ЭПИГЕНЕТИЧЕСКИЕ ИЗМЕНЕНИЯ ПРИ ПОСТТРАВМАТИЧЕСКОМ СТРЕССОВОМ РАССТРОЙСТВЕ: ВОЗМОЖНОСТИ И ОГРАНИЧЕНИЯ ЭПИГЕНЕТИЧЕСКОЙ ТЕРАПИИ



Цитировать

Полный текст

Аннотация

В обзоре описаны эпигенетические механизмы, которые могут обуславливать индивидуальные различия в резистентности и риске развития посттравматического стрессового расстройства. Приводятся данные о потенциальном использовании эпигенетических модификаций в качестве биомаркеров травматического стресса и факторов, отвечающих за наследование потомками негативных последствий психогенной травмы, перенесенной родителями. Обсуждаются возможности применения и ограничения эпигенетической терапии посттравматических и связанных со стрессом расстройств.

Полный текст

Доступ закрыт

Об авторах

Ирина Олеговна Сучкова

ФГБНУ «Институт экспериментальной медицины»

Автор, ответственный за переписку.
Email: irsuchkova@mail.ru
ORCID iD: 0000-0003-2127-0459
SPIN-код: 4155-7314
Scopus Author ID: 6602838276
ResearcherId: H-4484-2014

канд. биол. наук, старший научный сотрудник лаборатории молекулярной цитогенетики развития млекопитающих Отдела молекулярной генетики

Россия, 197022, Санкт-Петербург, ул. Акад. Павлова, д.12

Евгений Львович Паткин

ФГБНУ «Институт экспериментальной медицины»

Email: elp44@mail.ru
ORCID iD: 0000-0002-6292-4167
SPIN-код: 4929-4630
Scopus Author ID: 7003713993
ResearcherId: J-7779-2013

д-р биол. наук, профессор, заведующий Лабораторией молекулярной цитогенетики развития млекопитающих Отдела молекулярной генетики

Россия, 197022, Санкт-Петербург, ул. акад. Павлова, д.12

Сергей Георгиевич Цикунов

ФГБНУ "Институт экспериментальной медицины"

Email: secikunov@yandex.ru
ORCID iD: 0000-0002-7097-1940
SPIN-код: 7771-1940
Scopus Author ID: 6506948997
ResearcherId: E-6273-2014

д-р мед. наук, профессор, заведующий лабораторией психофизиологии эмоций Физиологического отдела им. И.П. Павлова

Россия, 197022, Россия, Санкт-Петербург, ул. Акад. Павлова, 12

Генрих Александрович Софронов

ФГБВОУ ВО "Военно-медицинская академия имени С.М.Кирова" МО РФ; ФГБНУ "Институт экспериментальной медицины"

Email: gasofronov@mail.ru
ORCID iD: 0000-0002-8587-1328
SPIN-код: 7334-4881
Scopus Author ID: 7003953555
ResearcherId: G-4791-2015

д-р. мед. наук, профессор, академик РАН, засл. деят. науки РФ, заведующий Лабораторией лекарственной и экологической  токсикологии Научно-исследовательского отдела (медико-биологических исследований) Научно-исследовательского центра; научный руководитель ФГБНУ «Институт экспериментальной медицины»

Россия, 194044, Санкт-Петербург, ул. Акад. Лебедева, 6; 197022, Санкт-Петербург, ул. Акад. павлова, 12

