Effects prenatal exposure to peat smoke on the emotional behavior of rat offspring and its correction with fabomotizole

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Relevance. Long-term smoke from forest fires cause a wide range of health disorders, including somatic state, emotional status, and cognitive functions. The question of the consequences of exposure to combustion products of peat and wood during pregnancy for offspring remains open.

Intention. The goal is to explore the disorders (anxiety, reflex behavior, aggression, etc.) that occur in the offspring of rats exposed to peat smoke in the early and late postnatal periods and the effect of fabomotizole on these disorders.

Methodology. The research was conducted on the offspring of rats of both sexes from females forcibly exposed to peat smoke (1-20 days). The effect of peat smoke on rats and the protective effect of fabomotizole (1 and 10 mg / kg / 20 days of gestation) were studied in the early (5 days) and late (60-80 days) postnatal periods. The formation of the sensory-motor reflex, anxiety, aggression, and motor activity were assessed.

Results and discussion. Exposure to peat smoke of pregnant females (from 1-20 days of gestation) causes a perturb in the formation of a sensory-motor reflex in the early postnatal period ( 5 days), a decrease in the level of natural adaptive reactions and intraspecific aggression, as well as an increase in locomotor activity in mature animals (60-80 days). Fabomotizole, when administered prenatally (1-20 days of gestation) at doses of 1 and 10 mg / kg, corrected the formation of a conditioned sensory-motor reflex in male and female rat pups, data of the emotional status and motor activity of sexually mature animals.

Conclusion. The protective effect of fabomotizole on the offspring of rats prenatally exposed to peat smoke from the toxic effects of peat combustion products was revealed. Fabomotizole returns the studied behavioral reactions, disturbed by peat, to the level of the physiological norm, which confirms the previously established cyto- and neuroprotective properties of the drug.

Full Text

Restricted Access

About the authors

Dinara M. Ivashova

Zakusov Research Institute of Pharmacology

Author for correspondence.
Email: pharmacevt07@mail.ru

Researcher of the Laboratory of Psychopharmacology

Russian Federation, Moscow

Svetlana A. Litvinova

Zakusov Research Institute of Pharmacology

Email: sa_litvinova@mail.ru

MD, PhD (Biology), Leading Scientific worker of the Laboratory of Psychopharmacology

Russian Federation, Moscow

Tatiana A. Voronina

Zakusov Research Institute of Pharmacology

Email: voroninata38@gmail.com

MD, PhD, DSc (Medicine), Professor, Head of the Laboratory of Psychopharmaco­logy

Russian Federation, Moscow

Iosif B. Tsorin

Zakusov Research Institute of Pharmacology

Email: tsorinib@yandex.ru

MD, PhD, DSc (Biology), Leading Scientific worker of the Laboratory of Pharmacological

Russian Federation, Moscow

References

  1. Settele J, Scholes R, Betts R, et al. A Case Study: The Implementation of a nature-based engineering solution to restore a fallopia japonica-dominated brook embankment 2014; New York: Camb. Univers. Press; 2014;(A):271–359. doi: 10.1016/j.envpol.2018.02.078
  2. Westerling AL, Hidalgo HG, Cayan DR, et al. Warming and Earlier Spring Increase Western U.S. Forest Wildfire Activity. Science. 2006;313:940–943. doi: 10.1126/science.1128834
  3. Report on climate risks in the Russian Federation. Ed. by V.M. Kattsov. Roshydromet. Saint Petersburg; 2017. (In Russ.)
  4. Report on the peculiarities of the climate on the territory of the Russian Federation for 2016. Roshydromet. Moscow; 2017. (In Russ.)
  5. Gao M, Li Y, Long J, et al. Y Induction of oxidative stress and DNA damage in cervix in acute treatment with benzo[a]pyrene. Mutation Research. 2011;719(1-2): 52–59. doi: 10.1016/j.mrgentox.2010.11.008
  6. Genuis SJ. Elimination of persistent toxicants from the human body. Hum Exp Toxicol. 2011;30(1):3–18. doi: 10.1177/096032711036841
  7. Mortamais M, Pujol J, van Drooge BL, et al. Effect of exposure to polycyclic aromatic hydrocarbons on basal ganglia and attention-deficit hyperactivity disorder symptoms in primary school children. Environ Int. 2017;(105):12–19. doi: 10.1016/j.envint.2017.04.011
  8. Dobrykh VA, Zakharycheva TA. Smoke of forest fires and health. Khabarovsk; 2009. (In Russ.)
  9. Mattison DR. Environmental exposures and development. Cur Opin Pediatr. 2010;22(2):208–218. doi: 10.1097/MOP.0b013e32833779bf
  10. Perera FP, Tang D, Wang S, et al. Prenatal polycyclic aromatic hydrocarbon (PAH) exposure and child behavior at age 6-7 years. Environ Health Perspect. 2012;120(6):921–926. doi: 10.1289/ehp.1104315
  11. Ryabkova VA, Bryleva IN. Health state of population in the khabarovsk region under the influence of forest fires. The Far Eastern State Medical University. 2002;3:41–44. (In Russ.)
  12. Bolton JL, Dunlap T. Formation and biological targets of quinones: cytotoxic versus cytoprotective effects. Chem Res Toxicol. 2017;30(1):13–37. doi: 10.1021/acs.chemrestox.6b00256
  13. Gelboin HV. Benzo[a]pyrene metabolism, activation and carcinogenesis: role and regulation of mixed function oxidases and related enzymes. Physiol Rev. 1980;60(4):1107–1116. doi: 10.1152/physrev.1980.60.4.1107
  14. Squadrito GL, Cueto R, Dellinger B, Pryor WA. Quinoid redox cycling as a mechanism for sustained free radical generation by inhaled airborne particulate matter. Free Radic Biol Med. 2001;31(9):1132–1138. doi: 10.1016/s0891-5849(01)00703-1
  15. Kumagai Y, Taira J, Sagai M. Apparent inhibition of superoxide dismutase activity in vitro by diesel exhaust particles. Free Radic Biol Med. 1995;18(2):365–371. doi: 10.1016/0891-5849(94)00125-4
  16. Iinuma Y, Brüggemann E, Gnauk T, et al. Source characterization of biomass burning particles: The combustion of selected European conifers, African hardwood, savanna grass, and German and Indonesian peat. Journal of Geophysical Research. 2007;112(D8):D08209. doi: 10.1029/2006jd007120
  17. Fine PM, Simoneit B. Chemical characterization of fine particle emissions from the fireplace combustion of woods grown in the southern United States. Environ Sci Technol. 2002;36(7):1442–1451. doi: 10.1021/es0108988
  18. Valavanidis A, Fiotakis K, Bakeas E, Vlahogianni T. Electron paramagnetic resonance study of the generation of reactive oxygen species catalysed by transition metals and quinoid redox cycling by inhalable ambient particulate matter. Redox Rep. 2005;10(1):37–51. doi: 10.1179/135100005X21606
  19. Stoddard EG, Killinger BJ, Nag SA, et al. Benzo[a]pyrene induction of glutathione s-transferases: an activity-based protein profiling investigation.Chem Res Toxicol. 2019;32(6):1259–1267. doi: 10.1021/acs.chemrestox.9b00069
  20. Liu Y, Wu Y-M, Yu Y, et al. Curcumin and resveratrol in combination modulate drug-metabolizing enzymes as well as antioxidant indices during lung carcinogenesis in mice. Hum Exp Toxicol. 2015;34(6):620–627. doi: 10.1177/0960327114551396
  21. Reybier K, Perio P, Ferry G, et al. Insights into the redox cycle of human quinone reductase 2. Free Radic Res. 2011;45(10):1184–1195. doi: 10.3109/10715762.2011.605788
  22. Wang W, Jaiswal AK. Sp3 repression of polymorphic human NRH:quinone oxidoreductase 2 gene promoter. Free Radic Biol Med. 2004;(37):1231–1243. doi: 10.1016/j.freeradbiomed.2004.06.042
  23. Long II DJ, Iskander K, Gaikwad A, et al. Disruption of dihydronicotinamide riboside:quinone oxidoreductase 2 (NQO2) leads to myeloid hyperplasia of bone marrow and decreased sensitivity to menadione toxicity. J Biol Chem. 2002;277(48):46131–46139. doi: 10.1074/jbc.M208675200
  24. Janda E, Lascala A, Carresi C, et al. Parkinsonian toxin-induced oxidative stress inhibits basal autophagy in astrocytes via NQO2/quinone oxidoreductase 2: Implications for neuroprotection. Autophagy. 2015;11(7):1063–1080. doi: 10.1080/15548627.2015.1058683
  25. Janda E, Nepveu F, Calamini B, et al. Molecular pharmacology of NRH:quinone oxidoreductase 2: A detoxifying enzyme acting as an undercover toxifying enzyme. Mol Pharmacol. 2020;98(5):620–633. doi: 10.1124/molpharm.120.000105
  26. Cassagnes LE, Perio P, Ferry G, et al. In cellulo monitoring of quinone reductase activity and reactive oxygen species production during the redox cycling of 1,2 and 1,4 quinones. Free Radic Biol Med. 2015;(89):126–134. doi: 10.1016/j.freeradbiomed.2015.07.150
  27. Buryanovskyy L, Fu Y, Boyd M, et al. Crystal structure of suinone seductase 2 in complex with resveratrol. Biochemistry. 2004;43(36):11417–11426. doi: 10.1021/bi049162o
  28. Murawska-Cialowicz E, Jethon Z, Magdalan J, et al. Effects of melatonin on lipid peroxidation and antioxidative enzyme activities in the liver, kidneys and brain of rats administered with benzo(a)pyrene. Exp Toxicol Pathol. 2011;63(1–2):97–103. doi: 10.1016/j.etp.2009.10.002
  29. Cassagnes L-E, Chhour M, Perio P, et al. Oxidative stress and neurodegeneration: The possible contribution of quinone reductase 2. Free Radic Biol Med. 2018;(120):56–61. doi: 10.1016/j.freeradbiomed.2018.03.002
  30. Nolan KA, Dunstan MS, Caraher MC, et al. In silico screening reveals structurally diverse, nanomolar inhibitors of NQO2 that are functionally active in cells and can modulate NF-κB signaling. Mol Cancer Ther. 2012;11(1):194–203. doi: 10.1158/1535-7163.MCT-11-0543
  31. Seredenin SB, Voronin MV. Neuroreceptor mechanisms of afobazole. Experimental and clinical pharmacology. 2009;72(1):3–11. doi: 10.30906/0869-2092-2009-72-1-3-11
  32. Zenina TA, Gavrish IV, Melkumyan DS, et al. Study of the neuroprotective properties of afobazole in in vitro experiments. Bulletin of Experimental Biology and Medicine. 2005;140(8):161–163.
  33. Durnev AD, Seredenin SB. Mutagens. Screening and pharmacological prevention of exposures. Moscow: Medicine; 1998. (In Russ.)
  34. Durnev AD, Solomina AS, Zhanataev AK, et al. Effect of afobazole on genotoxic effects of tobacco smoke in the placenta and embryonic tissues of rats. Bulletin of Experimental Biology and Medicine. 2010;149(3):311–313. (In Russ.)
  35. Shreder OV, Shreder ED, Durnev AD, Seredenin SB. Association of genotoxic and teratogenic effects induced by cyclophosphamide and their modification with afobazole. Hygiene and sanitation. 2011;5:64–68. (In Russ.)
  36. Shreder ED, Shreder OV, Zabrodina VV, et al. Afobazole modifies the neurotoxic and genotoxic effects in rat prenatal alcoholization model. Bulletin of Experimental Biology and Medicine. 2014;157(4):492–495. (In Russ.)
  37. Gorbatova DM, Nemova EP, Solomina AS, et al. Prenatal effects of peat combustion products and afobazole correction thereof in the rat progeny. Bulletin of Experimental Biology and Medicine. 2015;158(5):654–658. (In Russ.). doi: 10.1007/s10517-015-2829-5
  38. Gorbatova DM, Zhanataev AK, Nemova EP, Durnev AD. DNA damage in placenta and embryos of rats exposed to peat smoke; antigenotoxic effects of afobazole. Ecological genetics. 2016;14(2):50–56. (In Russ.). doi: 10.17816/ecogen14250-56
  39. Gorbatova DM, Litvinova SA, Durnev AD, Seredenin SB. Afobazole protects rats exposed to peat smoke in utero. Bulletin of Experimental Biology and Medicine. 2015;158(5):664–669. (In Russ.). doi: 10.1007/s10517-015-2830-z
  40. Guidelines for conducting preclinical studies of drugs. Ed. by A.N. Mironov. Moscow: Grif i K; 2012. (In Russ.)
  41. McCallister MM, Maguire M, Ramesh A, et al. Prenatal exposure to benzo(a)pyrene impairs later-life cortical neuronal function. Neurotoxicology. 2008;29(5):846–854. doi: 10.1016/j.neuro.2008.07.008
  42. McCallister MM, Li Z, Zhang T, et al. Revealing behavioral learning deficit phenotypes subsequent to in utero exposure to benzo(a)pyrene. Toxicol Sci. 2016;149(1):42–54. doi: 10.1093/toxsci/kfv212
  43. Bouayed J, Desor F, Rammal H, et al. Effects of lactational exposure to benzo[alpha]pyrene (B[alpha]P) on postnatal neurodevelopment, neuronal receptor gene expression and behaviour in mice. Toxicology. 2009;259(3):97–106. doi: 10.1016/j.tox.2009.02.010
  44. Patel B, Das SK, Patri M. Neonatal benzo[a]pyrene exposure induces oxidative stress and DNA damage causing neurobehavioural changes during the early adolescence period in rats. Dev Neurosci. 2016;38(2):150–162. doi: 10.1159/000446276
  45. Grova N, Schroeder H, Farinelle S, et al. Sub-acute administration of benzo[a]pyrene (B[a]P) reduces anxiety-related behaviour in adult mice and modulates regional expression of N-methyl-D-aspartate (NMDA) receptors genes in relevant brain regions. Chemosphere. 2008;731(1Suppl):S295–302. doi: 10.1016/j.chemosphere.2007.12.037
  46. Chen C, Tang Y, Jiang X, et al. Early postnatal benzo(a)pyrene exposure in sprague-dawley rats causes persistent neurobehavioral impairments that emerge postnatally and continue into adolescence and adulthood. Toxicol Sci. 2012;125(1):248–261. doi: 10.1093/toxsci/kfr265
  47. Das L, Patel B, Patri M. Adolescence benzo[a]pyrene treatment induces learning and memory impairment and anxiolytic like behavioral response altering neuronal morphology of hippocampus in adult male Wistar rats. Toxicol Rep. 2019;6:1104–1113. doi: 10.1016/j.toxrep.2019.10.014
  48. Zhu L, Chadalapaka G, Ramesh A, et al. PAH particles perturb prenatal processes and phenotypes: protection from deficits in object discrimination afforded by dampening of brain oxidoreductase following in utero exposure to inhaled benzo(a)pyrene. Toxicol Sci. 2012;125(1):233–247. doi: 10.1093/toxsci/kfr261
  49. Jee S-C, Kim M, Kim KS, et al. Protective effects of myricetin on benzo[a]pyrene-induced 8-hydroxy-20-deoxyguanosine and BPDE-DNA adduct. Antioxidants (Basel). 2020;9(5):446. doi: 10.3390/antiox9050446
  50. Berge G, Øvrebø S, Botnen IV, et al. Resveratrol inhibits benzo[a]pyrene–DNA adduct formation in human bronchial epithelial cells. Br J Cancer. 2004;91(2):333–338. doi: 10.1038/sj.bjc.6601898
  51. Huderson AC, Rekha Devi PV, Niaz MS, et al. Alteration of benzo(a)pyrene biotransformation by resveratrol in Apc Min/+ mouse model of colon carcinogenesis. Invest New Drugs. 2019;37(2):238–251. doi: 10.1007/s10637-018-0622-9
  52. Das L, Patel B, Patri M. Adolescence benzo[a]pyrene treatment induces learning and memory impairment and anxiolytic like behavioral response altering neuronal morphology of hippocampus in adult male Wistar rats. Toxicol Rep. 2019;6:1104–1113. doi: 10.1016/j.toxrep.2019.10.014
  53. Tigranyan RA. Stress and its importance for the body. Moscow: Nauka; 1988. (In Russ.)
  54. Cameron HA, Schoenfeld TJ. Behavioral and structural adaptations to stress. Front Neuroendocrinol. 2018;49:106–113. doi: 10.1016/j.yfrne.2018.02.002
  55. Trofimov SS, Ostrovskaia RU, Smol’nikova NM, et al. Sodium oxybutyrate normalizes the central nervous system functions in the progeny of rats subjected to hypobaric hypoxia during pregnancy. Eksp Klin Farmakol. 1993;56(6):8–11. (In Russ.)
  56. Banerjee B, Nandi P, Chakraborty S, et al. Resveratrol ameliorates benzo(a)pyrene induced testicular dysfunction and apoptosis: involvement of p38 MAPK/ATF2/iNOS signalling. J Nutr Biochem. 2016;34:17–29. doi: 10.1016/j.jnutbio.2016.04.003
  57. Seunghoon Oh. Disturbance in testosterone production in leydig cells by polycyclic aromatic hydrocarbons. Dev Rerprod. 2014;18(4):187–195. doi: 10.12717/DR.2014.18.4.187
  58. Antipova TA, Sapozhnikova DS, Stepanichev MYu, et al. Effects of selective anxiolytic afobazole on active caspase-3. Bulletin of Experimental Biology and Medicine. 2010;149(2):201–203. (In Russ.)

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Formation of the breakage avoidance reflex in the offspring of rats (5 days) exposed to peat smoke: a — mails; b — females. * p < 0,05 compared to the TfD group (ANOVA followed by theN ewman-Keils post hoc test); TfD — peat smoke; TfDFb1 — peat smoke and fabomotizol 1 mg / kg; TfDFb10 — peat smoke and fabomotizol 10 mg / kg; K — control

Download (74KB)
3. Fig. 2. The effect of fabomotizole on the behavior of the offspring of rats exposed to PS in prenatal period, in the test “Extrapolation escape task”. a — mails; b — females. *p < 0,05 compared to the TfD group (ANOVA followed by theNewman-Keils post hoc test); TfD — peat smoke; TfDFb1 — peat smoke and fabomotizol 1 mg / kg; TfDFb10 — peat smoke and fabomotizol 10 mg / kg; K — control

Download (135KB)

Copyright (c) 2021 Ivashova D.M., Litvinova S.A., Voronina T.A., Tsorin I.B.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 74760 от 29.12.2018 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies