Some aspects of the mechanisms of epilepsy

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Another important milestone was marked by the characterization of the molecular structure of ionic channels that made it clear the tremendous potential of a strategy based on combined neurophysiological and biomolecular techniques for investigating the pathogenesis of human epilepsies. For many years, the ionic currents responsible for membrane excitability have been systematically characterized in intact animals and different animal models of epilepsy, as well as in tissue slices and isolated cell preparations. Neurons and neural circuits undergo extensive structural and functional remodeling in response to seizures. Sprouting of axons in the mossy fiber pathway of the hippocampus is a prominent example of a seizure-induced structural alteration. Several key steps have been identified in the cascade leading from transient hyperactivity episodes to long-lasting, quasi-permanent modification of the neuronal circuit organization (activation of immediate-early genes, activation of growth factor genes within hours, alterations in glutamate receptors, glial hypertrophy, cytoskeletal protein changes, etc). The cascade is activated by the increase in intracellular calcium and leads to axonal growth and neosynapse formation, which in turn participates in the etiology of the syndrome by reducing the threshold for further seizures. Aberrant neuron plasticity is a contributing factor to neurological and developmental disorders. Indeed, aberrant sprouting following neuronal injury may be the cause of epilepsy and may underlie the neuronal changes in other neurological diseases, thus forming a common ground for different pathologies in neurology. Investigation of mechanisms of epilepsy progression, with current theories and perspectives from neuroplasticity in adulthood and development are providing new insights into systematic neurobiological processes that are likely to influence the progressive features of epileptic syndromes and patterns of progression in individual patients

About the authors

E. I. Gusev

Russian State Medical University

Author for correspondence.
Email: shabanov@mail.rcom.ru

Академик РАМН

Russian Federation, Moscow

A. B. Guekht

Russian State Medical University

Email: shabanov@mail.rcom.ru
Russian Federation, Moscow

References

  1. Гусев Е. И., Гехт А. Б., Мильчакова Л. Е. и др. Качество жизни и стресс у больных с симптоматической парциальной эпилепсией / Сб. ст. Рос. акад. наук. 2002. С. 123-127.
  2. Гусев Е. И. / Gusev E., Guekht A., Kurkina I., Lokshina O. et al. Epidemiology and social aspects of epilepsy in Russia // Epilepsia. 2001. Vol. 42 (Suppl. 2). P. 27.
  3. Гехт А. Б. / Guekht A., Gusev E., Shpak A. et al. Evoked potentials and brain plasticity in patients with localization-related epilepsy // Epilepsia. 2001. Vol. 42 (Suppl. 2). P. 71.
  4. Дамбинова С. А. Нейрорецепторы глутамата. Л.: Наука, 1989. 145 с.
  5. Карлов В. А. Современная концепция лечения эпилепсии // Журн. неврол. и псих. им. С. С. Корсакова. 1999. Т. 99. № 1. С. 56-61.
  6. Крыжановский Г. Н. Расстройства нервной регуляции / Патология нервной регуляции. М., 1987. С. 5.
  7. Крыжановский Г. Н. Общая патофизиология нервной системы. М.: Медицина, 1997. 350 с.
  8. Крыжановский Г. Н., Магаева С. В., Макаров С. В. Нейроиммунопатология. М., 1997. 282 с.
  9. Одинак М. М., Дыскин Д. Е. Эпилепсия. М.: Изд-во «Политехника», 1997. 232 с.
  10. Погодаев К. И. Этиология, патогенез и лечение эпилепсии. М.: Медицина, 1986.
  11. Полетаев А. Б. Мозгоспецифические белки группы S-100, их эндогенные акцепторы и лиганды, и регуляция метаболических процессов в нервной ткани: Дис. ... д-ра мед. наук. M., 1988.
  12. Полетаев А. Б. Регуляторные аутоантитела // Моноклональные антитела в нейробиологии. Новосибирск: Офсет, 1995. С. 37-47.
  13. Раевский К. С., Георгиев В. П. Медиаторные аминокислоты: Нейрофармакологические и нейрохимические аспекты. М.: Медицина-София: Медицина и физкультура, 1986. 239 с.
  14. Чехонин В. П., Лиджиева Р. Ц., Коротеева Е. А., Берестов А. И. Роль глиоспецифических антигенов в диагностике нервно-психических заболеваний // Журн. невропатол. и псих. им. С. С. Корсакова. 1990. № 6. С. 138-146.
  15. Штарк М. Б. Иммунонейрофизиология. Л.: Медицина, 1985. 310 с.
  16. Штарк М. Б. Мозго-специфические антитела и функции нейронов. М.: Медицина, 1985. 310 с.
  17. Arboix A., Comes E., Garcia-Eroles L., Massons J. B., Oliveres M., Balcells M. Prognostic value of very early seizures for in-hospital mortality in atherothrombotic infarction // Eur. Neurol. 2003. Vol. 50 (2). Р. 78-84.
  18. Avanzini G. / Аванцини Д. Перспективы эпилептологии // Междунар. конф. «Эпилепсия: диагностика, лечение, социальные аспекты» M., 2005. С. 16-29.
  19. Avanzini G., Franceschetti S., Avoni P., Liguori R. Molecular biology of channelopathies: impact on diagnosis and treatment // Expert Rev. Neurotherap. 2004. Vol. 4 (3). P. 519–539.
  20. Bandtlow C. E., Dlaska M., Pirker S., Czech T., Baumgartner C., Sperk G. Increased expression of Nogo-A in hippocampal neurons of patients with temporal lobe epilepsy // Eur. J. Neurosci. 2004. Jul. Vol. 20 (1). Р. 195–206.
  21. Binder D. K., Scharfman H. E. Brain-derived neurotrophic factor // Growth. Factors. 2004. Sep. Vol. 22 (3). Р. 123–131.
  22. Blumcke I., Beck H., Lie A. A. et al. Molecular neuropathology of human mesial temporal lobe epilepsy // Epilepsy Res. 1999. Vol. 36. P. 205-223.
  23. Cavazos J. E., Das I., Sutula T. P. Neuronal loss induced in limbic pathways by kindling: evidence for induction of hippocampal sclerosis by repeated brief seizures // J. Neurosci. 1994. Vol. 14. P. 3106-3121.
  24. Cavazos J. E., Sutula T. P. Progressive neuronal loss induced by kindling: a possible mechanism for mossy fiber synaptic reorganization and hippocampal sclerosis // Brain Res. 1990. Vol. 527. P. 1-6.
  25. Chuckowree J. A., Dickson T. C., Vickers J. C. Intrinsic regenerative ability of mature CNS neurons // Neuroscientist. 2004. Aug. Vol. 10 (4). P. 280-285.
  26. Dong W. K., Greenough W. T. Plasticity of nonneuronal brain tissue: roles in developmental disorders // Ment. Retard. Dev. Disabil. Res. Rev. 2004. Vol. 10 (2). P. 85-90.
  27. Duncan J. S. Seizure-induced neuronal injury: human data // Neurology. 2002. Vol. 59 (Suppl. 5). S. 15-20.
  28. Fisahn A. Kainate receptors and rhythmic activity in neuronal networks: hippocampal gamma oscillations as a tool // J. Physiol. 2005. Jan. 1. Vol. 562 (Pt. 1). P. 65-72.
  29. Flynn C., Monfils M. H., Kleim J. A., Kolb B., McIntyre D. C., Teskey G. C. Differential neuroplastic changes in neocortical movement representations and dendritic morphology in epilepsyprone and epilepsy-resistant rat strains following high-frequency stimulation // Eur. J. Neurosci. 2004. Apr. Vol. 19 (8). Р. 2319–2328.
  30. Forster F. M., Daly R. F. Reading epilepsy in identical twins // Trans. Am. Neurol. Assoc. 1973. Vol. 98. P. 186-188.
  31. Gilliam F. Optimizing health outcomes in active epilepsy // Neurology. 2002. Apr. 23. Vol. 58 (8 Suppl. 5). P. S9–20.
  32. Girardi E., Ramos A. J., Vanore G., Brusco A. Astrocytic response in hippocampus and cerebral cortex in an experimental epilepsy model // Neurochem. Res. 2004. Feb. Vol. 29 (2). P. 371-377.
  33. Gurnett C. A., Landt M., Wong M. Analysis of cerebrospinal fluid glial fibrillary acidic protein after seizures in children // Epilepsia. 2003. Nov. Vol. 44 (11). Р. 1455-1458.
  34. Hauser W. A., Annegers J. F., Kurland L.Т. Incidence of epilepsy and unprovoked seizures in Rochester, Minnesota: 1935–1984 // Epilepsia. 1993. May-Jun. Vol. 34 (3). Р. 453-468.
  35. Hayashi T. A physiological study of epileptic seizures following cortical stimulation in animals and its application to human clinics // Jpn. J. Physiol. 1952. Vol. 3. P. 46-64.
  36. Henshall D. C., Clark R. S., Adelson P. D. et al. Alterations in bcl-2 and caspase gene family protein expression in human temporal lobe epilepsy // Neurology. 2000. Vol. 55. Р. 250-257.
  37. James O., McNamara and Ram S. Puranam // Current Biology. 1998. Vol. 8 (5). R168–R170.
  38. Janjua N. A., Kabuto H., Mori A. Increased plasma glutamic acid in a genetic model of epilepsy // Neurochem. Res. 1992. Mar. Vol. 17 (3). P. 293-296.
  39. Johnston M. V. Clinical disorders of brain plasticity // Brain Dev. 2004. Mar. 2 Vol. 6 (2). P. 73-80.
  40. Lacroix-Desmazes S. et al. Self-reactive natural autoantibodies in healthy individuals // J. Immunol. Methods. 1998. Vol. 216. P. 117-137.
  41. LaRoche S. M., Helmers S. L. Epilepsy in the elderly // Neurologist. 2003. Sep. Vol. 9 (5). P. 241-249.
  42. Mathern G. W., Babb T. L., Mischel P. S., Vinters H. V.. Pretorius J. K., Leite J. P., Peacock W. J. Childhood generalized and mesial temporal epilepsies demonstrate different amounts and patterns of hippocampal neuron loss and mossy fibre synaptic reorganization // Brain. 1996. Jun. Vol. 119 (Pt. 3). Р. 965–987.
  43. Mathem G. W., Mendoza D., Lozada A. et al. Hippocampal GABA and glutamate transporter immunoreactivity in patients with temporal lobe epilepsies // Neurology. 1999. Vol. 52. P. 453-472.
  44. Matsumoto H. & Aimone Marsan C. Cortical cellular phenomena in experimental epilepsy. Interictal manifestations // Exp. Neurol. 1964. Vol. 9. P. 286-304.
  45. Matthes A. Epilepsien - diagnostic und Therapie Fur Klinik und Praxis. 4. Aufl., Thieme, Stuttgart, 1984.
  46. Meldrum B. Pharmacology of GABA // Clin. Neuropharmacol. 1982. Vol. 5 (3). Р. 293–316.
  47. Palmio J., Peltola J., Vuorinen P., Laine S., Suhonen J., Keranen T. Normal CSF neuron-specific enolase and S-100 protein levels in patients with recent non-complicated tonic-clonic seizures // J. Neurol. Sci. 2001. Jan. 15. Vol. 183 (1). P. 27-31.
  48. Parent J. M. Injury-induced neurogenesis in the adult mammalian brain // Neuroscientist. 2003. Aug. Vol. 9 (4). P. 261-272.
  49. Pataraia E., Simos P. G., Castillo E. M., Billingsley-Marshall R. L., McGregor A.L., Breier J. I., Sarkari S., Papanicolaou A. C. Reorganization of language-specific cortex in patients with lesions or mesial temporal epilepsy // Neurology. 2004. Nov. 23. Vol. 63 (10). Р. 1825–1832.
  50. Prince D. A. Neurophysiology of Epilepsy / Cowan W. M., Hall Z. W., Kandel E. R. (eds) // Ann. Rev. of Neurosci. Palo Alto California: Annual Reviews Inc. 1978. Vol. 1. Р. 395–415.
  51. Sadamatsu M., Kanai H., Masui A., Serikawa T., Yamada J., Sasa M., and Kato N. Altered brain contents of neuropeptides in spontaneously epileptic rats (SER) and tremor rats with absence seizures // Life Sci. 1995. Vol. 57 (6). Р. 523-531.
  52. Scharfman H. E., Maclusky N. J. Similarities between actions of estrogen and BDNF in the hippocampus: coincidence or clue? // Trends Neurosci. 2005. Feb. Vol. 28 (2). Р. 79–85.
  53. Schwarzer C., Sperk G., Samanin R., Rizzi M., Gariboldi M., Vezzani A. Neuropeptides-immunoreactivity and their mRNA expression in kindling: functional implications for limbic epileptogenesis // Brain Res. 1996. Jun. Vol. 22 (1). P. 27-50.
  54. Schwarzer C., Williamson J. M., Lothman E. W., Vezzani A., Sperk G. Somatostatin, neuropeptide Y, neurokinin B and cholecystokinin immunoreactivity in two chronic models of temporal lobe epilepsy // Neuroscience. 1995. Dec. Vol. 69 (3). P. 831-845.
  55. Solimena M., Folli F., Denis-Donini S., Comi G. C., Pozza G., De Camilli P., Vicari A. M. Autoantibodies to glutamic acid decarboxylase in a patient with stiff-man syndrome, epilepsy, and type I diabetes mellitus // N. Engl. J. Med. 1988. Apr. 21. Vol. 318 (16). Р. 1012-1020.
  56. Sutula T., Cascino G., Cavazos J. et al. Mossy fiber synaptic reorganization in the epileptic human temporal lobe /| Ann. Neurol. 1989. Vol. 26. Р. 321–330.
  57. Vlajkovic S., Jankovic B. D. Experimental epilepsy: electrically and chemically induced convulsions modulate experimental allergic encephalomyelitis and other immune inflammatory reactions in the rat // Int. J. Neurosci. 1990. Sep. 54 (1-2). P. 165-72.
  58. Williams P. A., Dou P., Dudek F. E. Epilepsy and synaptic reorganization in a perinatal rat model of hypoxia-ischemia // Epilepsia. 2004. Oct. Vol. 45 (10). P. 1210-1218.
  59. Zacks J.M., Michelon P., Vettel J. M., Ojemann J. G. Functional reorganization of spatial transformations after a parietal lesion // Neurology. 2004. Jul. 27. Vol. 63 (2). Р. 287-292.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2006 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 74760 от 29.12.2018 г.