Молекулярные механизмы лекарственной устойчивости глиобластомы. Часть 3. Дифференцировка и апоптоз клеток глиобластомы

Обложка


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Глиобластомы представляют одну из самых злокачественных и частых опухолей человека, характеризующихся быстрым ростом, метастазированием, устойчивостью к методам терапии и образованием рецидивов. Формирование в клетках глиобластомы механизмов множественной лекарственной устойчивости часто сочетается с ингибированием путей клеточной гибели, дифференцировки и препятствует увеличению эффективности терапии этой группы пациентов. В обзоре рассматривается взаимосвязь молекулярных механизмов множественной лекарственной устойчивости с дифференцировкой и апоптозом глиобластомы с акцентом на выявление новых мишеней среди белков, микроРНК, генов-супрессоров и онкогенов.

Полный текст

Доступ закрыт

Об авторах

Александр Николаевич Чернов

Институт экспериментальной медицины

Автор, ответственный за переписку.
Email: al.chernov@mail.ru
ORCID iD: 0000-0003-2464-7370
Scopus Author ID: 26649406700

канд. биол. наук, старший научный сотрудник отдела общей патологии и патологической физиологии

Россия, Санкт-Петербург

Эльвира Сафуановна Галимова

Институт экспериментальной медицины; Институт эволюционной физиологии и биохимии им. И.М. Сеченова РАН

Email: elvira8galimova@gmail.com
ORCID iD: 0000-0002-8773-0932
Scopus Author ID: 24331659400

канд. биол. наук, старший научный сотрудник Междисциплинарной лаборатории нейробиологии; старший научный сотрудник отдела общей патологии и патологической физиологии

Россия, Санкт-Петербург; Санкт-Петербург

Ольга Велерьевна Шамова

Институт экспериментальной медицины; Санкт-Петербургский государственный университет

Email: oshamova@yandex.ru
ORCID iD: 0000-0002-5168-2801
Scopus Author ID: 6603643804
ResearcherId: F-6743-2013

д-р биол. наук, доцент, чл.-корр. РАН, заведующая отделом общей патологии и патологической физиологии; профессор кафедры биохимии

Россия, Санкт-Петербург; Санкт-Петербург

Список литературы

  1. Chen C.-H., Chen P.-Y., Lin Y.-Y. et al. Suppression of tumor growth via IGFBP3 depletion as a potential treatment in glioma // J. Neurosurg. 2019. Vol. 132, No. 1. P. 168–179. doi: 10.3171/2018.8.JNS181217
  2. Auffinger B., Spencer D., Pytel P. et al. The role of glioma stem cells in chemotherapy resistance and glioblastoma multiforme recurrence // Expert Rev. Neurother. 2015. Vol. 15, No. 7. P. 741–752. doi: 10.1586/14737175.2015.1051968
  3. Tang X., Zuo C., Fang P. et al. Targeting glioblastoma stem cells: a review on biomarkers, signal pathways and targeted therapy // Front. Oncol. 2021. Vol. 11. P. 701291. doi: 10.3389/fonc.2021.701291
  4. Ducassou A., Uro-Coste E., Verrelle P. et al. αvβ3 Integrin and Fibroblast growth factor receptor 1 (FGFR1): Prognostic factors in a phase I–II clinical trial associating continuous administration of Tipifarnib with radiotherapy for patients with newly diagnosed glioblastoma // Eur. J. Cancer. 2013. Vol. 49, No. 9. P. 2161–2169. doi: 10.1016/j.ejca.2013.02.033
  5. Gouazé-Andersson V., Delmas C., Taurand M. et al. FGFR1 Induces glioblastoma radioresistance through the PLCγ/Hif1α pathway // Cancer Res. 2016. Vol. 76, No. 10. P. 3036–3044. doi: 10.1158/0008-5472.CAN-15-2058
  6. Ciechomska I.A., Gielniewski B., Wojtas B. et al. EGFR/FOXO3a/BIM signaling pathway determines chemosensitivity of BMP4-differentiated glioma stem cells to temozolomide // Exp. Mol. Med. 2020. Vol. 52. P. 1326–1340. doi: 10.1038/s12276-020-0479-9
  7. Kim E.-J., Kim S.-O., Jin X. et al. Epidermal growth factor receptor variant III renders glioma cancer cells less differentiated by JAGGED1 // Tumour Biol. 2015. Vol. 36, No. 4. P. 2921–2928. doi: 10.1007/s13277-014-2922-9
  8. Yuan J., Xiao G., Peng G. et al. MiRNA-125a-5p inhibits glioblastoma cell proliferation and promotes cell differentiation by targeting TAZ // Biochem. Biophys. Res. Commun. 2015. Vol. 457, No. 2. P. 171–176. doi: 10.1016/j.bbrc.2014.12.078
  9. Yin D., Chen W., O’Kelly J. et al. Connective tissue growth factor associated with oncogenic activities and drug resistance in glioblastoma multiforme // Int. J. Cancer. 2010. Vol. 127, No. 10. P. 2257–2267. doi: 10.1002/ijc.25257
  10. Silber J., Lim D.A., Petritsch C. et al. miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells // BMC Med. 2008. Vol. 24, No. 6. P. 14. doi: 10.1186/1741-7015-6-14
  11. Sana J., Busek P., Fadrus P. et al. Identification of microRNAs differentially expressed in glioblastoma stem-like cells and their association with patient survival // Sci. Rep. 2018. Vol. 8. P. 2836. doi: 10.1038/s41598-018-20929-6
  12. Tomei S., Volontè A., Ravindran S. et al. MicroRNA expression profile distinguishes glioblastoma stem cells from differentiated tumor cells // J. Pers. Med. 2021. Vol. 11, No. 4. P. 264. doi: 10.3390/jpm11040264
  13. Cardoso A.M., Morais C.M., Pena F. et al. Differentiation of glioblastoma stem cells promoted by miR-128 or miR-302a overexpression enhances senescence-associated cytotoxicity of axitinib // Hum. Mol. Genet. 2021. Vol. 30, No. 3-4. P. 160–171. doi: 10.1093/hmg/ddab011
  14. Safa A.R., Saadatzadeh M.R., Cohen-Gadol A.A. et al. Glioblastoma stem cells (GSCs) epigenetic plasticity and interconversion between differentiated non-GSCs and GSCs // Genes Dis. 2015. Vol. 2, No. 2. P. 152–163. doi: 10.1016/j.gendis.2015.02.001
  15. Zhu J., Wang H., Fan Y. et al. Targeting the NF-E2-related factor 2 pathway: A novel strategy for glioblastoma // Oncol. Rep. 2014. Vol. 32, No. 2. P. 443–450. doi: 10.3892/or.2014.3259
  16. Gouazé-Andersson V., Ghérardi M.J., Lemarié A. et al. FGFR1/FOXM1 pathway: a key regulator of glioblastoma stem cells radioresistance and a prognosis biomarker // Oncotarget. 2018. Vol. 9, No. 60. P. 31637–31649. doi: 10.18632/oncotarget.25827
  17. Korkolopoulou P., Levidou G., El-Habr E.A. et al. Sox11 expression in astrocytic gliomas: Correlation with nestin/c-Met/IDH1-R132H expression phenotypes, p-Stat-3 and survival // Br. J. Cancer. 2013. Vol. 108, No. 10. P. 2142–2152. doi: 10.1038/bjc.2013.176
  18. Calvert A.E., Chalastanis A., Wu Y. et al. Cancer-associated IDH1 promotes growth and resistance to targeted therapies in the absence of mutation // Cell Rep. 2017. Vol. 19, No. 9. P. 1858–1873. doi: 10.1016/j.celrep.2017.05.014
  19. Bai Y., Lathia J.D., Zhang P. et al. Molecular targeting of TRF2 suppresses the growth and tumorigenesis of glioblastoma stem cells // Glia. 2014. Vol. 62, No. 10. P. 1687–1698. doi: 10.1002/glia.22708
  20. Chudnovsky Y., Kim D., Zheng S. ZFHX4 interacts with the NuRD core memberCHD4 and regulates the glioblastoma tumor-initiating cell state // Cell Rep. 2014. Vol. 6. P. 313–324. doi: 10.1016/j.celrep.2013.12.032
  21. Zhou D., Alver B.M., Li S. et al. Distinctive epigenomes characterize glioma stem cells and their response to differentiation cues // Genome Biol. 2018. Vol. 19, No. 1. P. 43. doi: 10.1186/s13059-018-1420-6
  22. MacLeod G., Bozek D.A., Rajakulendran N. et al. The functional genomic circuitry of human glioblastoma stem cells // BioRxiv. 2018. doi: 10.1101/358432
  23. Zhang J., Chen L., Han L. et al. EZH2 is a negative prognostic factor and exhibits pro-oncogenic activity in glioblastoma // Cancer Lett. 2015. Vol. 356, No. 2 Pt B. P. 929–936. doi: 10.1016/j.canlet.2014.11.003
  24. Huang M., Zhang D., Wu J.Y. et al. Wnt-mediated endothelial transformation into mesenchymal stem cell-like cells induces chemoresistance in glioblastoma // Sci. Transl. Med. 2020. Vol. 12, No. 532. P. eaay7522. doi: 10.1126/scitranslmed.aay7522
  25. Fiscon G., Conte F., Licursi V. et al. Computational identification of specific genes for glioblastoma stem-like cells identity // Sci. Rep. 2018. Vol. 8. P. 7769. doi: 10.1038/s41598-018-26081-5
  26. Suva M.L., Rheinbay E., Gillespie S.M. et al. Reconstructing and reprogramming the tumor-propagating potential of glioblastoma stem-like cells // Cell. 2014. Vol. 157, No. 3. P. 580–594. doi: 10.1016/j.cell.2014.02.030
  27. Rheinbay E., Suvà M.L., Gillespiet S.M. et al. An aberrant transcription factor network essential for Wnt signaling and stem cell maintenance in glioblastoma // Cell Rep. 2013. Vol. 3, No. 5. P. 1567–1579. doi: 10.1016/j.celrep.2013.04.021
  28. Kärrlander M., Lindberg N., Olofsson T. et al. Histidine-rich glycoprotein can prevent development of mouse experimental glioblastoma // PLoS One. 2009. Vol. 4, No. 12. P. e8536. doi: 10.1371/journal.pone.0008536
  29. González-Gómez P., Crecente-Campo J., Zahonero C. et al. Controlled release microspheres loaded with BMP7 suppress primary tumors from human glioblastoma // Oncotarget. 2015. Vol. 6, No. 13. P. 10950–1063. doi: 10.18632/oncotarget.3459
  30. Rodriguez V., Bailey R., Larion M. et al. Retinoid receptor turnover mediated by sumoylation, ubiquitination and the valosin-containing protein is disrupted in glioblastoma // Sci. Rep. 2019. Vol. 9, No. 1. P. 16250. doi: 10.1038/s41598-019-52696-3
  31. Zeng H., Yang Z., Xu N. et al. Connective tissue growth factor promotes temozolomide resistance in glioblastoma through TGF-β1-dependent activation of Smad/ERK signaling // Cell Death Dis. 2017. Vol. 8, No. 6. P. e2885. doi: 10.1038/cddis.2017.248
  32. Clark P.A., Iida M., Treisman D.M. et al. Activation of multiple ERBB family receptors mediates glioblastoma cancer stem-like cell resistance to EGFR-targeted inhibition // Neoplasia. 2012. Vol. 14, No. 5. P. 420–428. doi: 10.1596/neo.12432
  33. Maris C., D’Haene N., Trépant A.-L. et al. IGF-IR: a new prognostic biomarker for human glioblastoma // Br. J. Cancer. 2015. Vol. 113, No. 5. P. 729–737. doi: 10.1038/bjc.2015.242
  34. Tirrò E., Massimino M., Romano C. et al. Prognostic and therapeutic roles of the insulin growth factor system in glioblastoma // Front. Oncol. 2021. Vol. 10. P. 612385. doi: 10.3389/fonc.2020.612385
  35. Schreck K.C., Taylor P., Marchionni L. et al. The Notch target Hes1 directly modulates Gli1 expression and hedgehog signaling: a potential mechanism of therapeutic resistance // Clin. Cancer Res. 2016. Vol. 22, No. 14. P. 3700–3701. doi: 10.1158/1078-0432.CCR-16-1194
  36. Yang F., Nam S., Brown C.E. et al. A novel berbamine derivative inhibits cell viability and induces apoptosis in cancer stem-like cells of human glioblastoma, via up-regulation of miRNA-4284 and JNK/AP-1 signaling // PLoS One. 2014. Vol. 9, No. 4. P. e94443. doi: 10.1371/journal.pone.0094443
  37. Liu Z.-H., Dai X.-M., Du B. Hes1: a key role in stemness, metastasis and multidrug resistance // Cancer Biol. Ther. 2015. Vol. 16, No. 3. P. 353–359. doi: 10.1080/15384047.2015.1016662
  38. Popescu A.M., Alexandru O., Brindusa C. et al. Targeting the VEGF and PDGF signaling pathway in glioblastoma treatment // Int. J. Clin. Exp. Pathol. 2015. Vol. 8, No. 7. P. 7825–7837.
  39. Gouazé-Andersson V., Ghérardi M.-J., Lemarié A. et al. FGFR1/FOXM1 pathway: a key regulator of glioblastoma stem cells radioresistance and a prognosis biomarker // Oncotarget. 2018. Vol. 9. P. 31637–31649. doi: 10.18632/oncotarget.25827
  40. Fan T.Y., Wang H., Xiang P. et al. Inhibition of EZH2 reverses chemotherapeutic drug TMZ chemosensitivity in glioblastoma // Int. J. Clin. Exp. Pathol. 2014. Vol. 7, No. 10. 6662–6670.
  41. Zhang L., Wang H. FTY720 inhibits the Nrf2/ARE pathway in human glioblastoma cell lines and sensitizes glioblastoma cells to temozolomide // Pharmacol. Rep. 2017. Vol. 69, No. 6. P. 1186–1193. doi: 10.1016/j.pharep.2017.07.003
  42. Zhou Y., Wang H.-D., Zhu L. Knockdown of Nrf2 enhances autophagy induced by temozolomide in U251 human glioma cell line // Oncol. Rep. 2013. Vol. 29, No. 1. P. 394–400. doi: 10.3892/or.2012.2115
  43. Ji X., Wang H., Zhu J. et al. Correlation of Nrf2 and HIF-1α in glioblastoma and their relationships to clinicopathologic features and survival // Neurol. Res. 2013. Vol. 35, No. 10. P. 1044–1050. doi: 10.1179/1743132813Y.0000000251
  44. Rocha C.R., Kajitani G.S., Quinet A. et al. NRF2 and glutathione are key resistance mediators to temozolomide in glioma and melanoma cells // Oncotarget. 2016. Vol. 7, No. 30. P. 48081–48092. doi: 10.18632/oncotarget.10129
  45. García-Gómez P., Dadras M., Bellomo C. et al. NOX4 regulates TGFβ-induced proliferation and self-renewal in glioblastoma stem cells // BioRxiv. 2019. doi: 10.1101/804013
  46. Agnihotri S., Wolf A., Picard D. et al. GATA4 is a regulator of astrocyte cell proliferation and apoptosis in the human and murine central nervous system // Oncogene. 2009. Vol. 28, No. 34. P. 3033–3046. doi: 10.1038/onc.2009.159
  47. Lan J., Xue Y., Chen H. et al. Hypoxia-induced miR-497 decreases glioma cell sensitivity to TMZ by inhibiting apoptosis // FEBS Lett. 2014. Vol. 588, No. 8. P. 3333–3339. doi: 10.1016/j.febslet.2014.07.021
  48. Zhang J.M., Sun C.Y., Yu S.Z. et al. Relationship between miR-218 and CDK6 expression and their biological impact on glioma cell proliferation and apoptosis // Zhonghua Bing Li Xue Za Zhi. 2011. Vol. 40, No. 7. P. 454–459. (In Chinese)
  49. Xia H., Yan Y., Hu M. et al. MiR-218 sensitizes glioma cells to apoptosis and inhibits tumorigenicity by regulating ECOP-mediated suppression of NF-κB activity // Neuro Oncol. 2013. Vol. 15. P. 413–422. doi: 10.1093/neuonc/nos296
  50. Ahmed S.P., Castresana J.S., Shahi M.H. Glioblastoma and MiRNAs // Cancers (Basel). 2021. Vol. 13, No. 7. P. 1581. doi: 10.3390/cancers13071581
  51. Li L., Gao R., Yu Y. et al. Tumor suppressor activity of miR-451: Identification of CARF as a new target // Sci. Rep. 2018. Vol. 8. P. 375. doi: 10.1038/s41598-017-18559-5
  52. Korać P., Antica M., Matulić M. MiR-7 in cancer development // Biomedicines. 2021. Vol. 9, No. 3. P. 325. doi: 10.3390/biomedicines9030325
  53. Duan J., Zhou K., Tang X. et al. MicroRNA-34a inhibits cell proliferation and induces cell apoptosis of glioma cells via targeting of Bcl-2 // Mol. Med. Rep. 2016. Vol. 14. P. 432–438. doi: 10.3892/mmr.2016.5255
  54. Shan Z.N., Tian R., Zhang M. et al. miR128-1 inhibits the growth of glioblastoma multiforme and glioma stem-like cells via targeting BMI1 and E2F3 // Oncotarget. 2016. Vol. 7. P. 78813–78826. doi: 10.18632/oncotarget.12385
  55. Chen M., Medarova Z., Moore А. Role of microRNAs in glioblastoma // Oncotarget. 2021. Vol. 12. P. 1707–1723. doi: 10.18632/oncotarget.28039
  56. Anthiya S., Griveau A., Loussouarn C. et al. MicroRNA-based drugs for brain tumours // Trends Cancer. 2018. Vol. 4, No. 3. P. 222–238. doi: 10.1016/j.trecan.2017.12.008
  57. Banelli B., Forlani A., Allemanni G. et al. MicroRNA in glioblastoma: an overview // Int. J. Genomics. 2017. Vol. 2017. P. 7639084. doi: 10.1155/2017/7639084
  58. Tang H., Bian Y., Tu C. et al. The miR-183/96/182 cluster regulates oxidative apoptosis and sensitizes cells to chemotherapy in gliomas // Curr. Cancer Drug Targets. 2013. Vol. 13, No. 2. P. 221–231. doi: 10.2174/1568009611313020010
  59. Chen Y.-Y., Ho H.-L., Lin S.-C. et al. Upregulation of miR-125b, miR-181d, and miR-221 predicts poor prognosis in MGMT promoter-unmethylated glioblastoma patients // Am. J. Clin. Pathol. 2018. Vol. 149, No. 5. P. 412–417. doi: 10.1093/ajcp/aqy008
  60. Song J., Ouyang Y., Che J. et al. Potential value of miR-221/222 as diagnostic, prognostic, and therapeutic biomarkers for diseases // Front. Immunol. 2017. Vol. 8. P. 56. doi: 10.3389/fimmu.2017.00056
  61. Chen L., Zhang J., Han L. et al. Downregulation of miR-221/222 sensitizes glioma cells to temozolomide by regulating apoptosis independently of p53 status // Oncol. Rep. 2012. Vol. 27. P. 854–860. doi: 10.3892/or.2011.1535
  62. Li W., Guo F., Wang P. et al. miR-221/222 confers radioresistance in glioblastoma cells through activating Akt independent of PTEN status // Curr. Mol. Med. 2014. Vol. 14. P. 185–195. doi: 10.2174/1566524013666131203103147
  63. Shu M., Zheng X., Wu S. et al. Targeting oncogenic miR-335 inhibits growth and invasion of malignant astrocytoma cells // Mol. Cancer. 2011. Vol. 10. P. 59. doi: 10.1186/1476-4598-10-59
  64. Scarola M., Schoeftner S., Schneider C. et al. miR-335 directly targets Rb1 (pRb/p105) in a proximal connection to p53-dependent stress response // Cancer Res. 2010. Vol. 70, No. 17. P. 6925–6933. doi: 10.1158/0008-5472.CAN-10-0141
  65. Yang F., Nam S., Brown C.E. et al. A novel berbamine derivative inhibits cell viability and induces apoptosis in cancer stem-like cells of human glioblastoma, via up-regulation of miRNA-4284 and JNK/AP-1 signaling // PLoS One. 2014. Vol. 9, No. 4. P. e94443. doi: 10.1371/journal.pone.0094443
  66. Izquierdo-Garcia J.L., Viswanath P., Eriksson P. et al. Metabolic reprogramming in mutant IDH1 glioma cells // PLoS One. 2015. Vol. 10, No. 2. P. e0118781. doi: 10.1371/journal.pone.0118781
  67. Valdés-Rives S.A., Casique-Aguirre D., Germán-Castelán L. et al. Apoptotic signaling pathways in glioblastoma and therapeutic implications // Biomed. Res. Int. 2017. Vol. 2017. P. 7403747. doi: 10.1155/2017/7403747
  68. Verhaak R.G.W., Hoadley K.A., Purdom E. et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1 // Cancer Cell. 2010. Vol. 17. P. 98–110. doi: 10.1016/j.ccr.2009.12.020
  69. Miller C.R., Perry A. Glioblastoma // Arch. Pathol. Lab. Med. 2007. Vol. 131, No. 3. P. 397–406. doi: 10.5858/2007-131-397-G
  70. Mellai M., Piazzi A., Caldera V. et al. Promoter hypermethylation of the EMP3 gene in a series of 229 human gliomas // Biomed. Res. Int. 2013. Vol. 2013. P. 756302. doi: 10.1155/2013/756302
  71. Li K., Ouyang L., He M. et al. IDH1 R132H mutation regulates glioma chemosensitivity through Nrf2 pathway // Oncotarget. 2017. Vol. 8, No. 17. P. 28865–28879. doi: 10.18632/oncotarget.15868
  72. Colardo M., Segatto M., Di Bartolomeo S. Targeting RTK-PI3K-mTOR axis in gliomas: an update // Int. J. Mol. Sci. 2021. Vol. 22. P. 4899. doi: 10.3390/ijms22094899
  73. Duzgun Z., Eroglu Z., Biray Avci C. Role of mTOR in glioblastoma // Gene. 2016. Vol. 575, No. 2 Pt 1. P. 187–190. doi: 10.1016/j.gene.2015.08.060
  74. Zając A., Sumorek-Wiadro J., Langner E. et al. Involvement of PI3K pathway in glioma cell resistance to temozolomide treatment // Int. J. Mol. Sci. 2021. Vol. 22, No. 10. P. 5155. doi: 10.3390/ijms22105155
  75. Zhou W., Liu L., Xue Y. et al. Combination of endothelial-monocyte-activating polypeptide-II with temozolomide suppress malignant biological behaviors of human glioblastoma stem cells via miR-590-3p/MACC1 inhibiting PI3K/AKT/mTOR signal pathway // Front. Mol. Neurosci. 2017. Vol. 10. P. 68. doi: 10.3389/fnmol.2017.00068
  76. Shang C., Hong Y., Guo Y. et al. Influence of the MACC1 gene on sensitivity to chemotherapy in human U251 glioblastoma cells // Asian Pac. J. Cancer Prev. 2015. Vol. 16, No. 1. P. 195–199. doi: 10.7314/apjcp.2015.16.1.195
  77. Pojo M., Gonçalves C.S., Xavier-Magalhães A. et al. A transcriptomic signature mediated by HOXA9 promotes human glioblastoma initiation, aggressiveness and resistance to temozolomide // Oncotarget. 2015. Vol. 6, No. 10. P. 7657–7674. doi: 10.18632/oncotarget.3150
  78. Le Mercier M., Lefranc F., Mijatovic T. et al. Evidence of galectin-1 involvement in glioma chemoresistance // Toxicol. Appl. Pharmacol. 2008. Vol. 229, No. 2. P. 172–183. doi: 10.1016/j.taap.2008.01.009
  79. Sasaki A., Udaka Y., Tsunoda Y. et al. Analysis of p53 and miRNA expressions after irradiation in glioblastoma cell lines // Anticancer Res. 2012. Vol. 32, No. 11. P. 4709–4713.
  80. Jesionek-Kupnicka D., Braun M., Trąbska-Kluch B. et al. MiR-21, miR-34a, miR-125b, miR-181d and miR-648 levels inversely correlate with MGMT and TP53 expression in primary glioblastoma patients // Arch. Med. Sci. 2019. Vol. 15, No. 2. P. 504–512. doi: 10.5114/aoms.2017.69374
  81. Giacomelli C., Natali L., Trincavelli M.L. et al. New insights into the anticancer activity of carnosol: p53 reactivation in the U87MG human glioblastoma cell line // Int. J. Biochem. Cell Biol. 2016. Vol. 74. P. 95–108. doi: 10.1016/j.biocel.2016.02.019
  82. Vadysirisack D.D., Baenke F., Ory B. et al. Feedback control of p53 translation by REDD1 and mTORC1 limits the p53-dependent DNA damage response // Mol. Cell Biol. 2011. Vol. 31, No. 21. P. 4356–4365. doi: 10.1128/MCB.05541-11
  83. George J., Gondi C.S., Dinh D.H. et al. Restoration of tissue factor pathway inhibitor-2 in a human glioblastoma cell line triggers caspase-mediated pathway and apoptosis // Clin. Cancer Res. 2007. Vol. 13, No. 12. P. 3507–3517. doi: 10.1158/1078-0432.CCR-06-3023
  84. Wagner L., Marschall V., Karl S. et al. Smac mimetic sensitizes glioblastoma cells to Temozolomide-induced apoptosis in a RIP1- and NF-κB-dependent manner // Oncogene. 2013. Vol. 32, No. 8. P. 988–997. doi: 10.1038/onc.2012.108
  85. Gondi C.S, Talluri L., Dinh D.H. et al. RNAi-mediated downregulation of MMP-2 activates the extrinsic apoptotic pathway in human glioma xenograft cells // Int. J. Oncol. 2009. Vol. 35, No. 4. P. 851–859. doi: 10.3892/ijo_00000399
  86. Mohanty S., Chen Z., Li K. et al. A novel theranostic strategy for MMP-14-expressing glioblastomas impacts survival // Mol. Cancer Ther. 2017. Vol. 16, No. 9. P. 1909–1921. doi: 10.1158/1535-7163.MCT-17-0022
  87. Tamannai M., Farhangi S., Truss M. et al. The inhibitor of growth 1 (ING1) is involved in trichostatin A-induced apoptosis and caspase 3 signaling in p53-deficient glioblastoma cells // Oncol. Res. 2010;18(10):469–480. doi: 10.3727/096504010x12704916124828
  88. Kouri F.M., Jensen S.A., Stegh A.H. The role of Bcl-2 family proteins in therapy responses of malignant astrocytic gliomas: Bcl2L12 and beyond // Scientific World J. 2012. Vol. 2012. P. 838916. doi: 10.1100/2012/838916
  89. Burton T.R., Henson E.S., Azad M.B. et al. BNIP3 acts as transcriptional repressor of death receptor-5 expression and prevents TRAIL-induced cell death in gliomas // Cell Death Dis. 2013. Vol. 4, No. 4. P. e587. doi: 10.1038/cddis.2013.100
  90. Lin S.-P., Lee Y.-T., Wang J.-Y. et al. Survival of cancer stem cells under hypoxia and serum depletion via decrease in PP2A activity and activation of p38-MAPKAPK2-Hsp27 // PLoS One. 2012. Vol. 7, No. 11. P. e49605. doi: 10.1371/journal.pone.0049605
  91. Markouli M., Strepkos D., Papavassiliou A.G., Piperi C. Targeting of endoplasmic reticulum (ER) stress in gliomas // Pharmacol. Res. 2020. Vol. 157. P. 104823. doi: 10.1016/j.phrs.2020.104823
  92. Jakubowicz-Gil J., Bądziul D., Langner E. et al. Temozolomide and sorafenib as programmed cell death inducers of human glioma cells // Pharmacol. Rep. 2017. Vol. 69, No. 4. P. 779–787. doi: 10.1016/j.pharep.2017.03.008
  93. Jin F., Zhao L., Guo Y.-J. et al. Influence of Etoposide on anti-apoptotic and multidrug resistance-associated protein genes in CD133 positive U251 glioblastoma stem-like cells // Brain Res. 2010. Vol. 1336. P. 103–111. doi: 10.1016/j.brainres.2010.04.005
  94. Zheng L.T., Lee S., Yin G.N. et al. Down-regulation of lipocalin 2 contributes to chemoresistance in glioblastoma cells // J. Neurochem. 2009. Vol. 111, No. 5. P. 1238–1251. doi: 10.1111/j.1471-4159.2009.06410.x
  95. Zeng L., Kang C., Di C. et al. The adherens junction-associated protein 1 is a negative transcriptional regulator of MAGEA2, which potentiates temozolomide-induced apoptosis in GBM // Int. J. Oncol. 2014. Vol. 44, No. 4. P. 1243–1251. doi: 10.3892/ijo.2014.2277

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Сигнальные механизмы дифференцировки и множественной лекарственной устойчивости в глиобластомах. Объяснения см. в тексте. Представлена мембрана клетки глиобластомы с включенными в нее некоторыми рецепторами (BMPR — рецептор морфогенетического белка кости; CDH1, EGFR, Notch рецептор, SMO — smoothened, frizzled рецептор) и внутриклеточными путями передачи сигнала, которые активируют или ингибируют дифференцировку. c-Fos — апоптотический белок, связывающийся с ДНК; DLL4 — дельта лиганд 4 Notch канонического пути; JAK — Janus-киназа; KLF4 — Krüppel-подобный фактор транскрипции 4; MAPKK (MAP2K1) — митоген-активируемая киназа протеинкиназы 1; MAPKKK — митоген-активируемый протеинкиназоподобный белок; NICD — внутриклеточный домен Notch белка; RA — ретиноевая кислота; RAC (AKT1) — AKT серин/треонинкиназа 1; RAF (ZHX2) — белок, содержащий гомеобокс 2 и домены цинковых пальцев; RAS — гуанозиннуклеотид-связывающая малая ГТФаза; RPS6K — рибосомальная протеинкиназа S6; SHH — Sonic hedgehog белок; SOS — Son of Sevenless фактор обмена гуаниновых нуклеотидов; VAV1 — фактор обмена гуаниновых нуклеотидов Vav 1; YAP1 — Yes-ассоциированный белок 1. Остальные обозначения молекул приведены в списке сокращений

Скачать (370KB)
3. Рис. 2. Сигнальные механизмы апоптоза и MЛУ в глиобластомах. Объяснения см. в тексте. Представлена мембрана клетки глиобластомы с включенными в нее некоторыми рецепторами (EGFR, Frizzled — Frizzled related protein 1, IGFR1 — Insulin growth factor receptor 1, Jagged 1, Notch рецептор, SMO — smoothened, frizzled рецептор, TGFR1 — рецептор трансформирующего фактора роста бета 1) и внутриклеточными путями передачи сигнала, которые активируют или ингибируют апоптоз. AC — ацетильная группа; APC — APC регулятор WNT сигнального пути; ATP — аденозинтрифосфат; AXIN1 — аксин 1; bCAT — катенин-бета 1; Ca2+ — кальций; c-Fos — апоптотический белок, связывающийся с ДНК; cAMP — циклический аденозинмонофосфат; CCbL1 (KYAT1) — кинуренинаминотрансфераза 1; CREB1 — белок 1, содержащий цAMФ-связывающий элемент; DAG — диацилглицерол; DLL4 — дельта лиганд 4 Notch канонического пути; Dv1 (IFT81) — белок 81 внутрижгутикового транспорта; E2F4, 5 — E2F факторы транскрипции-4, -5; GBP (LGALS1) — галектин 1; GSK3B — киназа 3 бета гликогенсинтазы; IRS1 — субстрат 1 рецептора инсулина; JAK — Janus-киназа; KLF4 — Krüppel-подобный фактор транскрипции 4; MAPKK (MAP2K1) — митоген-активируемая киназа протеинкиназы 1; MAPKKK — митоген-активируемый протеинкиназоподобный белок; NICD — внутриклеточный домен Notch белка; PIP2 — фосфатидилинозитол-4,5-бисфосфат; PIP3 — фосфатидилинозитол-(3,4,5)-трифосфат; PKC — протеинкиназа C; RA — ретиноевая кислота; RAC (AKT1) — AKT серин/треонинкиназа 1; RAF (ZHX2) — белок, содержащий гомеобокс 2 и домены цинковых пальцев; RAS — гуанозиннуклеотид-связывающая малая ГТФаза; RhoA — член А семейства Ras гомологичных белков; ROCK — Rho-ассоциируемая протеинкиназа; RPS6K — рибосомальная протеинкиназа S6; SHH — Sonic hedgehog белок; SOS — Son of Sevenless, фактор обмена гуаниновых нуклеотидов; Sp1 — Sp1-транскрипционный фактор; TCF4 — транскрипционный фактор 4, содержащий спираль-петля-спиральные домены; VAV1 — фактор обмена гуаниновых нуклеотидов VAV 1; YAP1 — Yes-ассоциируемый белок 1; Yb1 (YBX1) — Y-box-домен, содержащий белок 1. Остальные обозначения молекул приведены в списке сокращений

Скачать (425KB)

© Эко-Вектор, 2023



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 74760 от 29.12.2018 г.


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах