ОРГАНОФОСФАТ-ИНДУЦИРОВАННАЯ ОТСРОЧЕННАЯ НЕЙРОПАТИЯ: НЕРЕШЕННАЯ ПРОБЛЕМА?



Цитировать

Полный текст

Аннотация

В работе представлен обзор литературы за последние годы, посвященной отсроченной периферической нейропатии, обусловленной острым или хроническим низкодозовым воздействием фосфорорганическими соединениями, который включал вопросы клинических проявлений, морфологического субстрата, примеры массовых и суицидальных отравлений, экспериментальные данные и основные гипотезы о нехолинергических механизмах, лежащих в основе патологии.

Полный текст

Доступ закрыт

Об авторах

Татьяна Николаевна Саватеева-Любимова

Федеральное государственное бюджетное учреждение «Научно-исследовательский институт гриппа имени А.А. Смородинцева» Министерства здравоохранения Российской Федерации

Email: drugs_safety@mail.ru
SPIN-код: 3543-6799

доктор медицинских наук, профессор, ведущий научный сотрудник лаборатории безопасности лекарственных средств

Россия, 197376, Россия, г. Санкт-Петербург, ул. Профессора Попова, 15/17

Константин Владимирович Сивак

Федеральное государственное бюджетное учреждение «Научно-исследовательский институт гриппа имени А.А. Смородинцева» Министерства здравоохранения Российской Федерации

Автор, ответственный за переписку.
Email: kvsivak@gmail.com
ORCID iD: 0000-0003-4064-5033
SPIN-код: 7426-8322
Scopus Author ID: 35269910300
ResearcherId: ABC-6724-2021

доктор биологических наук, заведующий отделом доклинических исследований ФГБУ «НИИ гриппа им. А.А. Смородинцева» Минздрава России

Россия, 197376, Россия, г. Санкт-Петербург, ул. Профессора Попова, 15/17

Кира Иосифовна Стосман

Федеральное государственное бюджетное учреждение «Научно-исследовательский институт гриппа имени А.А. Смородинцева» Министерства здравоохранения Российской Федерации

Email: labtox6@rambler.ru
SPIN-код: 8423-0170

кандидат биологических наук, старший научный сотрудник лаборатории безопасности лекарственных средств

Россия, 197376, Россия, г. Санкт-Петербург, ул. Профессора Попова, 15/17

Список литературы

  1. Castelli G., Desai K.M., Cantone R.E. Peripheral Neuropathy: Evaluation and Differential Diagnosis. Am Fam Physician. 2020;102(12):732-739.
  2. Пизова Н.В. Основные метаболические и токсические полинейропатии в клинической практике // Медицинский совет. – 2021. – Т.19. – С.134–146. https://doi.org/10.21518/2079-701X-2021-19-134-146.
  3. 3. Peters J., Staff N.P. Update on Toxic Neuropathies. Curr Treat Options Neurol. 2022;24(5):203-216. https://doi.org/10.1007/s11940-022-00716-5.
  4. Eskut N., Koskderelioglu A. Neurotoxic Agents and Peripheral Neuropathy. Neurotoxicity - New Advances. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.101103.
  5. Smyth D., Kramarz C., Carr A.S., et al. Toxic neuropathies: a practical approach. Pract Neurol. 2023;23(2):120-130. http://dx.doi.org/10.1136/pn-2022-003444.
  6. Кабдрахманова Г.Б., Утепкалиева А.П. О роли экотоксикантов в развитии нейротоксикозов // Медицинский журнал Западного Казахстана. – 2018. – Т.57. – №1. – С. 29-35.
  7. Valentin W.M. Toxic peripheral neuropathies: agents and mechanisms. Toxicol Pathol. 2020; 48 (1): 152-173. http://dx.doi.org/10.1177/0192623319854326.
  8. Боклаженко Е.В., Бодиенкова Г.М., Русанова Д.В. Оценка взаимоотношений между нейротропными антителами и отдельными нейрофизиологическими показателями у пациентов с профессиональной хронической ртутной интоксикацией в постконтактном периоде // Медицинская иммунология. – 2019. – Т.21. – №6. – С. 1197-1202http://dx.doi.org/10.15789/1563-0625-2019-6-1197-1202.
  9. Staff N.P. Peripheral Neuropathies Due to Vitamin and Mineral Deficiencies, Toxins, and Medications. Continuum (Minneap Minn). 2020;26(5):1280-1298. http://dx.doi.org/10.1212/CON.0000000000000908.
  10. Bin-Jumah M., Abdel-Fattah A.M., Saied E.M., et al. Acrylamide-induced peripheral neuropathy: manifestations, mechanisms, and potential treatment modalities. Environ Sci Pollut Res Int. 2021;28(11):13031-13046. http://dx.doi.org/10.1007/s11356-020-12287-6.
  11. Koszewicz M., Markowska K., Waliszewska-Prosol M., et al. The impact of chronic co-exposure to different heavy metals on small fibers of peripheral nerves. A study of metal industry workers. J Occup Med Toxicol. 2021;16(1):12. http://dx.doi.org/10.1186/s12995-021-00302-6.
  12. Adeyinka A., Kondamudi N.P. Cholinergic Crisis. [Updated 2023 Aug 12]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK482433.
  13. Pannu A.K., Bhalla A., Vishnu I., et al. Organophosphate induced delayed neuropathy after an acute cholinergic crisis in self-poisoning. Clinical Toxicology. 2021;59(6):488-492. http://dx.doi.org/10.1080/15563650.2020.1832233.
  14. Patel A., Chavan G., Nagpal A.K. Navigating the Neurological Abyss: A Comprehensive Review of Organophosphate Poisoning Complications. Cureus. 2024;16(2): e54422. http://dx.doi.org/10.7759/cureus.54422 .
  15. Nayak P., Mallick A.K., Mishra S.H., et al. Organophosphorus-Induced Toxic Myeloneuropathy: Series of Three Adolescent Patients with Short Review //J Pediatr Neurosci. 2019;14(1):42–45. http://dx.doi.org/10.4103/jpn.JPN_45_18
  16. Khan A., Seth N.H., Sharath H. Physical Rehabilitation Crucial in Motor Axonal Neuropathy Following Organophosphorus Poisoning: A Case Study. 2024;16(2):e54145. http://dx.doi.org/10.7759/cureus.54145.
  17. Rao B.R.P., Mohanty L., Kampali H., et al. Organophosphate-induced delayed neuropathy: A rare case presentation. Journal of Integrative Medicine and Research. 2024. http://dx.doi.org/10.4103/jimr.jimr_46_23.
  18. Koliatsos V.E., Aleksandris A.S. Wallerian degeneration as a therapeutic target in traumatic brain injury. Curr Opin Neurol. 2019;32(6):786–795. http://dx.doi.org/10.1097/WCO.0000000000000763.
  19. Gajurel B.P., Giri S., Poudel N., et al. Wallerian degeneration in the brain after organophosphorus poisoning: a case report. Ann Med Surg (Lond). 2023;85(4):926–930. http://dx.doi.org/10.1097/MS9.0000000000000102 .
  20. Hervera A., De Virgiliis F., Palmisano I., et al. Reactive oxygen species regulate axonal regeneration through the release of exosomal NADPH oxidase 2 complexes into injured axons. Nat Cell Biol. 2018;20(3):307-319. http://dx.doi.org/10.1038/s41556-018-0039-x.
  21. Rosell A.L., Neukomm L.J. Axon death signalling in Wallerian degeneration among species and in disease. Open Biol. 2019;9(8):190118. http://dx.doi.org/10.1098/rsob.190118.
  22. Jessen K.R., Mirsky Rh. The success and failure od the Schwann cell response to nerve injury. Front. Cell. Neurosci. 2019;13:33. https://doi.org/10.3389/fncel.2019.00033.
  23. Dahlin L.B. The Dynamics of Nerve Degeneration and Regeneration in a Healthy Milieu and in Diabetes. Int. J. Mol. Sci. 2023; 24(20):15241. https://doi.org/10.3390/ijms242015241.
  24. Jortner B.S. Common Structural Lesions of the Peripheral Nervous System. Toxicol Pathol. 2020;48(1):96-104. http://dx.doi.org/10.1177/0192623319826068.
  25. Nocera G., Jacob C. Mechanisms of Schwann cell plasticity involved in peripheral nerve repair after injury. Cell Mol Life Sci. 2020;77(20):3977-3989. http://dx.doi.org/10.1007/s00018-020-03516-9.
  26. Balakrishnan A., Belfiore L., Chu T.H., et al. Insights Into the Role and Potential of Schwann Cells for Peripheral Nerve Repair From Studies of Development and Injury. Front Mol Neurosci. 2021;13:608442. http://dx.doi.org/10.3389/fnmol.2020.608442.
  27. Stassart R.M., Woodhoo A. Axo-glial interaction in the injured PNS. Dev Neurobiol. 2021;81(5):490-506. http://dx.doi.org/10.1002/dneu.22771.
  28. Endo T., Kadoya K., Suzuki T., et al. Mature but not developing Schwann cells promote axon regeneration after peripheral nerve injury. npj Regen Med. 2022;7:12. https://doi.org/10.1038/s41536-022-00205-y.
  29. Bosch-Queralt M., Fledrich R., Stassart R.M. Schwann cell functions in peripheral nerve development and repair. Neurobiol Dis. 2023;176:105952. http://dx.doi.org/10.1016/j.nbd.2022.105952.
  30. Tian W., Czopka T., López-Schier H. Systemic loss of Sarm1 protects Schwann cells from chemotoxicity by delaying axon degeneration. Commun Biol. 2020;3:49. https://doi.org/10.1038/s42003-020-0776-9.
  31. Bouçanova F., Chras R. Metabolic interaction between Shwann cells and axons under physiological and disease conditions. Front. Cell. Neurosci. 2020;14:148. http://dx.doi.org/10.3389/fncel.2020/00148 .
  32. McGonigal R., Campbell C.I., Barrie J.A., et al. Schwann cell nodal membrane disruption triggers bystander axonal degeneration in a Guillain-Barré syndrome mouse model. J Clin Invest. 2022;132(14):e158524. http://dx.doi.org/10.1172/JCI158524.
  33. Manole E., Bastian A.E., Oproiu A.M., et al. Schwann Cell Plasticity in Peripheral Nerve Regeneration after Injury. Demyelination Disorders. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.91805.
  34. Oliveira J.T., Yanick C., Wein N., Gomez Limia C.E. Neuron-Schwann cell interactions in peripheral nervous system homeostasis, disease, and preclinical treatment. Front Cell Neurosci. 2023;17:1248922. http://dx.doi.org/10.3389/fncel.2023.1248922.
  35. Poitelon Y., Kopec A.M., Belin S. Myelin fat facts: An overview of lipids and fatty acid metabolism. Cells. 2020;9(4):812. http://dx.doi.org/10.3390/cells9040812.
  36. Kister A., Kister I. Overview of myelin, major myelin lipids, and myelin-associated proteins. Front Chem. 2023;10:1041961. http://dx.doi.org/10.3389/fchem.2022.1041961.
  37. Петрова Е.С. Современные представления о шванновских клетках: развитие, пластичность, функции // Журнал эволюционной биохимии и физиологии. – 2019. – Т.55, №6. – С. 383-397. http://dx.doi.org/10/1134/S0044452919060068.
  38. Previtali S.C. Peripheral Nerve Development and the Pathogenesis of Peripheral Neuropathy: the Sorting Point. Neurotherapeutics. 2021;18(4):2156-2168. http://dx.doi.org/10.1007/s13311-021-01080-z.
  39. Ioghen O., Manole E., Gherghiceanu M., et al. Non-Myelinating Schwann Cells in Health and Disease [Internet]. Demyelination Disorders. IntechOpen, 2022. Available from: http://dx.doi.org/10.5772/intechopen.91930.
  40. Gonias S.L., Wendy M., Campana W.M. Schwann cell extracellular vesicles: judging a book by its cover. Neural Regen Res. 2023;18(2):325–326. http://dx.doi.org/10.4103/1673-5374.346478.
  41. Jessen K.R., Arthur-Farraj P. Repair Schwann cell update: Adaptive reprogramming, EMT, and stemness in regenerating nerves. Glia. 2019;67(3):421-437. http://dx.doi.org/10.1002/glia.23532.
  42. Rigoni M., Negro S. Signals Orchestrating Peripheral Nerve Repair. Cells. 2020;9(8):1768. http://dx.doi.org/10.3390/cells9081768.
  43. Reed C.B., Feltri M.L., Wilson E.R. Peripheral glia diversity. J Anat. 2022;241(5):1219-1234. http://dx.doi.org/10.1111/joa.13484. Epub 2021 Jun 15.
  44. Trolese M.C., Scarpa C., Melfi V., et al. Boosting the peripheral immune response in the skeletal muscles improved motor function in ALS transgenic mice. Mol Ther. 2022;30(8):2760-2784. http://dx.doi.org/10.1016/j.ymthe.2022.04.018.
  45. Suzuki T., Kadoya K., Endo T., et al. Molecular and Regenerative Characterization of Repair and Non-repair Schwann Cells. Cell Mol Neurobiol. 2023;43;2165–2178. https://doi.org/10.1007/s10571-022-01295-4.
  46. Yu P., Zhang G., Hou B., et al. Effects of ECM proteins (laminin, fibronectin, and type IV collagen) on the biological behavior of Schwann cells and their roles in the process of remyelination after peripheral nerve injury. Front Bioeng Biotechnol. 2023;11:1133718. http://dx.doi.org/ 10.3389/fbioe.2023.1133718.
  47. Naughton S.X., Terry Jr. A.V. Neurotoxicity in acute and repeated organophosphate exposure. Toxicology. 2018; 408:101–112. http://dx.doi.org/10.1016/j.tox.2018.08.011 .
  48. Alahakoon Ch., Dassanayake T.L., Gawarammana I.B., et al. Prediction of organophosphorus insecticide-induced intermediate syndrome with stimulated concentric needle single fibre electromyography. PlosOne.2018;13(9):e0203596.
  49. http://dx.doi.org/10.1371/journal.pone.0203596 .
  50. Silva M.H. Effects of low-dose chlorpyrifos on neurobehavior and potential mechanisms: A review of studies in rodents, zebrafish, and Caenorhabditis elegans. Birth Defects Res. 2020;112(6):445-479. http://dx.doi.org/10.1002/bdr2.1661.
  51. Tsai Y.-H., Lein P.J. Mechanisms of organophosphate neurotoxicity. Curr Opin Toxicol. 2021; 26: 49–60. http://dx.doi.org/ 10.1016/j.cotox.2021.04.002.
  52. Kondakala S.R., Henein L., McDevitt E., et al. Effects of chlorpyrifos on non-cholinergic toxicity endpoints in immortalized and primary rat hepatocytes under normal and hepatosteatotic conditions. Toxicol In Vitro. 2022;80:105329. http://dx.doi.org/10.1016/j.tiv.2022.105329.
  53. Seil F.J. Myelin Antigens and Antimyelin Antibodies. Antibodies (Basel). 2018;7(1): 2. http://dx.doi.org/10.3390/antib7010002.
  54. Wu G., Wen X., Kuang R., et al. Roles of Macrophages and Their Interactions with Schwann Cells After Peripheral Nerve Injury. Cellular and Molecular Neurobiology. 2024;44:11 https://doi.org/10.1007/s10571-023-01442-5.
  55. Negro S., Pirazzini M., Rigoni M. Models and methods to study Schwann cells. J Anat. 2022; 241(5):1235–1258. http://dx.doi.org/10.1111/joa.13606.
  56. Stazi M., D'Este G., Mattarei A., et al. An agonist of the CXCR4 receptor accelerates the recovery from the peripheral neuroparalysis induced by Taipan snake envenomation. PLoS Negl Trop Dis. 2020;14(9):e0008547. http://dx.doi.org/10.1371/journal.pntd.0008547.
  57. Torigoe K. Axonal regrowth under release of myelin-associated glycoprotein: Chemotaxis by pioneer Schwann cells and Cajal's gigantic clubs. Microscopy (Oxf). 2023:dfad046. http://dx.doi.org/10.1093/jmicro/dfad046.
  58. Raasakka A., Kursula P. Flexible Players within the Sheaths: The Intrinsically Disordered Proteins of Myelin in Health and Disease. Cells. 2020;9(2):470. https://doi.org/10.3390/cells9020470/.
  59. Gonçalves N.P., Jager S.E., Richner M., et al. Schwann cell p75 neurotrophin receptor modulates small fiber degeneration in diabetic neuropathy. Glia. 2020;68(12):2725-2743. http://dx.doi.org/10.1002/glia.23881.
  60. Follis R.M., Tep Ch., Genaro-Mattos Th.C., Kim M.L., Ryu J.Ch., Morrison V.E., Chan J.R., Porter N., Carter B.D., YoonS.O. Metabolic Control of Sensory Neuron Survival by the p75 Neurotrophin Receptor in Schwann Cells. Journal of Neuroscience. 2021;41 (42):8710-8724. https://doi.org/10.1523/JNEUROSCI.3243-20.2021/.
  61. Вольхина И.В., Винников И.С. Клиническое значение фактора роста нервов (обзор литературы). Клиническая лабораторная диагностика. – 2023. – Т.68. – №6. – С.333-340. https://doi.org/10.51620/0869-2084-2023-68-6-333-340.
  62. Pandey S., Mudgal J. A Review on the Role of Endogenous Neurotrophins and Schwann Cells in Axonal Regeneration. J Neuroimmune Pharmacol. 2022;17;398–408. https://doi.org/10.1007/s11481-021-10034-3.
  63. Qu W.-R., Zhu Zh., Liu J., et al. Interaction between Schwann cells and other cells during repair of peripheral nerve injury. Neural Regen Res. 2021;16(1):93–98. http://dx.doi.org/10.4103/1673-5374.286956.
  64. Meng D.-H., Zou J.-P., Xu Q.-T., et al. Endothelial cells promote the proliferation and migration of Schwann cells. Annals of Translational Vtdicine. 2022;10(2):28. https://dx.doi.org/10.21037/atm-21-4481.
  65. Xu H.-Y., Wang P., Sun Y.-J., et al. Activation of neuroregulin 1/ErbB signaling is involved in the development of TOCP-induced delayed neuropathy. Front. Mol. Neurosci. 23 April 2018 Sec. Molecular Signalling. 2018;11 –https://doi.org/10/3389/fnmol.2018.00129
  66. El Souri M., Fornasary B.E., Morano M., et al. Soluble Neuregulin 1 down-regulated myelination genes in Shwann cells. Front. Mol.Neurosci. 2018;11. https://doi.org/10.3389/fnmol.2018.00157.
  67. Gavini C.K., Bonomo R., Mansuy-Aubert V. Neuronal LXR Regulates Neuregulin 1 Expression and Sciatic Nerve-Associated Cell Signaling in Western Diet-fed Rodents. Sci Rep. 2020;10:6396. https://doi.org/10.1038/s41598-020-63357-1.
  68. Tilley D.M., Vallejo R., Vetri F., et al. Regulation of Expression of Extracellular Matrix Proteins by Differential Target Multiplexed Spinal Cord Stimulation (SCS) and Traditional Low-Rate SCS in a Rat Nerve Injury Model. Biology (Basel). 2023;12(4):537. http://dx.doi.org/10.3390/biology12040537.
  69. Subczynski W.K., Pasenkiewicz-Gierula M., Widomska J., et al. High cholesterol/low cholesterol: Effects in biological membranes: A review. Cell Biochem Biophys. 2017;75(3-4):369-385. http://dx.doi.org/10.1007/s12013-017-0792-7.
  70. Berghoff S.A., Spieth L., Sun T., et al. Neuronal cholesterol synthesis is essential for repair of chronically demyelinated lesions in mice. Cell Rep. 2021;37(4):109889. http://dx.doi.org/10.1016/j.celrep.2021.109889.
  71. Placheta-Györi E., Brandstetter L.M., Zemann-Schälss J., et al. Myelination, axonal loss and Schwann cell characteristics in axonal polyneuropathy compared to controls //PLoS One. 2021;16(11):e0259654. http://dx.doi.org/10.1371/journal.pone.0259654.
  72. Robb E.L., Regina A.C., Baker M.B. Organophosphate Toxicity. [Updated 2023 Nov 12]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK470430.
  73. Yu J.-R., Hou Y.-Ch., Fu J.-F., et al. Outcomes of elderly patients with organophosphate intoxication. Sci Rep. 2021;11:11615. http://dx.doi.org/10.1038/s41598-021-91230-2.
  74. Farnham A., Fuhrimann S., Staudacher P., et al. Long Term Neurological and Psychological Distress Symptoms among Smallholder Farmers in Costa Rica with a History of Acute Pesticide Poisoning. Int. J. Environ. Res. Public Health. 2021;18:9021. https://doi.org/10.3390/ ijerph1817902.
  75. Thammachi A., Sapbamrer R., Rohitratta J., et al. Difference in knowledge, awareness, practice, and health symptoms in farmers who applied organophosphates and pyrethroids on farms. Front. Public Health. 2022;10:802-810. https://doi.org/10.3389/fpubh.2022.802810.
  76. Aishwarya K.M., Zanzmera P., Patel J., et al. Organophosphate Compound Poisoning – An Unusual Presentation as Guillain Barre Syndrome. Ann Indian Acad Neurol. 2023; 26(5): 845–847. http://dx.doi.org/10.4103/aian.aian_459_23/.
  77. Öztürk K., Su Ö., Gürsoy E.B., et al. Delayed Neuropathy Due to Organophosphate Insecticide Injection in an Attempt to Commit Suicide. Hand (NY). 2009;4(1):84–87. http://dx.doi.org/10.1007/s11552-008-9126-y .
  78. Kobayashi S., Okubo R., Ugawa Y. Delayed Polyneuropathy Induced by Organophosphate Poisoning. Intern Med. 2017;56(14):1903-1905. http://dx.doi.org/10.2169/internalmedicine.56.7921.
  79. Gautam S., Sapkota S., Ojha R., et al. Delayed myelopathy after organophosphate intoxication: A case report. SAGE Open Med Case Rep. 2022;10:2050313X221104309. http://dx.doi.org/10.1177/2050313X221104309.
  80. Richardson R.J., Fink J.K., Glynn P., et al. Neuropathy target esterase (NTE/PNPLA6) and organophosphorus compound-induced delayed neurotoxicity (OPIDN). Adv Neurotoxicol. 2020; 4:1–78. http://dx.doi.org/10.1016/bs.ant.2020.01.001.
  81. Kretzschmar D. PNPLA6/NTE, an Evolutionary Conserved Phospholipase Linked to a Group of Complex Human Diseases. Metabolites. 2022;12(4):284. http://dx.doi.org/10.3390/metabo12040284 .
  82. Мелентьев П.А., Агранович О.Е., Саранцева С.В. Заболевания человека, ассоциированные с геном NTE // Экологическая генетика. – 2020. – Т. 18. – № 2. – С. 229–242. https://doi.org/10.17816/ecogen16327.
  83. McFerrin J., Patton B.L., Sunderhaus E.R., et al. NTE/PNPLA6 is expressed in mature Schwann cells and is required for glial ensheathment of Remak fibers. Glia. 2017;65(5):804–816. http://dx.doi.org/10.1002/glia.23127.
  84. Emerick G.L., DeOliveira G.H., Oliveira R.V., Ehrich M. Comparative in vitro study of the inhibition of human and hen esterases by methamidophos enantiomers. Toxicology. 2012;292(2-3):145-150. http://dx.doi.org/10.1016/j.tox.2011.12.004.
  85. Emerick G.L., Fernandes L.S., de Paula E.S., et al. In vitro study of the neuropathic potential of the organophosphorus compounds fenamiphos and profenofos: Comparison with mipafox and paraoxon. Toxicol In Vitro. 2015;29(5):1079-1087. http://dx.doi.org/10.1016/j.tiv.2015.04.009.
  86. Wu W., Wang P. Computational Modeling Study of the Binding of Aging and Non-Aging Inhibitors with Neuropathy Target Esterase. Molecules. 2023;28(23):7747. http://dx.doi.org/10.3390/molecules28237747.
  87. Sunderhaus E.R., Law A.D., Kretzschmar D. Disease-associated PNPLA6 Mutations Maintain Partial Functions When Analyzed in Drosophila. Front. Neurosci. 2019;13:1207. http://dx.doi.org/10.3389/fnins.2019.01207.
  88. Melentev P.A., Ryabova E.V., Surina N.V., et al. Loss of swiss cheese in Neurons Contributes to Neurodegeneration with Mitochondria Abnormalities, Reactive Oxygen Species Acceleration and Accumulation of Lipid Droplets in Drosophila Brain. Int J Mol Sci. 2021;22(15):8275. http://dx.doi.org/10.3390/ijms22158275.
  89. Chang P., He L., Wang Y., at al. Characterization of the Interaction of Neuropathy Target Esterase with the Endoplasmic Reticulum and Lipid Droplets Biomolecules. 2019;9(12);848. https://doi.org/10.3390/biom9120848.
  90. Guignet M., Dhakal K., Flannery B.M., at al. Persistent behavior deficits, neuroinflammation, and oxidative stress in a rat model of acute organophosphate intoxication. Neurobiol Dis. 2020;133:104431. http://dx.doi.org/10.1016/j.nbd.2019.03.019.
  91. Tsai Y.-H., Lein P.J. Mechanisms of organophosphate neurotoxicity. Curr Opin Toxicol. 2021; 26:49–60. http://dx.doi.org/10.1016/j.cotox.2021.04.002
  92. Costas-Ferreira C., Faro L.R. Systematic Review of Calcium Channels and Intracellular Calcium Signaling: Relevance to Pesticide Neurotoxicity. Int J Mol Sci. 2021;22(24):13376. http://dx.doi.org/10.3390/ijms222413376
  93. Contreras E., Bolívar S., Navarro X., et al. New insights into peripheral nerve regeneration: The role of secretomes. Exp Neurol. 2022;354:114069. http://dx.doi.org/10.1016/j.expneurol.2022.114069.
  94. Almami I.S., Aldubayan M.A., Felemban S.G., et al. Neurite outgrowth inhibitory levels of organophosphates induce tissue transglutaminase activity in differentiating N2a cells: evidence for covalent adduct formation. Arch Toxicol. 2020;94(11):3861-3875. http://dx.doi.org/10.1007/s00204-020-02852-w.
  95. Aldubayan M.A., Almami I.S., Felemban S.G., et al. Organophosphates modulate tissue transglutaminase activity in differentiated C6 neural cells. Eur Rev Med Pharmacol Sci. 2022;26(1):168-182. http://dx.doi.org/10.26355/eurrev_202201_27766.
  96. Zhang X.F., Chen J., Faltynek C.R., et al. Transient receptor potential A1 mediates an osmotically activated ion channel. Eur J Neurosci. 2008;27(3):605-611. http://dx.doi.org/10.1111/j.1460-9568.2008.06030.x.
  97. Ding Q., Fang S., Chen Xat., et al. TRPA1 channel mediates organophosphate-induced delayed neuropathy. Cell Discov 3, 17024 (2017). https://doi.org/10.1038/celldisc.2017.24.
  98. Xu X.-Y., Wang P., Sun Y.-J., et al. Autophagy in Tri-o-cresyl Phosphate-Induced Delayed Neurotoxicity. Journal of Neuropathology & Experimental Neurology.2017;76(1):52–60. https://doi.org/10.1093/jnen/nlw108.
  99. Wang P., Yang M., Jiang L., et al. A fungicide miconazole ameliorates tri-o-cresyl phosphate-induced demyelination through inhibition of ErbB/Akt pathway. Neuropharmacology. 2019;148:31-39. http://dx.doi.org/10.1016/j.neuropharm.2018.12.015.
  100. Farkhondeh T., Mehrpour O., Buhrmann C., et al. Organophosphorus Compounds and MAPK Signaling Pathways.Int J Mol Sci. 2020; 21(12):4258. http://dx.doi.org/10.3390/ijms21124258.
  101. Sule R.O., Condon L., Gomes A.V. A Common Feature of Pesticides: Oxidative Stress-The Role of Oxidative Stress in Pesticide-Induced Toxicity. Oxid Med Cell Longev. 2022:5563759. http://dx.doi.org/10.1155/2022/5563759.
  102. Tigges J., Worek F., Thiermann H., et al. Organophosphorus pesticides exhibit compound specific effects in rat precision-cut lung slices (PCLS): mechanisms involved in airway response, cytotoxicity, inflammatory activation and antioxidative defense. Arch Toxicol. 2022; 96:321–334. https://doi.org/10.1007/s00204-021-03186-x.
  103. Khani L., Martin L., Pułaski Ł. Cellular and physiological mechanisms of halogenated and organophosphorus flame retardant toxicity. Science of The Total Environment. 2023;97:165272. https://doi.org/10.1016/j.scitotenv.2023.165272.
  104. Amar S.K., Keri B., Donohue K.B., et al. Cellular and molecular responses to ethyl-parathion in undifferentiated SH-SY5Y cells provide neurotoxicity pathway indicators for organophosphorus impacts. Toxicological Sciences. 2023;191(2):285–295. https://doi.org/10.1093/toxsci/kfac125.
  105. Brenet A., Somkhit J., Hassan-Abdy R., et al. Preclinical zebrafish model for organophosphorus intoxication: neuronal hyperexcitation, behavioral abnormalities and subsequent brain damages. bioRxiv 2019.12.15.876649; https://doi.org/10.1101/2019.12.15876649 Now published in Scientific Reportes https://doi.org/10.1038/s41598-020-76056-8.
  106. Hawkey A.B., Glazer L., Dean C., et al. Adult exposure to insecticides causes persistent behavioral and neurochemical alterations in zebrafish, Neurotoxicology and Teratology. 2020;78: 106853, ISSN 0892-0362. https://doi.org/10.1016/j.ntt.2019.106853.
  107. Ribeiro-Carvalho A., Lima C.S., Dutra-Tavares A.C., et al. Mood-related behavioral and neurochemical alterations in mice exposed to low chlorpyrifos levels during the brain growth spurt PLoS One. 2020; 15(10): e0239017. http://dx.doi.org/10.1371/journal.pone.0239017.
  108. Poopal R.K., He Y., Zhao R., et al. Organophosphorus-based chemical additives induced behavioral changes in zebrafish (Danio rerio): Swimming activity is a sensitive stress indicator. Neurotoxicol Teratol. 2021;83:106945. http://dx.doi.org/10.1016/j.ntt.2020.106945.
  109. Neylon J., Fuller J.N., van der Poel Ch., et al. Organophosphate Insecticide Toxicity in Neural Development, Cognition, Behaviour and Degeneration: Insights from Zebrafish. J. Dev. Biol. 2022;10(4): 49. https://doi.org/10.3390/jdb10040049 .
  110. Boyda J., Hawkey A.B., Holloway Z.R., et al. The organophosphate insecticide diazinon and aging: Neurobehavioral and mitochondrial effects in zebrafish exposed as embryos or during aging, Neurotoxicology and Teratology. 2021;87:107011. https://doi.org/10.1016/j.ntt.2021.107011.
  111. Khatib I., Horyn O., Bodnar O., et al. Molecular and Biochemical Evidence of the Toxic Effects of Terbuthylazine and Malathion in Zebrafish. Animals (Basel). 2023;13(6):1029. http://dx.doi.org/10.3390/ani13061029.
  112. Shi Q., Yang H., Chen Y., et al. Developmental Neurotoxicity of Trichlorfon in Zebrafish Larvae. Int. J. Mol. Sci. 2023; 24: 11099. https://doi.org/10.3390/ijms241311099.
  113. Falfushynska H., Khatib I., Kasianchuk N., et al. Toxic effects and mechanisms of common pesticides (Roundup and chlorpyrifos) and their mixtures in a zebrafish model (Danio rerio). Sci Total Environ. 2022;833:155236. http://dx.doi.org/10.1016/j.scitotenv.2022.155236.
  114. Kuppuswamy J.M., Seetaram B. Monocrotophos based pesticide alters the behavior response associated with oxidative indices and transcription of genes related ro apoptosis in adult Zebrafish (Danio rerio) brain. Biomed Pharmacol J. 2020;13(3). https://dx.doi.org/10.13005/bpj/1998.
  115. Tallat Sh., Hussien R., Mohamed R.H., et al. Caspases as prognostic markers and mortality predictors in acute organophosphorus poisoning. J Genet Eng Biotechnol. 2020; 18(1):10. http://dx.doi.org/10.1186/s43141-020-00024-y.
  116. Somkhit J., Yanicostas C., Soussi-Yanicostas N. Microglia Remodelling and Neuroinflammation Parallel Neuronal Hyperactivation Following Acute Organophosphate Poisoning. Int J Mol Sci. 2022;23(15):8240. http://dx.doi.org/10.3390/ijms23158240.
  117. Maupu C., Enderlin J., Igert A., et al. Diisopropylfluorophosphate-induced status epilepticus drives complex glial cell phenotypes in adult male mice. Neurobiol Dis. 2021;152:105276. http://dx.doi.org/10.1016/j.nbd.2021.105276.
  118. Faria M., Fuertes I., Prats E., et al. Analysis of the neurotoxic effects of neuropathic organophosphorus compounds in adult zebrafish. Sci Rep8. 2018;8(1):4844. https://doi.org/10.1038/s41598-018-22977-4.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Эко-Вектор,



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 74760 от 29.12.2018 г.