Список литературы

  1. Qureshi I.A., Mehler M.F. Impact of nuclear organization and dynamics on epigenetic regulation in the central nervous system: implications for neurological disease states // Ann N Y Acad Sci. 2010. Vol. 1204, No. Suppl. P. E20-37. doi: 10.1111/j.1749-6632.2010.05718.x
  2. Qureshi I.A., Mehler M.F. Epigenetic mechanisms underlying nervous system diseases // Handb Clin Neurol. 2018. Vol. 147, P. 43-58. doi: 10.1016/b978-0-444-63233-3.00005-1
  3. Varela R.B., Cararo J.H., Tye S.J. et al. Contributions of epigenetic inheritance to the predisposition of major psychiatric disorders: Theoretical framework, evidence, and implications // Neurosci Biobehav Rev. 2022. Vol. 135, P. 104579. doi: 10.1016/j.neubiorev.2022.104579
  4. Соколов П.Л., Чебаненко Н.В., Медная Д.М. Эпигенетические влияния и развитие мозга // Журнал неврологии и психиатрии им. С.С. Корсакова. 2023. Т. 123, № 3. С. 12-19. DOI:https://doi.org/10.17116/jnevro202312303112
  5. Kim G.S., Smith A.K., Nievergelt C.M. et al. Neuroepigenetics of post-traumatic stress disorder // Prog Mol Biol Transl Sci. 2018. Vol. 158, P. 227-253. doi: 10.1016/bs.pmbts.2018.04.001
  6. Дюжикова Н.А., Скоморохова Е.Б., Вайдо А.И. Эпигенетические механизмы формирования постстрессорных состояний // Успехи физиологических наук. 2015. Т. 46, № 1. С. 47-75.
  7. Апраксина Н.К., Немцева П.С., Авалиани Т.В. и др. Отсроченное влияние витального стресса на уровень полногеномного метилирования ДНК на разных стадиях эстрального цикла самок крыс // Патогенез. 2022. Т. 25, №. 3. С. 65-66. doi: 10.25557/2310-0435.2022.03.65-66
  8. Chou P.C., Huang Y.C., Yu S. Mechanisms of epigenetic inheritance in post-traumatic stress disorder // Life (Basel). 2024. Vol. 14, No. 1. P. 98. doi: 10.3390/life14010098
  9. Kringel D., Malkusch S., Lötsch J. Drugs and epigenetic molecular functions. A pharmacological data scientometric analysis // Int J Mol Sci. 2021. Vol. 22, No. 14. P. 7250. doi: 10.3390/ijms22147250
  10. Toth M. Epigenetic neuropharmacology: Drugs affecting the epigenome in the brain // Annu Rev Pharmacol Toxicol. 2021. Vol. 61, P. 181-201. doi: 10.1146/annurev-pharmtox-030220-022920
  11. Szyf M. Prospects for the development of epigenetic drugs for CNS conditions // Nat Rev Drug Discov. 2015. Vol. 14, No. 7. P. 461-474. doi: 10.1038/nrd4580
  12. Sahafnejad Z., Ramazi S., Allahverdi A. An update of epigenetic drugs for the treatment of cancers and brain diseases: A comprehensive review // Genes (Basel). 2023. Vol. 14, No. 4. P. 873. doi: 10.3390/genes14040873
  13. Allis D.C.D., Caparro M.-L., Jenuwein T. et al. Epigenetics. Second ed. New-York, USA: Cold Springer Harbor Laboratory Press. Cold Spring Harbor. 2015. 967 p.
  14. Patkin E.L. Epigenetic mechanisms for primary differentiation in mammalian embryos // Int Rev Cytol. 2002. Vol. 216, P. 81-129. doi: 10.1016/s0074-7696(02)16004-9
  15. Паткин Е.Л., Софронов Г.А. Эколого-зависимые заболевания человека. Эпигенетические механизмы возникновения и наследования // Медицинский академический журнал. 2015. Т. 15, №. 3. С. 7-23.
  16. Толкунова К.М., Могучая Е.В., Ротарь О.П. Трансгенерационное наследование: современные подходы к поиску причин заболеваний // Артериальная гипертензия. 2021. Т. 27, №. 2. С. 122-132. doi: 10.18705/1607-419X-2021-27-2-122-132
  17. Barnhill J.W. Posttraumatic stress disorder (PTSD). In: MSD Manual. Professional version. 2023. URL: https://www.msdmanuals.com/professional/psychiatric-disorders/anxiety-and-stressor-related-disorders/posttraumatic-stress-disorder-ptsd (дата обращения: 14.01.2024).
  18. World Health Organization. International statistical classification of diseases and related health problems 10th Revision (ICD-10). Chapter V. Mental and behavioural disorders (F00-F99). Neurotic, stress-related and somatoform disorders (F40-F48). 2019. URL: https://icd.who.int/browse10/2019/en#/F43.0 (дата обращения: 14.01.2024).
  19. Howie H., Rijal C.M., Ressler K.J. A review of epigenetic contributions to post-traumatic stress disorder
 // Dialogues Clin Neurosci. 2019. Vol. 21, No. 4. P. 417-428. doi: 10.31887/DCNS.2019.21.4/kressler
  20. Дюжикова Н.А., Даев Е.В. Геном и стресс-реакция у животных и человека // Экологическая генетика. 2018. Т. 16, №. 1. С. 4-26. doi: 10.17816/ecogen1614-26
  21. Aykac A., Kalkan R. Epigenetic approach to PTSD: In the aspects of rat models // Glob Med Genet. 2022. Vol. 9, No. 1. P. 7-13. doi: 10.1055/s-0041-1736633
  22. Вайдо А.И., Дюжикова Н.А., Ширяева Н.В. и др. Системный контроль молекулярно-клеточных и эпигенетических механизмов долгосрочных последствий стресса // Генетика. 2009. Т. 45, № 3. С. 342-348. doi: 10.1134/S1022795409030065
  23. Ордян Н.Э., Малышева О.В., Акулова В.К. и др. Способность к обучению и экспрессия гена инсулиноподобного фактора роста II в мозге самцов крыс – потомков отцов, подвергнутых стрессирующему воздействию в парадигме “стресс–рестресс” // Нейрохимия. 2020. Т. 37, № 2. С. 153-160. doi: 10.31857/S1027813320020077
  24. Seckl J.R. Glucocorticoids, developmental 'programming' and the risk of affective dysfunction // Prog Brain Res. 2008. Vol. 167, P. 17-34. doi: 10.1016/s0079-6123(07)67002-2
  25. Ордян Н.Э., Пивина С.Г., Акулова В.К. и др. Изменение характера поведения и активности гипофизарно-адренокортикальной системы крыс – потомков отцов, подвергнутых стрессированию в парадигме “стресс–рестресс” перед спариванием // Российский физиологический журнал им. И.М. Сеченова 2020. Т. 106, № 9. С. 1085-1097. doi: 10.31857/S0869813920090058
  26. Ордян Н.Э., Пивина С.Г., Миронова В.И. и др. Активность гипоталамо-гипофизарно-адренокортикальной системы пренатально стрессированных самок крыс в модели посттравматического стрессового расстройства // Российский физиологический журнал им. И.М. Сеченова. 2014. Т. 100, №. 12. С. 1409-1420.
  27. Пивина С.Г., Ракицкая В.В., Акулова В.К. и др. Активность гипоталамо-гипофизарно-надпочечниковой системы пренатально стрессированных самцов крыс в экспериментальной модели посттравматического стрессового расстройства // Бюллетень экспериментальной биологии и медицины. 2015. Т. 160, №. 11. С. 542-545. doi: 10.1007/s10517-016-3227-3
  28. Gatta E., Saudagar V., Auta J. et al. Epigenetic landscape of stress surfeit disorders: Key role for DNA methylation dynamics // Int Rev Neurobiol. 2021. Vol. 156, P. 127-183. doi: 10.1016/bs.irn.2020.08.002
  29. Coelho A.A., Lima-Bastos S., Gobira P.H. et al. Endocannabinoid signaling and epigenetics modifications in the neurobiology of stress-related disorders // Neuronal Signal. 2023. Vol. 7, No. 2. P. Ns20220034. doi: 10.1042/ns20220034
  30. Cao-Lei L., Saumier D., Fortin J. et al. A narrative review of the epigenetics of post-traumatic stress disorder and post-traumatic stress disorder treatment // Front Psychiatry. 2022. Vol. 13, P. 857087. doi: 10.3389/fpsyt.2022.857087
  31. Qi P., Huang M., Ren X. et al. Identification of potential biomarkers and therapeutic targets related to post-traumatic stress disorder due to traumatic brain injury // Eur J Med Res. 2024. Vol. 29, No. 1. P. 44. doi: 10.1186/s40001-024-01640-x
  32. Gökbuget D., Blelloch R. Epigenetic control of transcriptional regulation in pluripotency and early differentiation // Development. 2019. Vol. 146, No. 19. P. dev164772. doi: 10.1242/dev.164772
  33. Ambrosi C., Manzo M., Baubec T. Dynamics and context-dependent roles of DNA methylation // J Mol Biol. 2017. Vol. 429, No. 10. P. 1459-1475. doi: 10.1016/j.jmb.2017.02.008
  34. Ooi S.K., Qiu C., Bernstein E. et al. DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA // Nature. 2007. Vol. 448, No. 7154. P. 714-717. doi: 10.1038/nature05987
  35. Li H., Liu H., Zhu D. et al. Biological function molecular pathways and druggability of DNMT2/TRDMT1 // Pharmacol Res. 2024. Vol. 205, P. 107222. DOI:https://doi.org/10.1016/j.phrs.2024.107222
  36. Li H., Zhu D., Yang Y. et al. Determinants of DNMT2/TRDMT1 preference for substrates tRNA and DNA during the evolution // RNA Biol. 2023. Vol. 20, No. 1. P. 875-892. doi: 10.1080/15476286.2023.2272473
  37. Dong A., Yoder J.A., Zhang X. et al. Structure of human DNMT2, an enigmatic DNA methyltransferase homolog that displays denaturant-resistant binding to DNA // Nucleic Acids Res. 2001. Vol. 29, No. 2. P. 439-448. doi: 10.1093/nar/29.2.439
  38. Sardina J.L., Collombet S., Tian T.V. et al. Transcription factors drive Tet2-mediated enhancer demethylation to reprogram cell fate // Cell Stem Cell. 2018. Vol. 23, No. 5. P. 727-741.e729. doi: 10.1016/j.stem.2018.08.016
  39. Jones P.L., Veenstra G.J., Wade P.A. et al. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription // Nat Genet. 1998. Vol. 19, No. 2. P. 187-191. doi: 10.1038/561
  40. Klose R.J., Bird A.P. Genomic DNA methylation: the mark and its mediators // Trends Biochem Sci. 2006. Vol. 31, No. 2. P. 89-97. doi: 10.1016/j.tibs.2005.12.008
  41. Clouaire T., Stancheva I. Methyl-CpG binding proteins: specialized transcriptional repressors or structural components of chromatin? // Cell Mol Life Sci. 2008. Vol. 65, No. 10. P. 1509-1522. doi: 10.1007/s00018-008-7324-y
  42. Bahar Halpern K., Vana T., Walker M.D. Paradoxical role of DNA methylation in activation of FoxA2 gene expression during endoderm development // J Biol Chem. 2014. Vol. 289, No. 34. P. 23882-23892. doi: 10.1074/jbc.M114.573469
  43. Паткин Е.Л. Эпигенетические механизмы распространенных заболеваний человека. СПб: Нестор-История. 2008. 196 с.
  44. Sutherland J.E., Costa M. Epigenetics and the environment // Ann N Y Acad Sci. 2003. Vol. 983, P. 151-160. doi: 10.1111/j.1749-6632.2003.tb05970.x
  45. Паткин Е.Л., Софронов Г.А. Эпигенетические изменения как общий механизм заболеваний, старения и токсического действия химических веществ. СПб: Эко-Вектор. 2019. 237 с.
  46. Дюжикова Н.А., Павлова М.Б., Ширяева Н.В. и др. Долгосрочные постстрессорные изменения метилирования ДНК и гистона Н3 в амигдале крыс с высокой и низкой возбудимостью нервной системы. В сборнике: Материалы XXIII съезда Физиологического общества им. И. П. Павлова с международным участием. Воронеж: Изд-во «ИСТОКИ». 2017. С. 1149-1151.
  47. Дюжикова Н.А. Цитогенетические и молекулярно-клеточные механизмы постстрессорных состояний: Автореф. дисс. д.б.н. СПб: Институт физиологии им. И.П. Павлова РАН. 2016. С. 42.
  48. Jawahar M.C., Murgatroyd C., Harrison E.L. et al. Epigenetic alterations following early postnatal stress: a review on novel aetiological mechanisms of common psychiatric disorders // Clin Epigenetics. 2015. Vol. 7, P. 122. doi: 10.1186/s13148-015-0156-3
  49. Martin C.A., Vorn R., Schrieber M. et al. Identification of DNA methylation changes that predict onset of post-traumatic stress disorder and depression following physical trauma // Front Neurosci. 2021. Vol. 15. P. 738347. doi: 10.3389/fnins.2021.738347
  50. Al Jowf G.I., Snijders C., Rutten B.P.F. et al. The molecular biology of susceptibility to post-traumatic stress disorder: Highlights of epigenetics and epigenomics // Int J Mol Sci. 2021. Vol. 22, No. 19. P. 10743. doi: 10.3390/ijms221910743
  51. Bhattacharya S., Fontaine A., MacCallum P.E. et al. Stress across generations: DNA methylation as a potential mechanism underlying intergenerational effects of stress in both post-traumatic stress disorder and pre-clinical predator stress rodent models // Front Behav Neurosci. 2019. Vol. 13, P. 113. doi: 10.3389/fnbeh.2019.00113
  52. Дюжикова Н.А., Савенко Ю.Н., Соколова Н.Е. и др. Влияние длительного эмоционально-болевого стресса на содержание метилцитозинсвязывающего белка МеСР2 в ядрах нейронов гиппокампа крыс с различным уровнем возбудимости нервной системы // Бюллетень экспериментальной биологии и медицины. 2006. Т. 142, № 8. С.205-207. doi: 10.1007/s10517-006-0337-3
  53. Cosentino L., Witt S.H., Dukal H. et al. Methyl-CpG binding protein 2 expression is associated with symptom severity in patients with PTSD in a sex-dependent manner // Transl Psychiatry. 2023. Vol. 13, No. 1. P. 249. doi: 10.1038/s41398-023-02529-9
  54. Cosentino L., Zidda F., Dukal H. et al. Low levels of methyl-CpG binding protein 2 are accompanied by an increased vulnerability to the negative outcomes of stress exposure during childhood in healthy women // Transl Psychiatry. 2022. Vol. 12, No. 1. P. 506. doi: 10.1038/s41398-022-02259-4
  55. Dirven B.C.J., Homberg J.R., Kozicz T. et al. Epigenetic programming of the neuroendocrine stress response by adult life stress // J Mol Endocrinol. 2017. Vol. 59, No. 1. P. R11-r31. doi: 10.1530/jme-17-0019
  56. Zovkic I.B., Sweatt J.D. Epigenetic mechanisms in learned fear: implications for PTSD // Neuropsychopharmacolgy. 2013. Vol. 38, No. 1. P. 77-93. doi: 10.1038/npp.2012.79
  57. Globisch D., Münzel M., Müller M. et al. Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates // PLoS One. 2010. Vol. 5, No. 12. P. e15367. doi: 10.1371/journal.pone.0015367
  58. Hack L.M., Dick A.L.W., Provençal N. Epigenetic mechanisms involved in the effects of stress exposure: Focus on 5-hydroxymethylcytosine // Environ Epigenet. 2016. Vol. 2, No. 3. P. dvw016. doi: 10.1093/eep/dvw016
  59. Li S., Papale L.A., Zhang Q. et al. Genome-wide alterations in hippocampal 5-hydroxymethylcytosine links plasticity genes to acute stress // Neurobiol Dis. 2016. Vol. 86, P. 99-108. doi: 10.1016/j.nbd.2015.11.010
  60. Kochmanski J., Bernstein A.I. The Impact of environmental factors on 5-hydroxymethylcytosine in the brain // Curr Environ Health Rep. 2020. Vol. 7, No. 2. P. 109-120. doi: 10.1007/s40572-020-00268-3
  61. Yehuda R., Daskalakis N.P., Desarnaud F. et al. Epigenetic biomarkers as predictors and correlates of symptom improvement following psychotherapy in combat veterans with PTSD // Front Psychiatry. 2013. Vol. 4, P. 118. doi: 10.3389/fpsyt.2013.00118
  62. Rutten B.P.F., Vermetten E., Vinkers C.H. et al. Longitudinal analyses of the DNA methylome in deployed military servicemen identify susceptibility loci for post-traumatic stress disorder // Mol Psychiatry. 2018. Vol. 23, No. 5. P. 1145-1156. doi: 10.1038/mp.2017.120
  63. Mehta D., Bruenig D., Carrillo-Roa T. et al. Genomewide DNA methylation analysis in combat veterans reveals a novel locus for PTSD // Acta Psychiatr Scand. 2017. Vol. 136, No. 5. P. 493-505. doi: 10.1111/acps.12778
  64. Kang J.I., Kim T.Y., Choi J.H. et al. Allele-specific DNA methylation level of FKBP5 is associated with post-traumatic stress disorder // Psychoneuroendocrinology. 2019. Vol. 103, P. 1-7. doi: 10.1016/j.psyneuen.2018.12.226
  65. Vinkers C.H., Geuze E., van Rooij S.H. et al. Successful treatment of post-traumatic stress disorder reverses DNA methylation marks // Mol Psychiatry. 2021. Vol. 26, No. 4. P. 1264-1271. doi: 10.1038/s41380-019-0549-3
  66. Occean J.R., Wani A.H., Donglasan J. et al. DNA methylation of nuclear factor of activated T cells 1 mediates the prospective relation between exposure to different traumatic event types and post-traumatic stress disorder // Psychiatry Res. 2022. Vol. 311, P. 114510. doi: 10.1016/j.psychres.2022.114510
  67. Wen Y., Shang Y., Wang Q. Exploration of the mechanism of linoleic acid metabolism dysregulation in metabolic syndrome // Genet Res (Camb). 2022. Vol. 2022, P. 6793346. doi: 10.1155/2022/6793346
  68. Crombach A., Rukundo-Zeller A.C., Vukojevic V. et al. Differential methylation of linoleic acid pathway genes is associated with PTSD symptoms - a longitudinal study with Burundian soldiers returning from a war zone // Transl Psychiatry. 2024. Vol. 14, No. 1. P. 32. doi: 10.1038/s41398-024-02757-7
  69. Xin N., Wang D.T., Zhang L. et al. Early developmental stage glucocorticoid exposure causes DNA methylation and behavioral defects in adult zebrafish // Comp Biochem Physiol C Toxicol Pharmacol. 2022. Vol. 256,. P. 109301. doi: 10.1016/j.cbpc.2022.109301
  70. Radtke K.M., Ruf M., Gunter H.M. et al. Transgenerational impact of intimate partner violence on methylation in the promoter of the glucocorticoid receptor // Transl Psychiatry. 2011. Vol. 1, No. 7. P. e21. doi: 10.1038/tp.2011.21
  71. Cordero M.I., Stenz L., Moser D.A. et al. The relationship of maternal and child methylation of the glucocorticoid receptor NR3C1 during early childhood and subsequent child psychopathology at school-age in the context of maternal interpersonal violence-related post-traumatic stress disorder // Front Psychiatry. 2022. Vol. 13, P. 919820. doi: 10.3389/fpsyt.2022.919820
  72. Hjort L., Rushiti F., Wang S.J. et al. Intergenerational effects of maternal post-traumatic stress disorder on offspring epigenetic patterns and cortisol levels // Epigenomics. 2021. Vol. 13, No. 12. P. 967-980. doi: 10.2217/epi-2021-0015
  73. Klengel T., Dias B.G., Ressler K.J. Models of intergenerational and transgenerational transmission of risk for psychopathology in mice // Neuropsychopharmacology. 2016. Vol. 41, No. 1. P. 219-231. doi: 10.1038/npp.2015.249
  74. Yehuda R., Daskalakis N.P., Bierer L.M. et al. Holocaust exposure induced intergenerational effects on FKBP5 methylation // Biol Psychiatry. 2016. Vol. 80, No. 5. P. 372-380. doi: 10.1016/j.biopsych.2015.08.005
  75. Fransquet P.D., Hjort L., Rushiti F. et al. DNA methylation in blood cells is associated with cortisol levels in offspring of mothers who had prenatal post-traumatic stress disorder // Stress Health. 2022. Vol. 38, No. 4. P. 755-766. doi: 10.1002/smi.3131
  76. Sharma R., Frasch M.G., Zelgert C. et al. Maternal-fetal stress and DNA methylation signatures in neonatal saliva: an epigenome-wide association study // Clin Epigenetics. 2022. Vol. 14, No. 1. P. 87. doi: 10.1186/s13148-022-01310-x
  77. Saunderson E.A., Spiers H., Mifsud K.R. et al. Stress-induced gene expression and behavior are controlled by DNA methylation and methyl donor availability in the dentate gyrus // Proc Natl Acad Sci U S A. 2016. Vol. 113, No. 17. P. 4830-4835. doi: 10.1073/pnas.1524857113
  78. Vlasov I., Filatova E., Slominsky P. et al. Differential expression of Dusp1 and immediate early response genes in the hippocampus of rats, subjected to forced swim test // Sci Rep. 2023. Vol. 13, No. 1. P. 9985. doi: 10.1038/s41598-023-36611-5
  79. Blouin A.M., Sillivan S.E., Joseph N.F. et al. The potential of epigenetics in stress-enhanced fear learning models of PTSD // Learn Mem. 2016. Vol. 23, No. 10. P. 576-586. doi: 10.1101/lm.040485.115
  80. Chertkow-Deutsher Y., Cohen H., Klein E. et al. DNA methylation in vulnerability to post-traumatic stress in rats: Evidence for the role of the post-synaptic density protein Dlgap2 // Int J Neuropsychopharmacol. 2010. Vol. 13, No. 3. P. 347-359. doi: 10.1017/s146114570999071x
  81. Bohacek J., Farinelli M., Mirante O. et al. Pathological brain plasticity and cognition in the offspring of males subjected to postnatal traumatic stress // Mol Psychiatry. 2015. Vol. 20, No. 5. P. 621-631. doi: 10.1038/mp.2014.80
  82. Li B., Carey M., Workman J.L. The role of chromatin during transcription // Cell. 2007. Vol. 128, No. 4. P. 707-719. doi: 10.1016/j.cell.2007.01.015
  83. Bannister A.J., Kouzarides T. Regulation of chromatin by histone modifications // Cell Res. 2011. Vol. 21, No. 3. P. 381-395. doi: 10.1038/cr.2011.22
  84. Tan M., Luo H., Lee S. et al. Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification // Cell. 2011. Vol. 146, No. 6. P. 1016-1028. doi: 10.1016/j.cell.2011.08.008
  85. Pradeepa M.M. Causal role of histone acetylations in enhancer function // Transcription. 2017. Vol. 8, No. 1. P. 40-47. doi: 10.1080/21541264.2016.1253529
  86. Millán-Zambrano G., Burton A., Bannister A.J. et al. Histone post-translational modifications - cause and consequence of genome function // Nat Rev Genet. 2022. Vol. 23, No. 9. P. 563-580. doi: 10.1038/s41576-022-00468-7
  87. Patel A.B., He Y., Radhakrishnan I. Histone acetylation and deacetylation - Mechanistic insights from structural biology // Gene. 2024. Vol. 890, P. 147798. doi: 10.1016/j.gene.2023.147798
  88. Wei S., Li C., Yin Z. et al. Histone methylation in DNA repair and clinical practice: new findings during the past 5-years // J Cancer. 2018. Vol. 9, No. 12. P. 2072-2081. doi: 10.7150/jca.23427
  89. Husmann D., Gozani O. Histone lysine methyltransferases in biology and disease // Nat Struct Mol Biol. 2019. Vol. 26, No. 10. P. 880-889. doi: 10.1038/s41594-019-0298-7
  90. Wang Y., Khandelwal N., Liu S. et al. KDM6B cooperates with Tau and regulates synaptic plasticity and cognition via inducing VGLUT1/2 // Mol Psychiatry. 2022. Vol. 27, No. 12. P. 5213-5226. doi: 10.1038/s41380-022-01750-0
  91. Cao X., Dang W. Chapter 15 - Histone modification changes during aging: Cause or consequence? What we have learned about epigenetic regulation of aging from model organisms. In: Epigenetics of Aging and Longevity / by edtitors Moskalev A., Vaiserman A.M. Boston: Academic Press. 2018. P. 309-328.
  92. Watson N.A., Higgins J.M.G. Chapter 4 - Histone kinases and phosphatases. In: Chromatin Signaling and Diseases / be editors Binda O., Fernandez-Zapico M.E. Boston: Academic Press. 2016. P. 75-94.
  93. Cao J., Yan Q. Histone ubiquitination and deubiquitination in transcription, DNA damage response, and cancer // Front Oncol. 2012. Vol. 2, P. 26. doi: 10.3389/fonc.2012.00026
  94. Ryu H.Y., Hochstrasser M. Histone sumoylation and chromatin dynamics // Nucleic Acids Res. 2021. Vol. 49, No. 11. P. 6043-6052. doi: 10.1093/nar/gkab280
  95. Li K., Wang Z. Histone crotonylation-centric gene regulation // Epigenetics Chromatin. 2021. Vol. 14, No. 1. P. 10. doi: 10.1186/s13072-021-00385-9
  96. Cheng J., Huang M., Zhu Y. et al. SUMOylation of MeCP2 is essential for transcriptional repression and hippocampal synapse development // J Neurochem. 2014. Vol. 128, No. 6. P. 798-806. doi: 10.1111/jnc.12523
  97. Stielow C., Stielow B., Finkernagel F. et al. SUMOylation of the polycomb group protein L3MBTL2 facilitates repression of its target genes // Nucl Acids Res. 2014. Vol. 42, No. 5. P. 3044-3058. doi: 10.1093/nar/gkt1317
  98. Mattiroli F., Penengo L. Histone ubiquitination: An integrative signaling platform in genome stability // Trends Genet. 2021. Vol. 37, No. 6. P. 566-581. doi: 10.1016/j.tig.2020.12.005
  99. Zhang Y., Sun Z., Jia J. et al. Overview of histone modification // Adv Exp Med Biol. 2021. Vol. 1283, P. 1-16. doi: 10.1007/978-981-15-8104-5_1
  100. Cerutti H., Casas-Mollano J.A. Histone H3 phosphorylation: Universal code or lineage specific dialects? // Epigenetics. 2009. Vol. 4, No. 2. P. 71-75. doi: 10.4161/epi.4.2.7781
  101. Murakami Y. Phosphorylation of repressive histone code readers by casein kinase 2 plays diverse roles in heterochromatin regulation // J Biochem. 2019. Vol. 166, No. 1. P. 3-6. doi: 10.1093/jb/mvz045
  102. Bahl S., Seto E. Regulation of histone deacetylase activities and functions by phosphorylation and its physiological relevance // Cell Mol Life Sci. 2021. Vol. 78, No. 2. P. 427-445. doi: 10.1007/s00018-020-03599-4
  103. Wu G., Broniscer A., McEachron T.A. et al. Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas // Nat Genet. 2012. Vol. 44, No. 3. P. 251-253. doi: 10.1038/ng.1102
  104. Labrie V., Pai S., Petronis A. Epigenetics of major psychosis: progress, problems and perspectives // Trends Genet. 2012. Vol. 28, No. 9. P. 427-435. doi: 10.1016/j.tig.2012.04.002
  105. Gavin D.P., Rosen C., Chase K. et al. Dimethylated lysine 9 of histone 3 is elevated in schizophrenia and exhibits a divergent response to histone deacetylase inhibitors in lymphocyte cultures // J Psychiatry Neurosci. 2009. Vol. 34, No. 3. P. 232-237.
  106. Дюжикова Н.А., Павлова М.Б., Левина А.С. и др. Влияние длительного эмоционально-болевого стрессорного воздействия на фосфорилирование гистона Н3 в медиальной префронтальной коре и базолатеральной области амигдалы у крыс с генетическими различиями по возбудимости нервной системы // Морфология. 2020. Т. 158, № 4-5. С.27-33. doi: 10.34922/AE.2020.158.4.004
  107. Левина А.С., Ширяева Н.В., Вайдо А.И., Дюжикова Н.А. Влияние активности NMDA-рецепторов на процесс метилирования гистона Н3 и его асимметрию в пирамидных нейронах гиппокампа крыс с разным порогом возбудимости нервной системы в норме и при стрессе // Журнал эволюционной биохимии и физиологии. 2013. Т. 49, № 6. С. 450-456. doi: 10.1134/S0022093013060091
  108. Павлова М.Б., Дюжикова Н.А., Ширяева Н.В. и др. Влияние длительного стресса на фосфорилирование гистона Н3(Ser10) в ядрах нейронов сенсомоторной зоны коры и ретикулярной формации среднего мозга линий крыс с различной возбудимостью нервной системы // Бюллетень экспериментальной биологии и медицины. 2013. Т. 155, № 3. С. 352-355. doi: 10.1007/s10517-013-2157-6
  109. Павлова М.Б., Ширяева Н.В., Дюжикова Н.А и др. Влияние длительного эмоционально-болевого стресса на метилирование гистона Н3 в клетках гиппокампа и амигдалы крыс с различной возбудимостью нервной системы // Нейрохимия. 2017. Т. 34, № 3. С. 227-234. doi: 10.7868/S1027813317030098
  110. Соколова Н.Е., Ширяева Н.В., Дюжикова Н.А. и др. Влияние длительного эмоционально-болевого стресса на динамику ацетилирования гистона Н4 в нейронах гиппокампа крыс с разным уровнем возбудимости нервной системы // Бюллетень экспериментальной биологии и медицины. 2006. Т. 142, № 9. С. 313-315. doi: 10.1007/s10517-006-0361-3
  111. Reed B., Fang N., Mayer-Blackwell B. et al. Chromatin alterations in response to forced swimming underlie increased prodynorphin transcription // Neuroscience. 2012. Vol. 220, P. 109-118. doi: 10.1016/j.neuroscience.2012.06.006
  112. Hunter R.G., McCarthy K.J., Milne T.A. et al. Regulation of hippocampal H3 histone methylation by acute and chronic stress // Proc Natl Acad Sci U S A. 2009. Vol. 106, No. 49. P. 20912-20917. doi: 10.1073/pnas.0911143106
  113. Sanacora G., Yan Z., Popoli M. The stressed synapse 2.0: pathophysiological mechanisms in stress-related neuropsychiatric disorders // Nat Rev Neurosci. 2022. Vol. 23, No. 2. P. 86-103. doi: 10.1038/s41583-021-00540-x
  114. Bam M., Yang X., Zhou J. et al. Evidence for epigenetic regulation of pro-inflammatory cytokines, interleukin-12 and interferon gamma, in peripheral blood mononuclear cells from PTSD patients // J Neuroimmune Pharmacol. 2016. Vol. 11, No. 1. P. 168-181. doi: 10.1007/s11481-015-9643-8
  115. Rusconi F., Grillo B., Ponzoni L. et al. LSD1 modulates stress-evoked transcription of immediate early genes and emotional behavior // Proc Natl Acad Sci U S A. 2016. Vol. 113, No. 13. P. 3651-3656. doi: 10.1073/pnas.1511974113
  116. Liu Y., Li M., Fan M. et al. Chromodomain Y-like protein-mediated histone crotonylation regulates stress-induced depressive behaviors // Biol Psychiatry. 2019. Vol. 85, No. 8. P. 635-649. doi: 10.1016/j.biopsych.2018.11.025
  117. Дюжикова Н.А., Савенко Ю.Н., Миронов С.В. и др. Характеристики гетерохроматина в нейронах гиппокампа крыс линий с различной возбудимостью нервной системы в условиях моделирования посттравматического стрессового расстройства // Морфология. 2007. Т. 131, №. 2. С. 43-50
  118. Reul J.M. Making memories of stressful events: a journey along epigenetic, gene transcription, and signaling pathways // Front Psychiatry. 2014. Vol. 5. P. 5. doi: 10.3389/fpsyt.2014.00005
  119. Trollope A.F., Gutièrrez-Mecinas M., Mifsud K.R. et al. Stress, epigenetic control of gene expression and memory formation // Exp Neurol. 2012. Vol. 233, No. 1. P. 3-11. doi: 10.1016/j.expneurol.2011.03.022
  120. Webb W.M., Sanchez R.G., Perez G. et al. Dynamic association of epigenetic H3K4me3 and DNA 5hmC marks in the dorsal hippocampus and anterior cingulate cortex following reactivation of a fear memory // Neurobiol Learn Mem. 2017. Vol. 142, No. Pt A. P. 66-78. doi: 10.1016/j.nlm.2017.02.010
  121. Whittle N., Singewald N. HDAC inhibitors as cognitive enhancers in fear, anxiety and trauma therapy: where do we stand? // Biochem Soc Trans. 2014. Vol. 42, No. 2. P. 569-581. doi: 10.1042/bst20130233
  122. Bonomi R.E., Girgenti M., Krystal J.H. et al. A role for histone deacetylases in the biology and treatment of post-traumatic stress disorder: what do we know and where do we go from here? // Complex Psychiatry. 2022. Vol. 8, No. 1-2. P. 13-27. doi: 10.1159/000524079
  123. Sun Y.M., Chen Y.Q. Principles and innovative technologies for decrypting noncoding RNAs: from discovery and functional prediction to clinical application // J Hematol Oncol. 2020. Vol. 13, No. 1. P. 109. doi: 10.1186/s13045-020-00945-8
  124. Peedicayil J. Chapter 15. Non-coding RNAs and psychiatric disorders. In: Epigenetics in Psychiatry (Second Edition) / by editors Peedicayil J, Grayson DR, Avramopoulos D. Academic Press. 2021. P. 321-333.
