Sperm DNA fragmentation and hydroxymethylation in normozoospermic and pathospermic patients



Cite item

Full Text

Abstract

Background. The search for new criteria allowing to assess the ejaculate quality based on the structural and functional characteristics of the sperm genome is of high importance for reproductive science.

Aim – analysis of DNA integrity and 5-hydroxymethylcytosine (5hmC) content in the same ejaculated spermatozoa obtained from normozoospermic and pathospermic patients.

Materials and methods. The study included ejaculate samples from 63 patients with normozoospermia (n=33) and pathospermia (n=30). Microscope slide preparations were made to detect DNA fragmentation by TUNEL, record digital images, detect 5hmC by indirect immunofluorescence, and record digital images of the same fields of view again. A total of 126,000 spermatozoa were analyzed - 2,000 in each sample.

Results. A significant proportion of spermatozoa (72.8–94.2%) in all samples were characterized by the absence of DNA fragmentation and very low 5hmC levels. The frequency of spermatozoa with DNA fragmentation, increased hydroxymethylation level, or both characteristics varied between samples and equaled 0.05–13.8%, 0.15–11.5%, and 0.99–13.38%, respectively. The frequency of spermatozoa with DNA fragmentation and/or hyperhydroxymethylation did not differ between ejaculates of normozoospermic and pathospermic patients. A relationship between DNA fragmentation and hyperhydroxymethylation and their nonrandom combination in ejaculated spermatozoa was confirmed.

Conclusions. The non-random combination of DNA fragmentation and hyperhydroxymethylation in spermatozoa and the relationship between these characteristics suggest their joint trigger, which is most likely oxidative stress. The presence of other factors leading to DNA damage and increase of 5hmC level explains the non-100% coincidence of these characteristics in spermatozoa. Evaluation of DNA fragmentation and the level of its hydroxymethylation in spermatozoa seems promising for ejaculate quality assessment and identifying potential causes of idiopathic infertility.

Full Text

Restricted Access

About the authors

Yanina M. Sagurova

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: yanina.sagurova96@mail.ru
ORCID iD: 0000-0003-4947-8171
SPIN-code: 8908-7033

мл. научн. сотр.

Russian Federation, Saint Petersburg

Olga A. Efimova

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: efimova_o82@mail.ru
ORCID iD: 0000-0003-4495-0983
SPIN-code: 6959-5014
Scopus Author ID: 14013324600
ResearcherId: F-5764-2014

Cand. Sci. (Biol.)

Russian Federation, Saint Petersburg

Mikhail I. Krapivin

D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology

Email: krapivin-mihail@mail.ru
ORCID iD: 0000-0002-1693-5973
SPIN-code: 4989-1932
Scopus Author ID: 56507166200

Junior Researcher

Russian Federation, Saint Petersburg

Mariia A. Ishchuk

Научно-исследовательский институт акушерства, гинекологии и репродуктологии им. Д.О. Отта

Email: mashamazilina@gmail.com
ORCID iD: 0000-0002-4443-4287
SPIN-code: 1237-6373

мл. научн. сотр.

Russian Federation, Санкт-Петербург

Dmitry A. Staroverov

Научно-исследовательский институт акушерства, гинекологии и репродуктологии им. Д.О. Отта

Email: st110982@student.spbu.ru
ORCID iD: 0009-0004-9716-4964
SPIN-code: 3438-7974

Лаборант-исследователь

Russian Federation, Санкт-Петербург

Ekaterina D. Trusova

Научно-исследовательский институт акушерства, гинекологии и репродуктологии им. Д.О. Отта

Email: trusova.ek@mail.ru
ORCID iD: 0009-0005-6529-5799

Лаборант-исследователь

Russian Federation, Санкт-Петербург

Evgeniia M. Komarova

D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology

Email: evgmkomarova@gmail.com
ORCID iD: 0000-0002-9988-9879
SPIN-code: 1056-7821
Scopus Author ID: 57191625749

Cand. Sci. (Biol.), head of Laboratory of preimplantation development

Russian Federation, Saint Petersburg

Olesya N. Bespalova

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: shiggerra@mail.ru
ORCID iD: 0000-0002-6542-5953
SPIN-code: 4732-8089
Scopus Author ID: D-3880-2018

MD, Dr. Sci. (Med.)

Russian Federation, 3 Mendeleevskaya Line, Saint Petersburg, 199034

Anna A. Pendina

D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology; Saint Petersburg State University

Author for correspondence.
Email: pendina@mail.ru
ORCID iD: 0000-0001-9182-9188
SPIN-code: 3123-2133
Scopus Author ID: 6506976983

Cand. Sci. (Biol.), senior research associate

Russian Federation, Saint Petersburg; Saint Petersburg

References

  1. Agarwal A, Bascaran S, Parekh N, et al. Male infertility. The Lancet. 2021;397(10271):319-333. doi: 10.1016/S0140-6736(20)32667-2.
  2. Yatsenko SA, Rajkovic A. Genetics of human female infertility. Biology of reproduction. 2019;101(3):549-566. doi: 10.1017/9781009197700.009.
  3. Eisenberg ML, Esteves SC, Lamb DJ, et al. Male infertility. Nature Reviews Disease Primers. 2023;9(1):49. doi: 10.1038/s41572-023-00459-w.
  4. Bala R, Singh V, Rajender S, Singh K. Environment, lifestyle, and female infertility. Reproductive sciences. 2021;28:617-638. doi: 10.1007/s43032-020-00279-3.
  5. Matzuk MM, Lamb DJ. The biology of infertility: research advances and clinical challenges. Nature medicine. 2008;14(11):1197-1213. doi: 10.1038/nm.f.1895.
  6. Bracke A, Peeters K, Punjabi U, Hoogewijs D, Dewilde S. A search for molecular mechanisms underlying male idiopathic infertility. Reproductive biomedicine online. 2018;36(3):327-339. doi: 10.1016/j.rbmo.2017.12.005.
  7. Marinaro JA. Sperm DNA fragmentation and its interaction with female factors. Fertility and Sterility. 2023;120(4):715-719. doi: 10.1016/j.fertnstert.2023.06.001.
  8. Dai Y, Liu J, Yuan E, Li Y, Shi Y, Zhang L. Relationship among traditional semen parameters, sperm DNA fragmentation, and unexplained recurrent miscarriage: a systematic review and meta-analysis. Frontiers in endocrinology. 2022;12:802632. doi: 10.3389/fendo.2021.802632.
  9. Malić Vončina S, Stenqvist A, Bungum M, Schyman T, Giwercman A. Sperm DNA fragmentation index and cumulative live birth rate in a cohort of 2,713 couples undergoing assisted reproduction treatment. Fertility and sterility. 2021;116(6):1483–1490. doi: 10.1016/j.fertnstert.2021.06.049.
  10. Sunday OE, Nwogu A, Samue EE, et al. Single nucleotide polymorphisms in protamine 2 genes in fertile and infertile human males in Southwest, Nigeria. World Journal of Advanced Research and Reviews. 2024;23(1):1365-1373. doi: 10.30574/wjarr.2024.23.1.1834.
  11. Ni K, Spiess AN, Schuppe HC, Steger K. The impact of sperm protamine deficiency and sperm DNA damage on human male fertility: a systematic review and meta-analysis. Andrology. 2016;4(5):789-799. doi: 10.1111/andr.12216.
  12. Aston KI, Uren PJ, Jenkins TG, et al. Aberrant sperm DNA methylation predicts male fertility status and embryo quality. Fertility and Sterility. 2015; 104: 1388-1397.e1-5. doi: 10.1016/j.juro.2016.07.015.
  13. Du Y, Li M, Chen J, et al. Promoter targeted bisulfite sequencing reveals DNA methylation profiles associated with low sperm motility in asthenozoospermia. Human Reproduction. 2016;31:24-33. doi: 10.1093/humrep/dev283.
  14. Urdinguio RG, Bayón GF, Dmitrijeva M, et al. Aberrant DNA methylation patterns of spermatozoa in men with unexplained infertility. Human Reproduction. 2015;30:1014-28. doi: 10.1093/humrep/dev053.
  15. Olszewska M, Kordyl O, Kamieniczna M. Global 5mC and 5hmC DNA Levels in Human Sperm Subpopulations with Differentially Protaminated Chromatin in Normo- and Oligoasthenozoospermic Males. International Journal of Molecular Sciences. 2022;23(9):4516. doi: 10.3390/ijms23094516.
  16. Efimova OA, Krapivin MI, Parfenyev SE, et al. Differential distribution of 5-formylcytosine and 5-carboxylcytosine in human spermatogenic cells and spermatozoa. Ecological genetics (Rus.). 2023;21(1):61-74. doi: 10.17816/ecogen120080.
  17. Wang XX, Sun BF, Jiao J, et al. Genome-wide 5-hydroxymethylcytosine modification pattern is a novel epigenetic feature of globozoospermia. Oncotarget. 2015;6(9):6535. doi: 10.18632/oncotarget.3163.
  18. Mazilina MA, Komarova EM, Lesik EA, et al. The influence of sperm DNA fragmentation on the efficiency of fertilization and development of human embryos cultured in vitro. Journal of Obstetrics and Women's Diseases. 2017;66(special issue):40-41. doi: 10.18565/aig.2017.3.69-74.
  19. Efimova OA, Pendina AA, Tikhonov AV, et al. Genome-wide 5-hydroxymethylcytosine patterns in human spermatogenesis are associated with semen quality. Oncotarget. 2017;8(51):88294-88307. doi: 10.18632/oncotarget.18331.
  20. WHO laboratory manual for the examination and processing of human semen. Sixth Edition. World Health Organization. 2021.
  21. Efimova OA, Pendina AA, Tikhonov AV, et al. Chromosome hydroxymethylation patterns in human zygotes and cleavage-stage embryos. Reproduction. 2015;149:223-233. doi: 10.1530/rep-14-0343.
  22. Shcherbitskaia AD, Komarova EM, Milyutina YP, et al. Age-Related COVID-19 Influence on Male Fertility. International Journal of Molecular Sciences. 2023;24(21):15742. doi: 10.3390/ijms242115742.
  23. dos Santos Hamilton TR, Assumpção MEODÁ. Sperm DNA fragmentation: causes and identification. Zygote. 2020;28(1):1-8. doi: 10.1017/s0967199419000595.
  24. Sakkas D, Manicardi G, Bianchi PG, Bizzaro D, Bianchi U. Relationship between the presence of endogenous nicks and sperm chromatin packaging in maturing and fertilizing mouse spermatozoa. Biology of Reproduction. 1995;52:1149–55. doi: 10.1095/biolreprod52.5.1149.
  25. Marcon L, Boissonneault G. Transient DNA strand breaks during mouse and human spermiogenesis new insights in stage specificity and link to chromatin remodeling. Biology of Reproduction. 2004;70:910–918. doi: 10.1095/biolreprod.103.022541.
  26. Sakkas D, Mariethoz E, Manicardi G, et al. Origin of DNA damage in ejaculated human spermatozoa. Reviews of reproduction. 1999;4:31-37. doi: 10.1530/ror.0.0040031.
  27. Lopes S, Jurisicova A, Sun JG, Casper RF. Reactive oxygen species: potential cause for DNA fragmentation in human spermatozoa. Human Reproduction (Oxford, England). 1998;13(4):896-900. doi: 10.1093/humrep/13.4.896.
  28. Fernández-Sánchez A, Madrigal-Santillán E, Bautista M, et al. Inflammation, oxidative stress, and obesity. International Journal of Molecular Sciences. 2011;12(5):3117-3132. doi: 10.3390/ijms12053117.
  29. Elshal MF, El-Sayed IH, Elsaied MA, et al. Sperm head defects and disturbances in spermatozoal chromatin and DNA integrities in idiopathic infertile subjects: association with cigarette smoking. Clinical biochemistry. 2009;42(7-8):589-594. doi: 10.1016/j.clinbiochem.2008.11.012.
  30. Sanchez-Pena LC, Reyes BE, Lopez-Carrillo L, et al. Organophosphorous pesticide exposure alters sperm chromatin structure in Mexican agricultural workers. Toxicology and applied pharmacology. 2004;196(1):108-113. doi: 10.1016/j.taap.2003.11.023.
  31. Garolla A, Torino M, Sartini B, Cosci I, et al. Seminal and molecular evidence that sauna exposure affects human spermatogenesis. Human Reproduction. 2013;28(4):877-885. doi: 10.3410/f.717991598.793476086.
  32. Meeker JD, Ehrlich S, Toth TL, Wright DL, et al. Semen quality and sperm DNA damage in relation to urinary bisphenol A among men from an infertility clinic. Reproductive toxicology. 2010;30(4):532-539. doi: 10.1016/j.reprotox.2010.07.005.
  33. Desai NR, Kesari KK, Agarwal A. Pathophysiology of cell phone radiation: oxidative stress and carcinogenesis with focus on male reproductive system. Reproductive Biology and Endocrinology. 2009;7:1-9. doi: 10.1186/1477-7827-7-114.
  34. Wossidlo M, Nakamura T, Lepikhov K, et al. 5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming. Nat Commun. 2011;2:241 doi: 10.1038/ncomms1240.
  35. Hill PWS, Amouroux R, Hajkova P. DNA demethylation, Tet proteins and 5-hydroxymethylcytosine in epigenetic reprogramming: An emerging complex story. Genomics. 2014;104(5):324-333, doi: 10.1016/j.ygeno.2014.08.012.
  36. Efimova OA, Pendina AA, Tikhonov AV, et al. Oxidized form of 5-methylcytosine—5-hydroxymethylcytosine: a new insight into the biological significance in the mammalian genome. Russian Journal of Genetics. 2015;5:75–81. doi: 10.1134/S2079059715020033.
  37. Zheng K, Lyu Z, Chen J, Chen G. 5-Hydroxymethylcytosine: Far Beyond the Intermediate of DNA Demethylation. International Journal of Molecular Sciences. 2024;25(21):11780. doi: 10.3390/ijms252111780
  38. Efimova OA, Koltsova AS, Krapivin MI, Tikhonov AV, Pendina AA. Environmental epigenetics and genome flexibility: Focus on 5-hydroxymethylcytosine. International Journal of Molecular Sciences. 2020;21(9):3223. doi: 10.3390/ijms21093223.
  39. Zheng H, Zhou X, Li DK, et al. Genome-wide alteration in DNA hydroxymethylation in the sperm from bisphenol A-exposed men. PLoS One. 2017;12(6):e0178535. doi: 10.1371/journal.pone.0178535.
  40. Feng Q, Li Q, Hu Y, et al. TET1 overexpression affects cell proliferation and apoptosis in aging ovaries. Journal of Assisted Reproduction and Genetics. 2024:1-12. doi: 10.1007/s10815-024-03271-x.
  41. Shanshan LUO, Chengyun HU, Xue LI, Chaoliang TANG. High S-adenosylmethionine-containing diet inhibits post-stroke neuronal apoptosis and ROS accumulation in mice through TET3-mediated DNA demethylation. Journal of Xuzhou Medical University. 2024;44(7):469-476. doi: 10.3969/j.issn.2096-3882.2024.07.001.
  42. Madugundu GS, Cadet J, Wagner JR. Hydroxyl-radical-induced oxidation of 5-methylcytosine in isolated and cellular DNA. Nucleic Acids Res. 2014;42(11):7450-60. doi: 10.1093/nar/gku334.
  43. Cadet J, Wagner JR. Radiation-induced damage to cellular DNA: Chemical nature and mechanisms of lesion formation. Radiation Physics and Chemistry. 2016;128:54-59. doi: 10.1016/j.radphyschem.2016.04.018.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 74760 от 29.12.2018 г.