Involvement of interferon-gamma and tumor necrosis factor-alpha in the formation of unstable atherosclerotic plaque

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Research on the role of various interleukins in atherosclerosis has shown that pro-inflammatory cytokines contribute to disease progression and destabilization of atherosclerotic plaques. The review presents the latest data from the scientific literature and the study’s own findings on the effects of pro-inflammatory cytokines INF-γ and TNF-α on the formation of unstable atherosclerotic lesions. It has been shown that the deterioration of the unstable plaque cap strength and its destruction can be associated with an increase in concentration, activation and action of powerful pro-inflammatory cytokines INF-γ and TNF-α in the vascular wall.

Full Text

Restricted Access

About the authors

Vlada A. Snegova

Institute of Experimental Medicine

Email: biolaber@inbox.ru
ORCID iD: 0000-0002-9925-2886
SPIN-code: 8088-4446

Cand. Sci. (Biology), Senior Research Associate, Department of Biochemestry

Russian Federation, 12 Academician Pavlov St., Saint Petersburg, 197022

Peter V. Pigarevsky

Institute of Experimental Medicine

Author for correspondence.
Email: pigarevsky@mail.ru
ORCID iD: 0000-0002-5906-6771
SPIN-code: 8636-4271

Dr. Sci. (Biology), Head of the Laboratory of Atherosclerosis named after N.N. Anichkov, Department of Biochemistry

Russian Federation, 12 Academician Pavlov St., Saint Petersburg, 197022

Svetlana V. Maltseva

Institute of Experimental Medicine

Email: moon25@rambler.ru
ORCID iD: 0000-0001-7680-8485
SPIN-code: 8367-9096

Cand. Sci.  (Biology), Researcher Associate, Department of Biochemestry

Russian Federation, 12 Academician Pavlov St., Saint Petersburg, 197022

Olga G. Yakovleva

Institute of Experimental Medicine

Email: emalonett@yandex.ru
ORCID iD: 0000-0002-6248-9468

Cand. Sci. (Biology), Senior Research Associate, Department of Biochemistry

Russian Federation, 12 Academician Pavlov St., Saint Petersburg, 197022

References

  1. Nagornev V, Anestiady V, Zota E. Pathomorphosis of atherosclerosis (immunoaspects). Saint Petersburg: Tsentral’naya tipografiya; 2008. 318 p. (In Russ.)
  2. Pigarevsky PV. Antigens and their role in immunoinflammatory responses in human atherogenesis. Medical Academic Journal. 2010;10(4):210–217. EDN: TJECWN
  3. Ji Q, Cheng G, Ma N, et al. Circulating Th1, Th2, and Th17 levels in hypertensive patients. Dis Markers. 2017;2017:1–12. doi: 10.1155/2017/7146290
  4. Gordienko A, Serdyukov D. Initial atherosclerosis: risk factors, diagnosis, prevention, treatment. Saint Petersburg: SpetsLit; 2020. 119 p. EDN: CHGOAH (In Russ.)
  5. Pigarevsky PV, Maltseva SV, Snegova VA. Progressive atherosclerotic lesions in humans. Morphological and immunoinflammatory aspects. Cytokines and inflammation. 2013;12(1–2):5–12. EDN: RVTFLB
  6. Legein B, Temmerman L, Biessen E, Lutgens E. Inflammatory and immune system interactions in atherosclerosis. Cell Mol Life Sci. 2013;70(20):3847–3869. doi: 10.1007/s00018-013-1289-1
  7. Poredos P, Gregoric ID, Jezovnik MK. Inflammation of carotid plaques and risk of cerebrovascular events. Ann Transl Med. 2020;8(19):1281–1288. doi: 10.21037/atm-2020-cass-15
  8. Nguyen MT, Fernando S, Schwarz N, et al. Inflammation as a therapeutic target in atherosclerosis. J Clin Med. 2019;8(8):1109–1129. doi: 10.3390/jcm8081109
  9. Ait-Oufella H, Taleb S, Mallat Z, Tedgui A. Recent advances on the role of cytokines in atherosclerosis. Atheroscler Thromb Vasc Biol. 2011;31(5):969–979. doi: 10.1161/ATVBAHA.110.207415
  10. Tsioufis P, Theofilis P, Tsioufis K, Tousoulis D. The impact of cytokines in coronary atherosclerotic plaque: Current therapeutic approaches. Int J Mol Sci. 2022;23(24):15937. doi: 10.3390/ijms232415937
  11. Simbirtsev AS. Cytokines in the pathogenesis and treatment of human diseases. Saint Petersburg: Foliant; 2018. 512 p. EDN: XIZEJB (In Russ.)
  12. Hansson GK, Libby P, Tabas I. Inflammation and plaque vulnerability. J Intern Med. 2015;278:483–493. doi: 10.1111/joim.12406
  13. Weng X, Cheng X, Wu X, et al. Sin3B mediates collagen type I gene repression by interferon gamma in vascular smooth muscle cells. Biochem Biophys Res Commun. 2014;447(2):263–270. doi: 10.1016/j.bbrc.2014.03.140
  14. Tabas I, Garcia-Cardena G, Owens GK. Recent insights into the cellular biology of atherosclerosis. J Cell Biol. 2015;209:13–22. doi: 10.1083/jcb.201412052
  15. Fathullina AR, Peshkova YuO, Koltsova EK. The role of cytokines in the development of atherosclerosis. Biochemistry. 2016;81(11):1614–1627. EDN: XBJHZT
  16. Ge P, Li H, Ya X, et al. Single-cell atlas reveals different immune environments between stable and vulnerable atherosclerotic plaques. Front Immunol. 2023;13:1085468. doi: 10.3389/fimmu.2022.1085468
  17. Mallat Z, Taleb S, Ait-Oufella H, Tedgui A. The role of adaptive T cell immunity in atherosclerosis. J Lipid Res. 2009;50:364–369. doi: 10.1194/jlr.R800092-JLR200
  18. Ohmura Y, Ishimori N, Saito A, et al. Natural killer T cells are involved in atherosclerotic plaque instability in apoliprotein-E knockout mice. Int J Mol Sci. 2021;22(22):12451. doi: 10.3390/ijms222212451
  19. Bonnacorsi I, Spinelli D, Cantoni C, et al. Symptomatic carotid atherosclerotic plaques are associated with increased infiltration of natural killer (NK) cells and higher serum levels of NK activating receptor ligands. Front Immunol. 2019;10:1503. doi: 10.3389/fimmu.2019.01503
  20. Pigarevsky PV. Atherosclerosis. Unstable atherosclerotic plaque (immunomorphological study). Atlas. Saint Petersburg: SpetsLit; 2018. 148 p. (In Russ.) EDN: YUGNZZ
  21. Tulowiecka N, Kotlega D, Bohatyrewicz A, Szczuko M. Could lipoxins represent a new standard in ischemic stroke treatment? Int J Mol Sci. 2021;22(8):4207–4222. doi: 10.3390/ijms22084207
  22. Elyasi A, Voloshyna I, Ahmed S, et al. The role of interferon-gamma in cardiovascular deasease: update. Inflamm Res. 2020;69(10):975–988. doi: 10.1007/s00011-020-01382-6
  23. Koltsova EK, Garcia Z, Chodaczek G, et al. Dynamic T cell-APC interactions sustain chronic inflammation in atherosclerosis. J Clin Invest. 2012;122(9):3114–3126. doi: 10.1172/JCI61758
  24. Buono C, Come CE, Stavrakis G, et al. Influence of interferon-gamma on the extent and phenotype of diet-induced atherosclerosis in the LDLR-deficient mouse. Atheroscler Thromb Vasc Biol. 2003;23(3):454–460. doi: 10.1161/01.ATV.0000059419.11002.6E
  25. Dutova SV, Saranchina JV, Karpova MR, et al. Cytokines and atherosclerosis are new areas of research. Siberian Medicine Bulletin. 2018;17(4):199–207. EDN: YTHLJB doi: 10.20538/1682-0363-2018-4-199-207
  26. Rai V, Agrawal DK. The role of damage- and pathogen-associated molecular patterns in inflammation — mediated vulnerability of atherosclerotic plaques. Can J Physiol Pharmacol. 2017;95(10):1245–1253. doi: 10.1139/cjpp-2016-0664
  27. Vorobyova DA, Lebedev AM, Vagida MS, et al. Immunological analysis of human atherosclerotic plaques in ex vivo culture system. Kardiologiia. 2016;56(11):78–85. EDN: XBFROJ doi: 10.18565/cardio.2016.11.78-85
  28. Koga M, Kai H, Yasukawa H, et al. Inhibition of progression and stabilization of plaques by postnatal interferon-gamma function blocking in ApoE-knockout mice. Circ Res. 2007;101(4):348–356. doi: 10.1161/CIRCRESAHA.106.147256
  29. Boshuizen M, de Winther M. Interferons as essential modulators of atherosclerosis. Atheroscler Thromb Vasc Biol. 2015;35:1579–1588. doi: 10.1161/ATVBAHA.115.305464
  30. Zhu Y, Xian X, Wang Z, et al. Research progress on the relationship between atherosclerosis and inflammation. Biomolecules. 2018;8(3):80–91. doi: 10.3390/biom8030080
  31. Voloshyna I, Littlefield MJ, Reiss AB. Atherosclerosis and interferon-γ: new insights and therapeutic targets. Trends Cardiovasc Med. 2014;24(1):45–51. doi: 10.1016/j.tcm.2013.06.003
  32. Munjal A, Khandia R. Atherosclerosis: orchestrating cells and biomolecules involved in its activation and inhibition. Adv Protein Chem Struct Biol. 2020;120:85–122. doi: 10.1016/bs.apcsb.2019.11.002
  33. Akadam-Teker AB, Teker E, Daglar-Aday A, et al. Interactive effects of interferon-gamma nucleotide polymorphism (+874 T/A) with cardiovascular risk factors in coronary heart disease and early myocardial infarction risk. Mol Biol Rep. 2020;47(11):8397–8405. doi: 10.1007/s11033-020-05877-7
  34. Kalliolias GD, Ivashkiv LB. TNF biology, pathogenic mechanisms and emerging therapeutic strategies. Nat Rev Rheumatol. 2016;12:49–62. doi: 10.1038/nrrheum.2015.169
  35. Karagodin VP, Bobryshev YuV, Orekhov AN. Inflammation, immunocompetent cells, cytokines – role in atherogenesis. Pathogenesis. 2014;12(1):21–35. EDN: TIKZED
  36. Mourouzis K, Oikonomou E, Siasos G, et al. Pro-inflammatory cytokines an acute coronary syndrome. Curr Pharm Des. 2020;26(36);4624–4647. doi: 10.2174/1381612826666200413082353
  37. Basiak M, Kosowski M, Hachula M, Okopien B. Impact of PCKS9 inhibition on proinflammatory cytokines and matrix metalloproteinases release in patients with mixed hyperlipidemia and vulnerable atherosclerotic plaque. Pharmaceuticals (Basel). 2022:15(7):802–812. doi: 10.3390/ph15070802
  38. Chistiakov DA, Melnichenko AA, Grechko AV, et al. Potential of anti-inflammatory agents for treatment of atherosclerosis. Exp Mol Pathol. 2018;104(2):114–124. doi: 10.1016/j.yexmp.2018.01.008
  39. Basiak M, Kosowski M, Hachula M, Okopien B. Plasma concentration of cytokines in patients with combined hyperlipidemia and atherosclerotic plaque before treatment initiation – a pilot study. Medicina (Kaunas). 2022;58(5):624–633. doi: 10.3390/medicina58050624
  40. Edsfeldt A, Grufman H, Asciutto G, et al. Circulating cytokines reflect the expression of pro-inflammatory cytokines in atherosclerotic plaques. Atherosclerosis. 2015;241(2):443–449. doi: 10.1016/j.atherosclerosis.2015.05.019
  41. Caparosa EM, Sedgewick AJ, Zenonos G, et al. Regional molecular signature of the symptomatic atherosclerotic carotid plaque. Neurosurgery. 2019;85(2):E284–E293. doi: 10.1093/neuros/nyy470
  42. Popova V, Geneva-Popova M, Kraev K, Batalov A. Assessment of TNF-α expression in unstable atherosclerotic plaques, serum IL-6 and TNF-α levels in patients with acute coronary syndrome and rheumatoid arthritis. Rheumatol Int. 2022;42(9):1589–1596. doi: 10.1007/s00296-022-05113-4
  43. Canault M, Peiretti F, Poggi M, et al. Progression of atherosclerosis in ApoE-deficient mice that express distinct molecular forms of TNF-alpha. J Pathol. 2008;214(5):574–583. doi: 10.1002/path.2305
  44. Shavrin AP, Khovaeva YB, Chereshnev VA, Golovskoy BV. Markers of inflammation in the development of atherosclerosis. Cardiovascular therapy and prevention. 2009;8(3):13–15. (In Russ.) EDN: KPNXWV
  45. Ragino YuI, Chernyavsky AM, Tikhonov AV, et al. Blood lipid and non-lipid biomarker levels in men with coronary atherosclerosis in Novosibirsk. Russian Journal of Cardiology. 2009;14(2):31–35. EDN: KKPAIB
  46. Wang X, Connolly TM. Biomarkers of vulnerable atheromatous plaques: translational medicine perspectives. Adv Clin Chem. 2010;50:1–22. doi: 10.1016/s0065-2423(10)50001-5
  47. Ragino YuI, Chernyavsky AM, Polonskaya YaV, et al. Inflammatory-destructive biomarkers of instability of atherosclerotic plaques: studies of the vascular wall and blood. Kardiologiia. 2012;52(5):37–41. EDN: PMXGCB
  48. Gopalakrishnan M, Silva-Palacios F, Taytawat P, et al. Role of inflammatory mediators in the pathogenesis of plaque rupture. J Invasive Cardiol. 2014;26(9):484–492.
  49. Profumo Е, Buttari B, Tosti ME, et al. Plaque-infiltrating T lymphocytes in patients with carotid atherosclerosis: an insight into the cellular mechanisms associated to plaque destabilization. J Cardiovasc Surg (Torino). 2013;54(3):349–357.
  50. Ivanova AYu, Rysenkova EYu, Afanasiev MA, et al. High-calorie diet influence on morphological and functional parameters of the cardiovascular system in spontaneously hypertensive rats. Clinical and Experimental Morphology. 2021;10(1):50–57. EDN: QRHFUJ doi: 10.31088/CEM2021.10.1.50-57
  51. Markin AM, Markina YuV, Sukhorukov VN, et al. The role of physical activity in the development of atherosclerotic lesions of the vascular wall. Clinical and Experimental Morphology. 2019;8(4):25–31. EDN: TMHXCU doi: 10.31088/CEM2019.8.4.25-31

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Expression of INF- γ in atherosclerotic plaque: a — mononuclear cells (arrows) expressing INF-γ are visible in the area of the fibrous cap rupture of the unstable atherosclerotic plaque; b — complete absence of extracellular and intracellular expression of INF-γ in the fibrous cap of stable atherosclerotic plaque. Immunohistochemical staining; ×550 (a); ×400 (b)

Download (241KB)
3. Fig. 2. TNF-α expression in the intima of atherosclerotic plaque: a — TNF-α in the cytoplasm of macrophages located in the area of destruction of the cap of unstable atherosclerotic plaque; b — absence of TNF-α in a dense fibrous cap of stable atherosclerotic plaque. Immunohisochemical staining; ×600 (a); ×250 (b)

Download (386KB)

Copyright (c) 2024 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 74760 от 29.12.2018 г.