  125. Kaikkonen M.U., Lam M.T., Glass C.K. Non-coding RNAs as regulators of gene expression and epigenetics // Cardiovasc Res. 2011. Vol. 90, No. 3. P. 430-440. doi: 10.1093/cvr/cvr097
  126. Wang W., Min L., Qiu X. et al. Biological function of long non-coding RNA (LncRNA) Xist // Front Cell Dev Biol. 2021. Vol. 9, P. 645647. doi: 10.3389/fcell.2021.645647
  127. Pasquinelli A.E. MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship // Nat Rev Genet. 2012. Vol. 13, No. 4. P. 271-282. doi: 10.1038/nrg3162
  128. Xu J.Z., Zhang J.L., Zhang W.G. Antisense RNA: the new favorite in genetic research // J Zhejiang Univ Sci B. 2018. Vol. 19, No. 10. P. 739-749. doi: 10.1631/jzus.B1700594
  129. Statello L., Guo C.J., Chen L.L. et al. Gene regulation by long non-coding RNAs and its biological functions // Nat Rev Mol Cell Biol. 2021. Vol. 22, No. 2. P. 96-118. doi: 10.1038/s41580-020-00315-9
  130. Nepal C., Taranta A., Hadzhiev Y. et al. Ancestrally duplicated conserved noncoding element suggests dual regulatory roles of HOTAIR in cis and trans // iScience. 2020. Vol. 23, No. 4. P. 101008. doi: 10.1016/j.isci.2020.101008
  131. Tsai M.C., Manor O., Wan Y. et al. Long noncoding RNA as modular scaffold of histone modification complexes // Science. 2010. Vol. 329, No. 5992. P. 689-693. doi: 10.1126/science.1192002
  132. Schorderet P., Duboule D. Structural and functional differences in the long non-coding RNA hotair in mouse and human // PLoS Genet. 2011. Vol. 7, No. 5. P. e1002071. doi: 10.1371/journal.pgen.1002071
  133. Rosspopoff O., Cazottes E., Huret C. et al. Species-specific regulation of XIST by the JPX/FTX orthologs // Nucleic Acids Res. 2023. Vol. 51, No. 5. P. 2177-2194. doi: 10.1093/nar/gkad029
  134. Boeren J., Gribnau J. Xist-mediated chromatin changes that establish silencing of an entire X chromosome in mammals // Curr Opin Cell Biol. 2021. Vol. 70, P. 44-50. doi: 10.1016/j.ceb.2020.11.004
  135. Patel R.S., Krause-Hauch M., Kenney K. et al. Long noncoding RNA VLDLR-AS1 levels in serum correlate with combat-related chronic mild traumatic brain injury and depression symptoms in US veterans // Int J Mol Sci. 2024. Vol. 25, No. 3. P. 1473. doi: 10.3390/ijms25031473
  136. Bam M., Yang X., Ginsberg J.P. et al. Long non-coding RNA LINC00926 regulates WNT10B signaling pathway thereby altering inflammatory gene expression in PTSD // Transl Psychiatry. 2022. Vol. 12, No. 1. P. 200. doi: 10.1038/s41398-022-01971-5
  137. Zhu Z., Huang X., Du M. et al. Recent advances in the role of miRNAs in post-traumatic stress disorder and traumatic brain injury // Mol Psychiatry. 2023. Vol. 28, No. 7. P. 2630-2644. doi: 10.1038/s41380-023-02126-8
  138. Guffanti G., Galea S., Yan L. et al. Genome-wide association study implicates a novel RNA gene, the lincRNA AC068718.1, as a risk factor for post-traumatic stress disorder in women // Psychoneuroendocrinology. 2013. Vol. 38, No. 12. P. 3029-3038. doi: 10.1016/j.psyneuen.2013.08.014
  139. Snijders C., de Nijs L., Baker D.G. et al. MicroRNAs in post-traumatic stress disorder // Curr Top Behav Neurosci. 2018. Vol. 38, P. 23-46. doi: 10.1007/7854_2017_32
  140. Wingo A.P., Almli L.M., Stevens J.S. et al. DICER1 and microRNA regulation in post-traumatic stress disorder with comorbid depression // Nat Commun. 2015. Vol. 6. P. 10106. doi: 10.1038/ncomms10106
  141. Bam M., Yang X., Zumbrun E.E. et al. Dysregulated immune system networks in war veterans with PTSD is an outcome of altered miRNA expression and DNA methylation // Sci Rep. 2016. Vol. 6, P. 31209. doi: 10.1038/srep31209
  142. Martin C.G., Kim H., Yun S. et al. Circulating miRNA associated with posttraumatic stress disorder in a cohort of military combat veterans // Psychiatry Res. 2017. Vol. 251, P. 261-265. doi: 10.1016/j.psychres.2017.01.081
  143. Zhou J., Nagarkatti P., Zhong Y. et al. Dysregulation in microRNA expression is associated with alterations in immune functions in combat veterans with post-traumatic stress disorder // PLoS One. 2014. Vol. 9, No. 4. P. e94075. doi: 10.1371/journal.pone.0094075
  144. Jung S.H., Wang Y., Kim T. et al. Molecular mechanisms of repeated social defeat-induced glucocorticoid resistance: Role of microRNA // Brain Behav Immun. 2015. Vol. 44, P. 195-206. doi: 10.1016/j.bbi.2014.09.015
  145. Schouten M., Aschrafi A., Bielefeld P. et al. microRNAs and the regulation of neuronal plasticity under stress conditions // Neuroscience. 2013. Vol. 241, P. 188-205. doi: 10.1016/j.neuroscience.2013.02.065
  146. Meerson A., Cacheaux L., Goosens K.A. et al. Changes in brain microRNAs contribute to cholinergic stress reactions // J Mol Neurosci. 2010. Vol. 40, No. 1-2. P. 47-55. doi: 10.1007/s12031-009-9252-1
  147. Pasinetti G.M., Ho L., Dooley C. et al. Select non-coding RNA in blood components provide novel clinically accessible biological surrogates for improved identification of traumatic brain injury in OEF/OIF Veterans // Am J Neurodegener Dis. 2012. Vol. 1, No. 1. P. 88-98.
  148. Gapp K., Jawaid A., Sarkies P. et al. Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice // Nat Neurosci. 2014. Vol. 17, No. 5. P. 667-669. doi: 10.1038/nn.3695
  149. Dias B.G., Goodman J.V., Ahluwalia R. et al. Amygdala-dependent fear memory consolidation via miR-34a and Notch signaling // Neuron. 2014. Vol. 83, No. 4. P. 906-918. doi: 10.1016/j.neuron.2014.07.019
  150. Vetere G., Barbato C., Pezzola S. et al. Selective inhibition of miR-92 in hippocampal neurons alters contextual fear memory // Hippocampus. 2014. Vol. 24, No. 12. P. 1458-1465. doi: 10.1002/hipo.22326
  151. Wang R.Y., Phang R.Z., Hsu P.H. et al. In vivo knockdown of hippocampal miR-132 expression impairs memory acquisition of trace fear conditioning // Hippocampus. 2013. Vol. 23, No. 7. P. 625-633. doi: 10.1002/hipo.22123
  152. Lin Q., Wei W., Coelho C.M. et al. The brain-specific microRNA miR-128b regulates the formation of fear-extinction memory // Nat Neurosci. 2011. Vol. 14, No. 9. P. 1115-1117. doi: 10.1038/nn.2891
  153. Jovasevic V., Corcoran K.A., Leaderbrand K. et al. GABAergic mechanisms regulated by miR-33 encode state-dependent fear // Nat Neurosci. 2015. Vol. 18, No. 9. P. 1265-1271. doi: 10.1038/nn.4084
  154. Balakathiresan N.S., Chandran R., Bhomia M. et al. Serum and amygdala microRNA signatures of posttraumatic stress: fear correlation and biomarker potential // J Psychiatr Res. 2014. Vol. 57, P. 65-73. doi: 10.1016/j.jpsychires.2014.05.020
  155. Schmidt U., Herrmann L., Hagl K. et al. Therapeutic action of fluoxetine is associated with a reduction in prefrontal cortical miR-1971 expression levels in a mouse model of posttraumatic stress disorder // Front Psychiatry. 2013. Vol. 4. P. 66. doi: 10.3389/fpsyt.2013.00066
  156. Sun P., Liu D.Z., Jickling G.C. et al. MicroRNA-based therapeutics in central nervous system injuries // J Cereb Blood Flow Metab. 2018. Vol. 38, No. 7. P. 1125-1148. doi: 10.1177/0271678x18773871
  157. Разин С.В., Быстрицкий А.А. Хроматин: упакованный геном (4-е изд.). М: БИНОМ. Лаборатория знаний. 2015. 191 c.
  158. Clapier C.R., Cairns B.R. The biology of chromatin remodeling complexes // Annu Rev Biochem. 2009. Vol. 78, P. 273-304. doi: 10.1146/annurev.biochem.77.062706.153223
  159. Hammond C.M., Strømme C.B., Huang H. et al. Histone chaperone networks shaping chromatin function // Nat Rev Mol Cell Biol. 2017. Vol. 18, No. 3. P. 141-158. doi: 10.1038/nrm.2016.159
  160. Berson A., Nativio R., Berger S.L. et al. Epigenetic regulation in neurodegenerative diseases // Trends Neurosci. 2018. Vol. 41, No. 9. P. 587-598. doi: 10.1016/j.tins.2018.05.005
  161. Rajam S.M., Varghese P.C., Dutta D. Histone chaperones as cardinal players in development // Front Cell Dev Biol. 2022. Vol. 10, P. 767773. doi: 10.3389/fcell.2022.767773
  162. Акишина А.А., Куваева Е.Е., Воронцова Ю.Е., Симонова О.Б. Гистоновые шапероны семейства NAP: характеристика и роль в онтогенезе // Онтогенез. 2020. Т. 51, № 6. С. 403-416. doi: 10.31857/S0475145020060026
  163. Антонцева Е.В., Бондарь Н.П. Ремоделирование хроматина в олигодендрогенезе // Вавиловский журнал генетики и селекции. 2021. Т. 25, № 5. С. 573-579. doi: 10.18699/VJ21.064
  164. Goodwin L.R., Picketts D.J. The role of ISWI chromatin remodeling complexes in brain development and neurodevelopmental disorders // Mol Cell Neurosci. 2018. Vol. 87, P. 55-64. doi: 10.1016/j.mcn.2017.10.008
  165. Masliah-Planchon J., Bièche I., Guinebretière J.M. et al. SWI/SNF chromatin remodeling and human malignancies // Annu Rev Pathol. 2015. Vol. 10, P. 145-171. doi: 10.1146/annurev-pathol-012414-040445
  166. Wang G.G., Allis C.D., Chi P. Chromatin remodeling and cancer, Part II: ATP-dependent chromatin remodeling // Trends Mol Med. 2007. Vol. 13, No. 9. P. 373-380. doi: 10.1016/j.molmed.2007.07.004
  167. Larrigan S., Shah S., Fernandes A. et al. Chromatin remodeling in the brain-a NuRDevelopmental odyssey // Int J Mol Sci. 2021. Vol. 22, No. 9. P. 4768. doi: 10.3390/ijms22094768
  168. Pulice J.L., Kadoch C. Composition and function of mammalian SWI/SNF chromatin remodeling complexes in human disease // Cold Spring Harb Symp Quant Biol. 2016. Vol. 81, P. 53-60. doi: 10.1101/sqb.2016.81.031021
  169. Bielawski T., Misiak B., Moustafa A. et al. Epigenetic mechanisms, trauma, and psychopathology: Targeting chromatin remodeling complexes // Rev Neurosci. 2019. Vol. 30, No. 6. P. 595-604. doi: 10.1515/revneuro-2018-0055
  170. Cunliffe V.T. The epigenetic impacts of social stress: how does social adversity become biologically embedded? // Epigenomics. 2016. Vol. 8, No. 12. P. 1653-1669. doi: 10.2217/epi-2016-0075
  171. Yuan M., Yang B., Rothschild G. et al. Epigenetic regulation in major depression and other stress-related disorders: molecular mechanisms, clinical relevance and therapeutic potential // Signal Transduction and Targeted Therapy. 2023. Vol. 8, No. 1. P. 309. doi: 10.1038/s41392-023-01519-z
  172. Zhang L., Li H., Hu X. et al. Glucocorticoid-induced p11 over-expression and chromatin remodeling: a novel molecular mechanism of traumatic stress? // Med Hypotheses. 2011. Vol. 76, No. 6. P. 774-777. doi: 10.1016/j.mehy.2011.02.015
  173. King H.A., Trotter K.W., Archer T.K. Chromatin remodeling during glucocorticoid receptor regulated transactivation // Biochim Biophys Acta. 2012. Vol. 1819, No. 7. P. 716-726. doi: 10.1016/j.bbagrm.2012.02.019
  174. Li X., An Z., Zhang W. et al. Phase separation: Direct and indirect driving force for high-order chromatin organization // Genes (Basel). 2023. Vol. 14, No. 2. P. 499. doi: 10.3390/genes14020499
  175. Ling X., Liu X., Jiang S. et al. The dynamics of three-dimensional chromatin organization and phase separation in cell fate transitions and diseases // Cell Regen. 2022. Vol. 11, No. 1. P. 42. doi: 10.1186/s13619-022-00145-4
  176. Theis A., Harrison M.M. Reprogramming of three-dimensional chromatin organization in the early embryo // Curr Opin Struct Biol. 2023. Vol. 81, P. 102613. doi: 10.1016/j.sbi.2023.102613
  177. Chen X., Lin H., Li G. The influence of high-order chromatin state in the regulation of stem cell fate // Biochem Soc Trans. 2022. Vol. 50, No. 6. P. 1809-1822. doi: 10.1042/bst20220763
  178. Vertii A. Stress as a chromatin landscape architect // Front Cell Dev Biol. 2021. Vol. 9, P. 790138. doi: 10.3389/fcell.2021.790138
  179. Gluch A., Vidakovic M., Bode J. Scaffold/matrix attachment regions (S/MARs): relevance for disease and therapy // Handb Exp Pharmacol. 2008. No. 186. P. 67-103. doi: 10.1007/978-3-540-72843-6_4
  180. Podgornaya O.I. Nuclear organization by satellite DNA, SAF-A/hnRNPU and matrix attachment regions // Semin Cell Dev Biol. 2022. Vol. 128, P. 61-68. doi: 10.1016/j.semcdb.2022.04.018
  181. Benham C., Kohwi-Shigematsu T., Bode J. Stress-induced duplex DNA destabilization in scaffold/matrix attachment regions // J Mol Biol. 1997. Vol. 274, No. 2. P. 181-196. doi: 10.1006/jmbi.1997.1385
  182. Mitrentsi I., Lou J., Kerjouan A. et al. Heterochromatic repeat clustering imposes a physical barrier on homologous recombination to prevent chromosomal translocations // Mol Cell. 2022. Vol. 82, No. 11. P. 2132-2147.e2136. doi: 10.1016/j.molcel.2022.03.033
  183. Wang B., Ji L., Bian Q. SATB1 regulates 3D genome architecture in T cells by constraining chromatin interactions surrounding CTCF-binding sites // Cell Rep. 2023. Vol. 42, No. 4. P. 112323. doi: 10.1016/j.celrep.2023.112323
  184. Russo T., Kolisnyk B., Plessis-Belair J. et al. The SATB1-MIR22-GBA axis mediates glucocerebroside accumulation inducing a cellular senescence-like phenotype in dopaminergic neurons // Aging Cell. 2024. P. e14077. doi: 10.1111/acel.14077
  185. Babcock K.J., Abdolmohammadi B., Kiernan P.T. et al. Interface astrogliosis in contact sport head impacts and military blast exposure // Acta Neuropathol Commun. 2022. Vol. 10, No. 1. P. 52. doi: 10.1186/s40478-022-01358-z
  186. Broussard J.I., Acion L., De Jesús-Cortés H. et al. Repeated mild traumatic brain injury produces neuroinflammation, anxiety-like behaviour and impaired spatial memory in mice // Brain Inj. 2018. Vol. 32, No. 1. P. 113-122. doi: 10.1080/02699052.2017.1380228
  187. Ochiai H., Ohishi H., Sato Y. et al. Organization of transcription and 3D genome as revealed by live-cell imaging // Curr Opin Struct Biol. 2023. Vol. 81, P. 102615. doi: 10.1016/j.sbi.2023.102615
  188. da Costa-Nunes J.A., Noordermeer D. TADs: Dynamic structures to create stable regulatory functions // Curr Opin Struct Biol. 2023. Vol. 81, P. 102622. doi: 10.1016/j.sbi.2023.102622
  189. Bertero A., Rosa-Garrido M. Three-dimensional chromatin organization in cardiac development and disease // J Mol Cell Cardiol. 2021. Vol. 151, P. 89-105. doi: 10.1016/j.yjmcc.2020.11.008
  190. Won H., de la Torre-Ubieta L., Stein J.L. et al. Chromosome conformation elucidates regulatory relationships in developing human brain // Nature. 2016. Vol. 538, No. 7626. P. 523-527. doi: 10.1038/nature19847
  191. Rajarajan P., Borrman T., Liao W. et al. Neuron-specific signatures in the chromosomal connectome associated with schizophrenia risk // Science. 2018. Vol. 362, No. 6420. P. eaat4311. doi: 10.1126/science.aat4311
  192. Mansour M., Joseph G.R., Joy G.K. et al. Post-traumatic stress disorder: A narrative review of pharmacological and psychotherapeutic interventions // Cureus. 2023. Vol. 15, No. 9. P. e44905. doi: 10.7759/cureus.44905
  193. Cano G.H., Dean J., Abreu S.P. et al. Key characteristics and development of psychoceuticals: A review // Int J Mol Sci. 2022. Vol. 23, No. 24. P. 15777. doi: 10.3390/ijms232415777
  194. Ullrich D., Mac Gillavry D.W. Mini-review: A possible role for galanin in post-traumatic stress disorder // Neurosci Lett. 2021. Vol. 756, P. 135980. doi: 10.1016/j.neulet.2021.135980
  195. Miller M.W. Leveraging genetics to enhance the efficacy of PTSD pharmacotherapies // Neurosci Lett. 2020. Vol. 726, P. 133562. doi: 10.1016/j.neulet.2018.04.039
  196. Rudzki S. Is PTSD an evolutionary survival adaptation initiated by unrestrained cytokine signaling and maintained by epigenetic change? // Mil Med. 2022. doi: 10.1093/milmed/usac095
  197. Koweszko T., de Barbaro B., Izydorczyk B. et al. The position statement of the Working Group on the treatment of post-traumatic stress disorders in adults // Psychiatr Pol. 2023. Vol. 57, No. 4. P. 705-727. doi: 10.12740/pp/166172
  198. Zeifman R.J., Kettner H., Ross S. et al. Preliminary evidence for the importance of therapeutic alliance in MDMA-assisted psychotherapy for posttraumatic stress disorder // Eur J Psychotraumatol. 2024. Vol. 15, No. 1. P. 2297536. doi: 10.1080/20008066.2023.2297536
  199. Deckel G.M., Lepow L.A., Guss J. “Psychedelic assisted therapy” must not be retired // Am J Psychiatry. 2024. Vol. 181, No. 1. P. 77-78. doi: 10.1176/appi.ajp.20230667
  200. Danböck S.K., Duek O., Ben-Zion Z. et al. Effects of a dissociative drug on fronto-limbic resting-state functional connectivity in individuals with posttraumatic stress disorder: a randomized controlled pilot study // Psychopharmacology (Berl). 2024. Vol. 241, No. 2. P. 243-252. doi: 10.1007/s00213-023-06479-4
  201. Федотчев А.И. Стресс, его последствия для человека и современные нелекарственные подходы к их устранению // Успехи физиологических наук. 2009. Т. 40, № 1. С. 77-91.
  202. Тиссен И.Ю., Якушина Н.Д., Лебедев А.А. и др. Эффекты антагониста OX1R рецепторов орексина А SB-408124 на компульсивное поведение и уровень тревожности после витального стресса у крыс // Обзоры по клинической фармакологии и лекарственной терапии. 2018. Т. 16, № 1. С. 34-42. doi: 10.17816/RCF16134-42
  203. Авалиани Т.В., Апраксина Н.К., Цикунов С.Г. Применение вазопрессина для коррекции последствий влияния психогенной травмы матерей на поведение потомства // Евразийский Союз Ученых (ЕСУ). 2020. Т 3, № 9(78). С. 4-10. doi: 10.31618/ESU.2413-9335.2020.3.78.1013
  204. Xu Z., Li W., Sun Y. et al. Melatonin alleviates PTSD-like behaviors and restores serum GABA and cortisol levels in mice // Psychopharmacology (Berl). 2023. Vol. 240, No. 2. P. 259-269. doi: 10.1007/s00213-023-06312-y
  205. Москалева П.В., Шнайдер Н.А., Дмитренко Д.В. et al. Ассоциация полиморфизма генов TPH1 и TPH2 с риском развития психоневрологических расстройств // Успехи физиологических наук. 2021. Т. 52, № 2. С. 51-60 doi: 10.31857/S0301179821020077
  206. Skolariki K., Vlamos P. Exploring gene-drug interactions for personalized treatment of post-traumatic stress disorder // Front Comput Neurosci. 2023. Vol. 17, P. 1307523. doi: 10.3389/fncom.2023.1307523
  207. Gu T., Xu C., Meng X. et al. Sevoflurane preconditioning alleviates posttraumatic stress disorder-induced apoptosis in the hippocampus via the EZH2-regulated Akt/mTOR axis and improves synaptic Plasticity // J Mol Neurosci. 2023. Vol. 73, No. 4-5. P. 225-236. doi: 10.1007/s12031-023-02114-1
  208. Клюева Н.Н., Авалиани Т.В., Апраксина Н.К. Липидный спектр у потомства крыс в модели прекондиционирования психотравмирующего воздействия // Обзоры по клинической фармакологии и лекарственной терапии. 2020. Т. 18, № 1. С. 57-61. doi: 10.17816/RCF18157-61
  209. Баранова К.А., Рыбникова Е.А., Самойлов М.О. Нейротрофин BDNF вовлекается в формирование и предотвращение постстрессовых психопатологий // Нейрохимия. 2015. Т. 32, № 2. С. 131-139. doi: 10.7868/S102781331502003X
  210. Ding F.S., Cheng X., Zhao T. et al. Intermittent hypoxic preconditioning relieves fear and anxiety behavior in post-traumatic stress model mice // Sheng Li Xue Bao. 2019. Vol. 71, No. 4. P. 537-546.
  211. He Q., Wang W., Xu D. et al. Potential causal association between gut microbiome and posttraumatic stress disorder // Transl Psychiatry. 2024. Vol. 14, No. 1. P. 67. doi: 10.1038/s41398-024-02765-7
  212. Незнанов Н.Г., Леонова Л.В., Рукавишников Г.В. и др. Микробиота кишечника как объект для изучения при психических расстройствах // Успехи физиологических наук. 2021. Т. 52, №. 1. С. 64–76 doi: 10.31857/S0301179821010069
  213. Никитина В.А., Захарова МВ, Трофимов А.Н. и др. Действие неонатальных введений бактериального эндотоксина на поведение и экспрессию генов ионотропных рецепторов глутамата в гиппокампе взрослых крыс после психогенной травмы // Биохимия. 2021. Т. 86, № 6. С. 904-916. doi: 10.31857/S0320972521060129
  214. Csoka A.B., Szyf M. Epigenetic side-effects of common pharmaceuticals: A potential new field in medicine and pharmacology // Medical Hypotheses. 2009. Vol. 73, No. 5. P. 770-780. doi: 10.1016/j.mehy.2008.10.039
  215. Gladkova M.G., Leidmaa E., Anderzhanova E.A. Epidrugs in the therapy of central nervous system disorders: a way to drive on? // Cells. 2023. Vol. 12, No. 11. P. 1464. doi: 10.3390/cells12111464
  216. Lloyd S., Lutz P.E., Bonventre C. Can you remember silence? Epigenetic memory and reversibility as a site of intervention // Bioessays. 2023. Vol. 45, No. 7. P. e2300019. doi: 10.1002/bies.202300019
  217. Zannas A.S., Linnstaedt S.D., An X. et al. Epigenetic aging and PTSD outcomes in the immediate aftermath of trauma // Psychol Med. 2023. Vol. 53, No. 15. P. 7170-7179. doi: 10.1017/s0033291723000636
  218. Авалиани Т.В., Лебедев А.А., Белобокова Н.К. и др. Дофамин-зависимые формы поведения крысят, матери которых подвергались стрессу в период беременности // Психофармакология и биологическая наркология. 2005. Т. 5, № 2. С. 953–956.
  219. Nguyen M., Roth A., Kyzar E.J. et al. Decoding the contribution of dopaminergic genes and pathways to autism spectrum disorder (ASD) // Neurochem Int. 2014. Vol. 66, P. 15-26. doi: 10.1016/j.neuint.2014.01.002
  220. Santos-Toscano R., Arevalo M.A., Garcia-Segura L.M. et al. Interaction of gonadal hormones, dopaminergic system, and epigenetic regulation in the generation of sex differences in substance use disorders: A systematic review // Front Neuroendocrinol. 2023. Vol. 71, P. 101085. doi: 10.1016/j.yfrne.2023.101085
  221. Коваленко И.Л., Галямина А.Г., Смагин Д.А. и др. Коэкспрессия глутаматергических генов и генов аутистического спектра в гиппокампе у самцов мышей с нарушением социального поведения // Вавиловский журнал генетики и селекции. 2020. Т. 24, № 2. С. 191-199. doi: 10.18699/VJ20.42-o
  222. Плеканчук В.С., Рязанова М.А. Экспрессия генов глутаматных рецепторов в гиппокампе и лобной коре у крыс линии ГК с генетической кататонией // Российский физиологический журнал им. И.М. Сеченова. 2021. Т. 107, № 2. С. 232-242. doi: 10.31857/S0869813921020060
  223. Коваленко А.А., Захарова М.В., Никитина В.А. и др. Динамика экспрессии генов субъединиц ионотропных глутаматных рецепторов и транспортера глутамата в структурах мозга крыс после психогенного стресса // Нейрохимия. 2018. Т. 35, № 2. С. 132–139. doi: 10.7868/S102781331802005X
  224. Белокоскова С.Г., Степанов И.И., Цикунов С.Г. Агонист V2-рецепторов вазопрессина редуцирует депрессивные расстройства у постинсультных больных // Вестник Российской академии медицинских наук. 2012. Т. 67, №. 4. С. 40-44. doi: 10.15690/vramn.v67i4.197
  225. Тюзиков И.А., Калинченко С.Ю., Ворслов Л.О. и др. Вазопрессин: неклассические эффекты и роль в патогенезе ассоциированных с возрастом заболеваний // Эффективная фармакотерапия. 2015. Т. 26. С. 38-50.
  226. Hillemacher T., Frieling H., Luber K. et al. Epigenetic regulation and gene expression of vasopressin and atrial natriuretic peptide in alcohol withdrawal // Psychoneuroendocrinology. 2009. Vol. 34, No. 4. P. 555-560. doi: 10.1016/j.psyneuen.2008.10.019
  227. Фаустова А.Г. Современные представления о генетических маркерах посттравматического стрессового расстройства // Клиническая и специальная психология. 2021. Т. 10, № 1. С. 61–79. doi: 10.17759/cpse.2021100104
  228. Kmita H., Pinna G., Lushchak V.I. Potential oxidative stress related targets of mitochondria-focused therapy of PTSD // Front Physiol. 2023. Vol. 14, P. 1266575. doi: 10.3389/fphys.2023.1266575
  229. Cristancho A.G., Marsh E.D. Epigenetics modifiers: Potential hub for understanding and treating neurodevelopmental disorders from hypoxic injury // J Neurodev Disord. 2020. Vol. 12, No. 1. P. 37. doi: 10.1186/s11689-020-09344-z
  230. Rybnikova E., Nalivaeva N. Glucocorticoid-dependent mechanisms of brain tolerance to hypoxia // Int J Mol Sci. 2021. Vol. 22, No. 15. P. 7982. doi: 10.3390/ijms22157982
  231. Abdul-Muneer P.M. Nrf2 as a potential therapeutic target for traumatic brain injury // J Integr Neurosci. 2023. Vol. 22, No. 4. P. 81. doi: 10.31083/j.jin2204081
  232. Kim Y.K., Amidfar M., Won E. A review on inflammatory cytokine-induced alterations of the brain as potential neural biomarkers in post-traumatic stress disorder // Prog Neuropsychopharmacol Biol Psychiatry. 2019. Vol. 91, P. 103-112. doi: 10.1016/j.pnpbp.2018.06.008
  233. Sharrouf K.A., Suchkova I.O. The influence of lactoferrin on the epigenetic characteristics of mammalian cells of different types // Medical Academic Journal. 2021. Vol. 21, No. 1, P. 85-95. doi: 10.17816/MAJ64106
  234. Сучкова И.О., Шарруф К.А., Сасина Л.К. et al. Апо-форма рекомбинантного лактоферрина человека изменяет уровень полногеномного метилирования ДНК и степень компактизации хроматина в клеточной линии нейробластомы IMR-32 // Медицинский академический журнал. 2022. Т. 22, № 4. С. 77-96. doi: 10.17816/MAJ112498
  235. Cardoner N., Andero R., Cano M. et al. Impact of stress on brain morphology: Insights into structural biomarkers of stress-related disorders // Curr Neuropharmacol. 2024. Vol. 22, No. 5. P. 935-962. doi: 10.2174/1570159x21666230703091435
  236. Vialou V., Feng J., Robison A.J. et al. Epigenetic mechanisms of depression and antidepressant action // Annu Rev Pharmacol Toxicol. 2013. Vol. 53, P. 59-87. doi: 10.1146/annurev-pharmtox-010611-134540
  237. Han J., Bichell T.J., Golden S. et al. A placebo-controlled trial of folic acid and betaine in identical twins with Angelman syndrome // Orphanet J Rare Dis. 2019. Vol. 14, No. 1. P. 232. doi: 10.1186/s13023-019-1216-0
  238. Freilinger M., Dunkler D., Lanator I. et al. Effects of creatine supplementation in Rett syndrome: a randomized, placebo-controlled trial // J Dev Behav Pediatr. 2011. Vol. 32, No. 6. P. 454-460. doi: 10.1097/DBP.0b013e31822177a8
  239. Jangra A., Sriram C.S., Pandey S. et al. Epigenetic modifications, alcoholic brain and potential drug targets // Ann Neurosci. 2016. Vol. 23, No. 4. P. 246-260. doi: 10.1159/000449486
  240. Schäfer A., Schomacher L., Barreto G. et al. Gemcitabine functions epigenetically by inhibiting repair mediated DNA demethylation // PLoS One. 2010. Vol. 5, No. 11. P. e14060. doi: 10.1371/journal.pone.0014060
  241. Xu S., Jiang C., Lin R. et al. Epigenetic activation of the elongator complex sensitizes gallbladder cancer to gemcitabine therapy // J Exp Clin Cancer Res. 2021. Vol. 40, No. 1. P. 373. doi: 10.1186/s13046-021-02186-0
  242. Zhou Z., Li H.Q., Liu F. DNA methyltransferase inhibitors and their therapeutic potential // Curr Top Med Chem. 2018. Vol. 18, No. 28. P. 2448-2457. doi: 10.2174/1568026619666181120150122
  243. Stresemann C., Lyko F. Modes of action of the DNA methyltransferase inhibitors azacytidine and decitabine // Int J Cancer. 2008. Vol. 123, No. 1. P. 8-13. doi: 10.1002/ijc.23607
  244. Кирсанова О.В., Черепанова Н.А., Громова Е.С. Ингибирование С5-цитозин-ДНК-метилтрансфераз // Биохимия. 2009. Т. 74, № 11. С. 1445-1458. doi: 10.1134/s0006297909110017
  245. Kumanishi S., Yamanegi K., Nishiura H. et al. Epigenetic modulators hydralazine and sodium valproate act synergistically in VEGI-mediated anti-angiogenesis and VEGF interference in human osteosarcoma and vascular endothelial cells // Int J Oncol. 2019. Vol. 55, No. 1. P. 167-178. doi: 10.3892/ijo.2019.4811
  246. Blaauboer A., van Koetsveld P.M., Mustafa D.A.M. et al. The class I HDAC inhibitor valproic acid strongly potentiates gemcitabine efficacy in pancreatic cancer by immune system activation // Biomedicines. 2022. Vol. 10, No. 3. P. 517. doi: 10.3390/biomedicines10030517
  247. Gao Z., Xu Z., Hung M.S. et al. Procaine and procainamide inhibit the Wnt canonical pathway by promoter demethylation of WIF-1 in lung cancer cells // Oncol Rep. 2009. Vol. 22, No. 6. P. 1479-1484. doi: 10.3892/or_00000590
  248. Franco I., Ortiz-López L., Roque-Ramírez B. et al. Pharmacological inhibition of DNA methyltransferase 1 promotes neuronal differentiation from rodent and human nasal olfactory stem/progenitor cell cultures // Int J Dev Neurosci. 2017. Vol. 58, P. 65-73. doi: 10.1016/j.ijdevneu.2017.01.013
  249. Detich N., Bovenzi V., Szyf M. Valproate induces replication-independent active DNA demethylation // J Biol Chem. 2003. Vol. 278, No. 30. P. 27586-27592. doi: 10.1074/jbc.M303740200
  250. Attia S.M., Ahmad S.F., Nadeem A. et al. 3-Aminobenzamide alleviates elevated DNA damage and DNA methylation in a BTBR T(+)Itpr3(tf)/J mouse model of autism by enhancing repair gene expression // Pharmacol Biochem Behav. 2020. Vol. 199, P. 173057. doi: 10.1016/j.pbb.2020.173057
  251. Ястребов Д.В. Атипичные антипсихотические препараты группы замещенных бензамидов: тиаприд, сульпирид и амисульприд. Особенности фармакологического действия и клинического применения // Социальная и клиническая психиатрия. 2015. Т. 25, № 3. С. 72-79.
  252. Rompala G., Nagamatsu S.T., Martínez-Magaña J.J. et al. Profiling neuronal methylome and hydroxymethylome of opioid use disorder in the human orbitofrontal cortex // Nat Commun. 2023. Vol. 14, No. 1. P. 4544. doi: 10.1038/s41467-023-40285-y
  253. Sarkar S., Deyoung T., Ressler H. et al. Brain tumors: Development, drug resistance, and sensitization - an epigenetic approach // Epigenetics. 2023. Vol. 18, No. 1. P. 2237761. doi: 10.1080/15592294.2023.2237761
  254. Lewis C.R., Tafur J., Spencer S. et al. Pilot study suggests DNA methylation of the glucocorticoid receptor gene (NR3C1) is associated with MDMA-assisted therapy treatment response for severe PTSD // Front Psychiatry. 2023. Vol. 14, P. 959590. doi: 10.3389/fpsyt.2023.959590
  255. Wilker S., Vukojevic V., Schneider A. et al. Epigenetics of traumatic stress: The association of NR3C1 methylation and posttraumatic stress disorder symptom changes in response to narrative exposure therapy // Transl Psychiatry. 2023. Vol. 13, No. 1. P. 14. doi: 10.1038/s41398-023-02316-6
  256. Schieffler D.A., Matta S.E. Evidence to support the use of S-adenosylmethionine for treatment of post-concussive sequelae in the military // Mil Med. 2022. Vol. 187, No. 9-10. P. e1182-e1192. doi: 10.1093/milmed/usab130
  257. Drakontaeidi A., Pontiki E. A review on molecular docking on HDAC isoforms: Novel tool for designing selective inhibitors // Pharmaceuticals (Basel). 2023. Vol. 16, No. 12. P. 1639. doi: 10.3390/ph16121639
  258. Datta M., Staszewski O., Raschi E. et al. Histone deacetylases 1 and 2 regulate microglia function during development, homeostasis, and neurodegeneration in a context-dependent manner // Immunity. 2018. Vol. 48, No. 3. P. 514-529.e516. doi: 10.1016/j.immuni.2018.02.016
  259. Legastelois R., Jeanblanc J., Vilpoux C. et al. Epigenetic mechanisms and alcohol use disorders: a potential therapeutic target // Biol Aujourdhui. 2017. Vol. 211, No. 1. P. 83-91. doi: 10.1051/jbio/2017014
  260. Kurita M., Holloway T., García-Bea A. et al. HDAC2 regulates atypical antipsychotic responses through the modulation of mGlu2 promoter activity // Nat Neurosci. 2012. Vol. 15, No. 9. P. 1245-1254. doi: 10.1038/nn.3181
  261. Tanelian A., Nankova B., Hu F. et al. Effect of acetate supplementation on traumatic stress-induced behavioral impairments in male rats // Neurobiol Stress. 2023. Vol. 27, P. 100572. doi: 10.1016/j.ynstr.2023.100572
  262. Wan S.S., Pan Y.M., Yang W.J. et al. Inhibition of EZH2 alleviates angiogenesis in a model of corneal neovascularization by blocking FoxO3a-mediated oxidative stress // Faseb j. 2020. Vol. 34, No. 8. P. 10168-10181. doi: 10.1096/fj.201902814RRR
  263. Li D., Peng X., Hu Z. et al. Small molecules targeting selected histone methyltransferases (HMTs) for cancer treatment: Current progress and novel strategies // Eur J Med Chem. 2024. Vol. 264, P. 115982. doi: 10.1016/j.ejmech.2023.115982
  264. Ravikumar Y., Koonyosying P., Srichairatanakool S. et al. In silico molecular docking and dynamics simulation analysis of potential histone lysine methyl transferase inhibitors for managing β-thalassemia // Molecules. 2023. Vol. 28, No. 21. P. 7266. doi: 10.3390/molecules28217266
  265. Leshem M., Schulkin J. Transgenerational effects of infantile adversity and enrichment in male and female rats // Dev Psychobiol. 2012. Vol. 54, No. 2. P. 169-186. doi: 10.1002/dev.20592
  266. Arai J.A., Li S., Hartley D.M. et al. Transgenerational rescue of a genetic defect in long-term potentiation and memory formation by juvenile enrichment // J Neurosci. 2009. Vol. 29, No. 5. P. 1496-1502. doi: 10.1523/jneurosci.5057-08.2009
  267. Gapp K., Bohacek J., Grossmann J. et al. Potential of environmental enrichment to prevent transgenerational effects of paternal trauma // Neuropsychopharmacology. 2016. Vol. 41, No. 11. P. 2749-2758. doi: 10.1038/npp.2016.87
  268. Li M., Wang X., Yang L. et al. Acupuncture improves learning and memory ability of posttraumatic stress disorder model rats through epigenetic regulation of microglial phosphatidylinositol 3-kinase pathway // Technol Health Care. 2023. Vol. 31, No. S1. P. 409-421. doi: 10.3233/thc-236035
  269. Cohen T., Shomron N. Can RNA affect memory modulation? Implications for PTSD understanding and treatment // Int J Mol Sci. 2023. Vol. 24, No. 16. P. 12908. doi: 10.3390/ijms241612908
  270. Giridharan V.V., Thandavarayan R.A., Fries G.R. et al. Newer insights into the role of miRNA a tiny genetic tool in psychiatric disorders: Focus on post-traumatic stress disorder // Transl Psychiatry. 2016. Vol. 6, No. 11. P. e954. doi: 10.1038/tp.2016.220
  271. Wang S., Tang L., Huang N. et al. The roles of long noncoding RNA in depression // Front Biosci (Landmark Ed). 2023. Vol. 28, No. 11. P. 321. doi: 10.31083/j.fbl2811321
  272. Mustafin R.N., Enikeeva R.F., Khusnutdinova E.K. et al. The role of epigenetic factors in the development of depressive disorders // Russian Journal of Genetics. 2018. Vol. 54, No. 12. P. 1397-1409. doi: 10.1134/S1022795418120104
  273. Gupta S., Guleria R.S., Szabo Y.Z. MicroRNAs as biomarker and novel therapeutic target for posttraumatic stress disorder in Veterans // Psychiatry Res. 2021. Vol. 305, P. 114252. doi: 10.1016/j.psychres.2021.114252
  274. Bolouki A., Rahimi M., Azarpira N. et al. Integrated multi-omics analysis identifies epigenetic alteration related to neurodegeneration development in post-traumatic stress disorder patients // Psychiatr Genet. 2023. Vol. 33, No. 5. P. 167-181. doi: 10.1097/ypg.0000000000000340
  275. Shkundin A., Halaris A. Associations of BDNF/BDNF-AS SNPs with Depression, Schizophrenia, and Bipolar Disorder // J Pers Med. 2023. Vol. 13, No. 9. P. 1395. doi: 10.3390/jpm13091395
  276. Kleeman E.A., Reisinger S.N., Adithya P. et al. Paternal immune activation by Poly I:C modulates sperm noncoding RNA profiles and causes transgenerational changes in offspring behavior // Brain Behav Immun. 2024. Vol. 115, P. 258-279. doi: 10.1016/j.bbi.2023.10.005
  277. Short A.K., Yeshurun S., Powell R. et al. Exercise alters mouse sperm small noncoding RNAs and induces a transgenerational modification of male offspring conditioned fear and anxiety // Transl Psychiatry. 2017. Vol. 7, No. 5. P. e1114. doi: 10.1038/tp.2017.82
  278. Raj P., Rauniyar S., Sapkale B. Psychedelic drugs or hallucinogens: Exploring their medicinal potential // Cureus. 2023. Vol. 15, No. 11. P. e48719. doi: 10.7759/cureus.48719
  279. Kargbo R.B. Tryptamines and mental health: Activating the 5-HT receptor for therapeutic potential // ACS Med Chem Lett. 2023. Vol. 14, No. 10. P. 1331-1333. doi: 10.1021/acsmedchemlett.3c00390
  280. Proskynitopoulos P.J., Bleich S., Muschler M.A.N. et al. Methylation of the oxytocin, oxytocin receptor, and vasopressin gene promoters in tobacco use disorder during cessation // Neuropsychobiology. 2024. Vol 83, No 1. P. 28-40. doi: 10.1159/000535663
  281. Hopkins W.D., Staes N., Guevara E.E. et al. Vasopressin, and not oxytocin, receptor gene methylation is associated with individual differences in receptive joint attention in chimpanzees (Pan troglodytes) // Autism Res. 2023. Vol. 16, No. 4. P. 713-722. doi: 10.1002/aur.2895
  282. Murgatroyd C.A., Hicks-Nelson A., Fink A. et al. Effects of chronic social stress and maternal intranasal oxytocin and vasopressin on offspring interferon-γ and behavior // Front Endocrinol (Lausanne). 2016. Vol. 7, P. 155. doi: 10.3389/fendo.2016.00155
  283. Dannenhoffer C.A., Kim E.U., Saalfield J. et al. Oxytocin and vasopressin modulation of social anxiety following adolescent intermittent ethanol exposure // Psychopharmacology (Berl). 2018. Vol. 235, No. 10. P. 3065-3077. doi: 10.1007/s00213-018-5003-8
  284. Mardanpour M., Ghavidel N., Asadi S. et al. Paternal stress in rats increased oxytocin, oxytocin receptor, and arginine vasopressin gene expression in the male offspring amygdala with no effect on their social interaction behaviors // Neuroreport. 2022. Vol. 33, No. 2. P. 48-54. doi: 10.1097/wnr.0000000000001749
  285. Guoynes C.D., Marler C.A. Acute intranasal oxytocin dose enhances social preference for parents over peers in male but not female peri-adolescent California mice (Peromyscus californicus) // Gen Comp Endocrinol. 2023. Vol. 335. P. 114230. doi: 10.1016/j.ygcen.2023.114230
  286. Aguirre-Vázquez A., Castorena-Torres F., Silva-Ramírez B. et al. Cell-type dependent regulation of pluripotency and chromatin remodeling genes by hydralazine // Stem Cell Res Ther. 2023. Vol. 14, No. 1. P. 42. doi: 10.1186/s13287-023-03268-w
  287. Sapozhnikov D.M., Szyf M. Enzyme-free targeted DNA demethylation using CRISPR-dCas9-based steric hindrance to identify DNA methylation marks causal to altered gene expression // Nat Protoc. 2022. Vol. 17, No. 12. P. 2840-2881. doi: 10.1038/s41596-022-00741-3
  288. Гринкевич Л.Н. Редактирование генома и регуляция экспрессии генов с помощью технологий CRISPR/СAS в нейробиологии // Успехи физиологических наук. 2021. Т. 52, № 3. С. 4-23. doi: 10.31857/S0301179821030024
  289. Xiao H., Xi K., Wang K. et al. Restoring the function of thalamocortical circuit through correcting thalamic Kv3.2 channelopathy normalizes fear extinction impairments in a PTSD mouse model // Adv Sci (Weinh). 2024. Vol. 11, No. 9. P. e2305939. doi: 10.1002/advs.202305939
  290. Liu H., Zhou T., Wang B. et al. Identification and functional analysis of a potential key lncRNA involved in fat loss of cancer cachexia // J Cell Biochem. 2018. Vol. 119, No. 2. P. 1679-1688. doi: 10.1002/jcb.26328

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Эко-Вектор,



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 74760 от 29.12.2018 г.


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах