN: CHGOAH (In Russ.)
- Pigarevsky PV, Maltseva SV, Snegova VA. Progressive atherosclerotic lesions in humans. Morphological and immunoinflammatory aspects. Cytokines and inflammation. 2013;12(1–2):5–12. EDN: RVTFLB
- Legein B, Temmerman L, Biessen E, Lutgens E. Inflammatory and immune system interactions in atherosclerosis. Cell Mol Life Sci. 2013;70(20):3847–3869. doi: 10.1007/s00018-013-1289-1
- Poredos P, Gregoric ID, Jezovnik MK. Inflammation of carotid plaques and risk of cerebrovascular events. Ann Transl Med. 2020;8(19):1281–1288. doi: 10.21037/atm-2020-cass-15
- Nguyen MT, Fernando S, Schwarz N, et al. Inflammation as a therapeutic target in atherosclerosis. J Clin Med. 2019;8(8):1109–1129. doi: 10.3390/jcm8081109
- Ait-Oufella H, Taleb S, Mallat Z, Tedgui A. Recent advances on the role of cytokines in atherosclerosis. Atheroscler Thromb Vasc Biol. 2011;31(5):969–979. doi: 10.1161/ATVBAHA.110.207415
- Tsioufis P, Theofilis P, Tsioufis K, Tousoulis D. The impact of cytokines in coronary atherosclerotic plaque: Current therapeutic approaches. Int J Mol Sci. 2022;23(24):15937. doi: 10.3390/ijms232415937
- Simbirtsev AS. Cytokines in the pathogenesis and treatment of human diseases. Saint Petersburg: Foliant; 2018. 512 p. EDN: XIZEJB (In Russ.)
- Hansson GK, Libby P, Tabas I. Inflammation and plaque vulnerability. J Intern Med. 2015;278:483–493. doi: 10.1111/joim.12406
- Weng X, Cheng X, Wu X, et al. Sin3B mediates collagen type I gene repression by interferon gamma in vascular smooth muscle cells. Biochem Biophys Res Commun. 2014;447(2):263–270. doi: 10.1016/j.bbrc.2014.03.140
- Tabas I, Garcia-Cardena G, Owens GK. Recent insights into the cellular biology of atherosclerosis. J Cell Biol. 2015;209:13–22. doi: 10.1083/jcb.201412052
- Fathullina AR, Peshkova YuO, Koltsova EK. The role of cytokines in the development of atherosclerosis. Biochemistry. 2016;81(11):1614–1627. EDN: XBJHZT
- Ge P, Li H, Ya X, et al. Single-cell atlas reveals different immune environments between stable and vulnerable atherosclerotic plaques. Front Immunol. 2023;13:1085468. doi: 10.3389/fimmu.2022.1085468
- Mallat Z, Taleb S, Ait-Oufella H, Tedgui A. The role of adaptive T cell immunity in atherosclerosis. J Lipid Res. 2009;50:364–369. doi: 10.1194/jlr.R800092-JLR200
- Ohmura Y, Ishimori N, Saito A, et al. Natural killer T cells are involved in atherosclerotic plaque instability in apoliprotein-E knockout mice. Int J Mol Sci. 2021;22(22):12451. doi: 10.3390/ijms222212451
- Bonnacorsi I, Spinelli D, Cantoni C, et al. Symptomatic carotid atherosclerotic plaques are associated with increased infiltration of natural killer (NK) cells and higher serum levels of NK activating receptor ligands. Front Immunol. 2019;10:1503. doi: 10.3389/fimmu.2019.01503
- Pigarevsky PV. Atherosclerosis. Unstable atherosclerotic plaque (immunomorphological study). Atlas. Saint Petersburg: SpetsLit; 2018. 148 p. (In Russ.) EDN: YUGNZZ
- Tulowiecka N, Kotlega D, Bohatyrewicz A, Szczuko M. Could lipoxins represent a new standard in ischemic stroke treatment? Int J Mol Sci. 2021;22(8):4207–4222. doi: 10.3390/ijms22084207
- Elyasi A, Voloshyna I, Ahmed S, et al. The role of interferon-gamma in cardiovascular deasease: update. Inflamm Res. 2020;69(10):975–988. doi: 10.1007/s00011-020-01382-6
- Koltsova EK, Garcia Z, Chodaczek G, et al. Dynamic T cell-APC interactions sustain chronic inflammation in atherosclerosis. J Clin Invest. 2012;122(9):3114–3126. doi: 10.1172/JCI61758
- Buono C, Come CE, Stavrakis G, et al. Influence of interferon-gamma on the extent and phenotype of diet-induced atherosclerosis in the LDLR-deficient mouse. Atheroscler Thromb Vasc Biol. 2003;23(3):454–460. doi: 10.1161/01.ATV.0000059419.11002.6E
- Dutova SV, Saranchina JV, Karpova MR, et al. Cytokines and atherosclerosis are new areas of research. Siberian Medicine Bulletin. 2018;17(4):199–207. EDN: YTHLJB doi: 10.20538/1682-0363-2018-4-199-207
- Rai V, Agrawal DK. The role of damage- and pathogen-associated molecular patterns in inflammation — mediated vulnerability of atherosclerotic plaques. Can J Physiol Pharmacol. 2017;95(10):1245–1253. doi: 10.1139/cjpp-2016-0664
- Vorobyova DA, Lebedev AM, Vagida MS, et al. Immunological analysis of human atherosclerotic plaques in ex vivo culture system. Kardiologiia. 2016;56(11):78–85. EDN: XBFROJ doi: 10.18565/cardio.2016.11.78-85
- Koga M, Kai H, Yasukawa H, et al. Inhibition of progression and stabilization of plaques by postnatal interferon-gamma function blocking in ApoE-knockout mice. Circ Res. 2007;101(4):348–356. doi: 10.1161/CIRCRESAHA.106.147256
- Boshuizen M, de Winther M. Interferons as essential modulators of atherosclerosis. Atheroscler Thromb Vasc Biol. 2015;35:1579–1588. doi: 10.1161/ATVBAHA.115.305464
- Zhu Y, Xian X, Wang Z, et al. Research progress on the relationship between atherosclerosis and inflammation. Biomolecules. 2018;8(3):80–91. doi: 10.3390/biom8030080
- Voloshyna I, Littlefield MJ, Reiss AB. Atherosclerosis and interferon-γ: new insights and therapeutic targets. Trends Cardiovasc Med. 2014;24(1):45–51. doi: 10.1016/j.tcm.2013.06.003
- Munjal A, Khandia R. Atherosclerosis: orchestrating cells and biomolecules involved in its activation and inhibition. Adv Protein Chem Struct Biol. 2020;120:85–122. doi: 10.1016/bs.apcsb.2019.11.002
- Akadam-Teker AB, Teker E, Daglar-Aday A, et al. Interactive effects of interferon-gamma nucleotide polymorphism (+874 T/A) with cardiovascular risk factors in coronary heart disease and early myocardial infarction risk. Mol Biol Rep. 2020;47(11):8397–8405. doi: 10.1007/s11033-020-05877-7
- Kalliolias GD, Ivashkiv LB. TNF biology, pathogenic mechanisms and emerging therapeutic strategies. Nat Rev Rheumatol. 2016;12:49–62. doi: 10.1038/nrrheum.2015.169
- Karagodin VP, Bobryshev YuV, Orekhov AN. Inflammation, immunocompetent cells, cytokines – role in atherogenesis. Pathogenesis. 2014;12(1):21–35. EDN: TIKZED
- Mourouzis K, Oikonomou E, Siasos G, et al. Pro-inflammatory cytokines an acute coronary syndrome. Curr Pharm Des. 2020;26(36);4624–4647. doi: 10.2174/1381612826666200413082353
- Basiak M, Kosowski M, Hachula M, Okopien B. Impact of PCKS9 inhibition on proinflammatory cytokines and matrix metalloproteinases release in patients with mixed hyperlipidemia and vulnerable atherosclerotic plaque. Pharmaceuticals (Basel). 2022:15(7):802–812. doi: 10.3390/ph15070802
- Chistiakov DA, Melnichenko AA, Grechko AV, et al. Potential of anti-inflammatory agents for treatment of atherosclerosis. Exp Mol Pathol. 2018;104(2):114–124. doi: 10.1016/j.yexmp.2018.01.008
- Basiak M, Kosowski M, Hachula M, Okopien B. Plasma concentration of cytokines in patients with combined hyperlipidemia and atherosclerotic plaque before treatment initiation – a pilot study. Medicina (Kaunas). 2022;58(5):624–633. doi: 10.3390/medicina58050624
- Edsfeldt A, Grufman H, Asciutto G, et al. Circulating cytokines reflect the expression of pro-inflammatory cytokines in atherosclerotic plaques. Atherosclerosis. 2015;241(2):443–449. doi: 10.1016/j.atherosclerosis.2015.05.019
- Caparosa EM, Sedgewick AJ, Zenonos G, et al. Regional molecular signature of the symptomatic atherosclerotic carotid plaque. Neurosurgery. 2019;85(2):E284–E293. doi: 10.1093/neuros/nyy470
- Popova V, Geneva-Popova M, Kraev K, Batalov A. Assessment of TNF-α expression in unstable atherosclerotic plaques, serum IL-6 and TNF-α levels in patients with acute coronary syndrome and rheumatoid arthritis. Rheumatol Int. 2022;42(9):1589–1596. doi: 10.1007/s00296-022-05113-4
- Canault M, Peiretti F, Poggi M, et al. Progression of atherosclerosis in ApoE-deficient mice that express distinct molecular forms of TNF-alpha. J Pathol. 2008;214(5):574–583. doi: 10.1002/path.2305
- Shavrin AP, Khovaeva YB, Chereshnev VA, Golovskoy BV. Markers of inflammation in the development of atherosclerosis. Cardiovascular therapy and prevention. 2009;8(3):13–15. (In Russ.) EDN: KPNXWV
- Ragino YuI, Chernyavsky AM, Tikhonov AV, et al. Blood lipid and non-lipid biomarker levels in men with coronary atherosclerosis in Novosibirsk. Russian Journal of Cardiology. 2009;14(2):31–35. EDN: KKPAIB
- Wang X, Connolly TM. Biomarkers of vulnerable atheromatous plaques: translational medicine perspectives. Adv Clin Chem. 2010;50:1–22. doi: 10.1016/s0065-2423(10)50001-5
- Ragino YuI, Chernyavsky AM, Polonskaya YaV, et al. Inflammatory-destructive biomarkers of instability of atherosclerotic plaques: studies of the vascular wall and blood. Kardiologiia. 2012;52(5):37–41. EDN: PMXGCB
- Gopalakrishnan M, Silva-Palacios F, Taytawat P, et al. Role of inflammatory mediators in the pathogenesis of plaque rupture. J Invasive Cardiol. 2014;26(9):484–492.
- Profumo Е, Buttari B, Tosti ME, et al. Plaque-infiltrating T lymphocytes in patients with carotid atherosclerosis: an insight into the cellular mechanisms associated to plaque destabilization. J Cardiovasc Surg (Torino). 2013;54(3):349–357.
- Ivanova AYu, Rysenkova EYu, Afanasiev MA, et al. High-calorie diet influence on morphological and functional parameters of the cardiovascular system in spontaneously hypertensive rats. Clinical and Experimental Morphology. 2021;10(1):50–57. EDN: QRHFUJ doi: 10.31088/CEM2021.10.1.50-57
- Markin AM, Markina YuV, Sukhorukov VN, et al. The role of physical activity in the development of atherosclerotic lesions of the vascular wall. Clinical and Experimental Morphology. 2019;8(4):25–31. EDN: TMHXCU doi: 10.31088/CEM2019.8.4.25-31
Supplementary files
