Involvement of interferon-gamma and tumor necrosis factor-alpha in the formation of unstable atherosclerotic plaque



Cite item

Full Text

Abstract

Research on the role of various interleukins in atherosclerosis has shown that pro-inflammatory cytokines contribute to disease progression and destabilization of atherosclerotic plaques. The review presents the latest data from the scientific literature and the study's own findings on the effects of pro-inflammatory cytokines INF- γ and TNF- α on the formation of unstable atherosclerotic lesions. It has been shown that the deterioration of the unstable plaque cap strength and its destruction can be associated with an increase in concentration, activation and action of powerful pro-inflammatory cytokines INF- γ and TNF- α in the vascular wall.

Full Text

Restricted Access

About the authors

Vlada Snegova

Institute of Experimental Medicine

Email: biolaber@inbox.ru
ORCID iD: 0000-0002-9925-2886
SPIN-code: 8088-4446

Cand. Sci. (Biol.), Researcher Associate, Department of Biochemestry

Russian Federation, Санкт-Петербург, улица Академика Павлов, д. 12

Peter Pigarevsky

Institute of Experimental Medicine

Author for correspondence.
Email: pigarevsky@mail.ru
ORCID iD: 0000-0002-5906-6771
SPIN-code: 8636-4271

Dr. Sci. (Biol.),  Head of the Laboratory of Atherosclerosis named after N.N. Anichkov, Department of Biochemistry

Russian Federation, Санкт-Петербург, ул. Академика Павлова, д. 12

Svetlana Maltseva

ФГБНУ "Институт экспериментальной медицины"

Email: moon25@rambler.ru
ORCID iD: 0000-0001-7680-8485
SPIN-code: 8367-9096

Cand. Sci.  (Biology), Researcher Associate, Department of Biochemestry

Russian Federation, Санкт-Петербург, улица Академика Павлова, д. 12

Olga Yakovleva

ФГБНУ "Институт экспериментальной медицины"

Email: emalonett@yandex.ru
ORCID iD: 0000-0002-6248-9468

Researcher Associate, Department of Biochemistry 

Russian Federation, Санкт-Петербург, улица Академика Павлова, д.12

References

  1. Nagornev V, Anestiady V, Zota E. Pathomorphosis of atherosclerosis (immunoaspects). St. Petersburg: Central printing house; 2008. (In Russ.).
  2. Pigarevsky PV. Antigens and their role in immunoinflammatory responses in human atherogenesis. Medical Academic Journal. 2010;10(4):210–217. (In Russ.)
  3. Ji Q, Cheng G, Ma N, Huang Y, Lin Y, Zhou Q, et al. Circulating Th1, Th2, and Th17 levels in hypertensive patients. Dis Markers. 2017; 2017:1–12. doi: 10.1155/2017/7146290.
  4. Gordienko A, Serdyukov D. Initial atherosclerosis: risk factors,
  5. diagnosis, prevention, treatment. St. Petersburg: SpetsLit; 2020. (In Russ.)
  6. Pigarevsky PV, Maltseva SV, Snegova VA. Progressive atherosclerotic lesions in humans. Morphological and immunoinflammatory aspects. Cytokines and inflammation. 2013;12(1-2):5–12 (In Russ.)
  7. Legein B, Temmerman L, Biessen E, Lutgens E. Inflammatory and immune system interactions in atherosclerosis. Cell Mol Life Sci. 2013; 70, (20):3847–3869. doi: 10.1007/s00018-013-1289-1.
  8. Poredos P, Gregoric ID, Jezovnik MK. Inflammation of carotid plaques and risk of cerebrovascular events. Ann Transl Med. 2020;8(19):1281–1288. doi: 10.21037/atm-2020-cass-15.
  9. Nguyen MT, Fernando S, Schwarz N, Tan JT, Bursill CA, Psaltis PJ. Inflammation as a therapeutic target in atherosclerosis. J Clin Med. 2019;8(8):1109–1129. doi: 10.3390/jcm8081109.
  10. Ait-Oufella H, Taleb S, Mallat Z, Tedgui A. Recent advances on the role of cytokines in atherosclerosis. Atheroscler Thromb Vasc Biol. 2011;31(5):969–979. doi: 10.1161/ATVBAHA.110.207415.
  11. Tsioufis P, Theofilis P, Tsioufis K, Tousoulis D. The impact of cytokines in coronary atherosclerotic plaque: Current therapeutic approaches. Int J Mol Sci. 2022;23(24):15937. doi: 10.3390/ijms232415937.
  12. Simbirtsev AS. Cytokines in the pathogenesis and treatment of human diseases. St. Petersburg: Foliant; 2018. (In Russ.)
  13. Hansson GK, Libby P, Tabas I. Inflammation and plaque vulnerability. J Intern Med. 2015;278: 483–493. doi: 10.1111/joim.12406.
  14. Weng X, Cheng X, Wu X, Xu H, Fang M, Xu Y. Sin3B mediates collagen type I gene repression by interferon gamma in vascular smooth muscle cells. Biochem Biophys Res Commun. 2014;447(2):263–270. doi: 10.1016/j.bbrc.2014.03.140.
  15. Tabas I, Garcia-Cardena G, Owens GK. Recent insights into the cellular biology of atherosclerosis. J Cell Biol. 2015;209:13–22.
  16. doi: 10.1083/jcb.201412052.
  17. Fathullina AR, Peshkova YuO, Koltsova EK. The role of cytokines in the development of atherosclerosis. Biochemistry. 2016;81(11):1614–1627 (In Russ.)
  18. Ge P, Li H, Ya X, Xu Y, Ma L, He Q et al. Single-cell atlas reveals different immune environments between stable and vulnerable atherosclerotic plaques. Front Immunol. 2023;13:1085468. doi: 10.3389/fimmu.2022.1085468.
  19. Mallat Z, Taleb S, Ait-Oufella H, Tedgui A. The role of adaptive T cell immunity in atherosclerosis. J Lipid Res. 2009;50:364–369. doi: 10.1194/jlr.R800092-JLR200.
  20. Ohmura Y, Ishimori N, Saito A, Yokota T, Horii S, Tokuhara S et al. Natural killer T cells are involved in atherosclerotic plaque instability in apoliprotein-E knockout mice. Int J Mol Sci. 2021;22(22):12451. doi: 10.3390/ijms222212451.
  21. Bonnacorsi I, Spinelli D, Cantoni C, Barilla C, Pipito N, De Pasquale C et al. Symptomatic carotid atherosclerotic plaques are associated with increased infiltration of natural killer (NK) cells and higher serum levels of NK activating receptor ligands. Front Immunol. 2019;10:1503. doi: 10.3389/fimmu.2019.01503.
  22. Pigarevsky PV. Atherosclerosis. Unstable atherosclerotic plaque (immunomorphological study). Atlas. St.-Petersburg: SpetsLit.; 2018. (In Russ.).
  23. Tulowiecka N, Kotlega D, Bohatyrewicz A, Szczuko M. Could lipoxins represent a new standard in ischemic stroke treatment? Int J Mol Sci. 2021;22(8):4207–4222. doi: 10.3390/ijms22084207.
  24. Elyasi A, Voloshyna I, Ahmed S, Kasselman LJ, Behbodikhah J, De Leon J et al. The role of interferon-gamma in cardiovascular deasease: An update. Inflamm Res. 2020;69(10):975–988. doi: 10.1007/s00011- 020-01382-6.
  25. Koltsova EK, Garcia Z, Chodaczek G, Landau M, McArdle S, Scott SR. et al. Dynamic T cell-APC interactions sustain chronic inflammation in atherosclerosis. J Clin Invest. 2012;122(9):3114–3126. doi: 10.1172/JCI61758.
  26. Buono C, Come CE, Stavrakis G, Maguire GF, Connelly PW, Lichtman AH. Influence of interferon-gamma on the extent and phenotype of diet-induced atherosclerosis in the LDLR-deficient mouse. Atheroscler Thromb Vasc Biol. 2003;23(3):454–460. doi: 10.1161/01.ATV.0000059419.11002.6E.
  27. Dutova SV, Saranchina JV, Karpova MR, Kilina OY, Poland NG,
  28. Kulakova TS. et al. Cytokines and atherosclerosis are new areas of
  29. research. Siberian Medicine Bulletin. 2018;17(4):199–207 (In Russ.).
  30. doi: 10.20538/1682-0363-2018-4-199-207.
  31. Rai V, Agrawal DK. The role of damage- and pathogen- associated
  32. molecular patterns in inflammation – mediated vulnerability of
  33. atherosclerotic plaques. Can J Physiol Pharmacol. 2017;95(10):1245–
  34. doi: 10.1139/cjpp-2016-0664.
  35. Vorobyova DA, Lebedev AM, Vagida MS, Ivanova OI, Felker EI,
  36. Gontarenko VN et al. Immunological analysis of human atherosclerotic
  37. plaques in ex vivo culture system. Kardiologiia. 2016;56(11):78–85.
  38. doi: 10.18565/cardio.2016.11.78-85.
  39. Koga M, Kai H, Yasukawa H, Yamamoto T, Kawai Y, Kato S. et al. Inhibition of progression and stabilization of plaques by postnatal interferon-gamma function blocking in ApoE-knockout mice. Circ Res. 2007;101(4):348–356. doi: 10.1161/CIRCRESAHA.106.147256.
  40. Boshuizen M, de Winther M. Interferons as essential modulators of atherosclerosis. Atheroscler Thromb Vasc Biol. 2015;35:1579–1588. doi: 10.1161/ATVBAHA.115.305464.
  41. Zhu Y, Xian X, Wang Z, Bi Y, Chen Q, Han X et al. Research progress on the relationship between atherosclerosis and inflammation. Biomolecules. 2018;8(3):80-91. doi: 10.3390/biom8030080.
  42. Voloshyna I, Littlefield MJ, Reiss AB. Atherosclerosis and interferon- γ: new insights and therapeutic targets. Trends Cardiovasc Med. 2014;24(1):45–51. doi: 10.1016/j.tcm.2013.06.003.
  43. Munjal A, Khandia R. Atherosclerosis: orchestrating cells and biomolecules involved in its activation and inhibition. Adv Protein Chem Struct Biol. 2020;120:85–122. doi: 10.1016/bs.apcsb.2019.11.002.
  44. Akadam-Teker AB, Teker E, Daglar-Aday A, Peccok-Uyanik KC, Aslan EI, Kucukhuseyin O et al. Interactive effects of interferon-gamma nucleotide polymorphism (+874 T/A) with cardiovascular risk factors in coronary heart disease and early myocardial infarction risk. Mol Biol Rep. 2020;47(11):8397–8405. doi: 10.1007/s11033-020-05877-7.
  45. Kalliolias GD, Ivashkiv LB. TNF biology, pathogenic mechanisms and emerging therapeutic strategies. Nat Rev Rheumatol. 2016;12:49–62. doi: 10.1038/nrrheum.2015.169.
  46. Karagodin VP, Bobryshev YuV, Orekhov AN. Inflammation,
  47. immunocompetent cells, cytokines – role in atherogenesis.
  48. Pathogenesis. 2014;12(1):21–35 (In Russ.).
  49. Mourouzis K, Oikonomou E, Siasos G, Tsalamadris S, Vogiatzi G,
  50. Antonopoulos A et al. Pro-inflammatory cytokines an acute coronary
  51. syndrome. Curr Pharm Des. 2020;26(36);4624–4647. DOI:
  52. 2174/1381612826666200413082353.
  53. Basiak M, Kosowski M, Hachula M, Okopien B. Impact of PCKS9 inhibition on proinflammatory cytokines and matrix metalloproteinases release in patients with mixed hyperlipidemia and vulnerable atherosclerotic plaque. Pharmaceuticals (Basel). 2022:15(7):802-812. doi: 10.3390/ph15070802.
  54. Chistiakov DA, Melnichenko AA, Grechko AV, Myasoedova VA, Orekhov AN. Potential of anti-inflammatory agents for treatment of atherosclerosis. Exp Mol Pathol. 2018;104(2):114–124. doi: 10.1016/j.yexmp.2018.01.008.
  55. Basiak M, Kosowski M, Hachula M, Okopien B. Plasma concentration of cytokines in patients with combined hyperlipidemia and atherosclerotic plaque before treatment initiation – A pilot study. Medicina (Kaunas). 2022;58(5):624-633. doi: 10.3390/medicina58050624.
  56. Edsfeldt A, Grufman H, Asciutto G, Nitulescu M, Persson A, Nilsson M et al. Circulating cytokines reflect the expression of pro-inflammatory cytokines in atherosclerotic plaques. Atherosclerosis. 2015;241(2):443–449. doi: 10.1016/j.atherosclerosis.2015.05.019.
  57. Caparosa EM, Sedgewick AJ, Zenonos G, Zhao Y, Carlisle DL, Stephaneanu L et al. Regional molecular signature of the symptomatic atherosclerotic carotid plaque. Neurosurgery. 2019;85(2):E284–E293. doi: 10.1093/neuros/nyy470.
  58. Popova V, Geneva-Popova M, Kraev K, Batalov A. Assessment of TNF-a expression in unstable atherosclerotic plaques, serum IL-6 and TNF-a levels in patients with acute coronary syndrome and rheumatoid arthritis. Rheumatol Int. 2022;42(9):1589–1596. doi: 10.1007/s00296-022-05113-4.
  59. Canault M, Peiretti F, Poggi M, Mueller C, Kopp F, Bonardo B et al. Progression of atherosclerosis in ApoE-deficient mice that express distinct molecular forms of TNF-alpha. J Pathol. 2008;214(5):574–583. doi: 10.1002/path.2305.
  60. Shavrin AP, Khovaeva YB, Chereshnev VA, Golovskoy BV. Markers of
  61. inflammation in the development of atherosclerosis. Cardiovascular
  62. therapy and prevention. 2009;8(3):13–15. (In Russ.)
  63. Ragino YI, Chernyavsky AM, Tikhonov AV, Tsymbal SYu, Polonskaya YV,
  64. Semaeva EV. et al. Blood lipid and non-lipid biomarker levels in men with
  65. coronary atherosclerosis in Novosibirsk. Russian Journal of Cardiology.
  66. ;14(2):31–35 (In Russ.)
  67. Wang X, Connolly TM. Biomarkers of vulnerable atheromatous plaques: translational medicine perspectives. Adv Clin Chem. 2010;50:1–22. doi: 10.1016/s0065-2423(10)50001-5.
  68. Ragino YI, Chernyavsky AM, Polonskaya YV, Volkov AM, Tsymbal SY,
  69. Polovnikova EM. Inflammatory-destructive biomarkers of instability of
  70. atherosclerotic plaques: studies of the vascular wall and blood. Cardiology.
  71. ;52(5):37–41. (In Russ.)
  72. Gopalakrishnan M, Silva-Palacios F, Taytawat P, Pant R, Klein L. Role of inflammatory mediators in the pathogenesis of plaque rupture. J Invasive Cardiol. 2014;26(9):484–492.
  73. Profumo Е, Buttari B, Tosti ME, Tagliani A, Capoano R, D'Amati G et al. Plaque-infiltrating T lymphocytes in patients with carotid atherosclerosis: an insight into the cellular mechanisms associated to plaque destabilization. J Cardiovasc Surg (Torino). 2013;54(3):349–357.
  74. Ivanova AYu, Rysenkova EYu, Afanasiev MA, Chumachenko PV, Popov
  75. VS, Postnov AYu et al. High-calorie diet influence on morphological and
  76. functional parameters of the cardiovascular system in spontaneously
  77. hypertensive rats. Clinical and Experimental Morphology. 2021;10(1):50-
  78. (In Russ.). doi: 10.31088/CEM2021.10.1.50-57.
  79. Markin AM, Markina YuV, Sukhorukov VN, Khaylov AM, Orekhov AN.
  80. The role of physical activity in the development of atherosclerotic lesions
  81. of the vascular wall. Clinical and Experimental Morphology.
  82. ;8(4):25-31.(In Russ.). doi: 10.31088/CEM2019.8.4.25-31.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 74760 от 29.12.2018 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies