The molecular mechanisms of drug resistance of glioblastoma. Part 3. Differentiation and apoptosis of glioblastoma cells

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Glioblastomas are one of the most malignant and frequent human tumors, characterized by rapid growth, metastasis, resistance to therapy and the formation of relapses. The formation of multidrug resistance mechanisms in glioblastomas cells is often combined with inhibition of cell death and differentiation pathways and prevents an increase in the effectiveness of therapy in this group of patients. The review examines the relationship of molecular mechanisms of multidrug resistance with differentiation and apoptosis of glioblastomas with an emphasis on identifying new targets among proteins, microRNAs, suppressor genes, and oncogenes.

Full Text

Restricted Access

About the authors

Alexander N. Chernov

Institute of Experimental Medicine

Author for correspondence.
Email: al.chernov@mail.ru
ORCID iD: 0000-0003-2464-7370
Scopus Author ID: 26649406700

PhD, Cand. Sci. (Biol.), Senior Research Associate, Department of General Pathology and Pathological Physiology

Russian Federation, Saint Petersburg

Elvira S. Galimova

Institute of Experimental Medicine; Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences

Email: elvira8galimova@gmail.com
ORCID iD: 0000-0002-8773-0932
Scopus Author ID: 24331659400

PhD, Cand. Sci. (Biol.), Senior Research Associate of Interdisciplinary Laboratory for Neurobiology; Senior Research Associate, Department of General Pathology and Pathological Physiology

Russian Federation, Saint Petersburg; Saint Petersburg

Olga V. Shamova

Institute of Experimental Medicine; Saint Petersburg State University

Email: oshamova@yandex.ru
ORCID iD: 0000-0002-5168-2801
Scopus Author ID: 6603643804
ResearcherId: F-6743-2013

Dr. Sci. (Biol.), Assistant Professor, Corresponding Member of the Russian Academy of Sciences, Head of the Department of General Pathology and Pathological Physiology; Professor of the Department of Biochemistry

Russian Federation, Saint Petersburg; Saint Petersburg

References

  1. Chen C-H, Chen P-Y, Lin Y-Y, et al. Suppression of tumor growth via IGFBP3 depletion as a potential treatment in glioma. J Neurosurg. 2019;132(1):168–179. doi: 10.3171/2018.8.JNS181217
  2. Auffinger B, Spencer D, Pytel P, et al. The role of glioma stem cells in chemotherapy resistance and glioblastoma multiforme recurrence. Expert Rev Neurother. 2015;15(7):741–752. doi: 10.1586/14737175.2015.1051968
  3. Tang X, Zuo C, Fang P, et al. Targeting glioblastoma stem cells: a review on biomarkers, signal pathways and targeted therapy. Front Oncol. 2021;11:701291. doi: 10.3389/fonc.2021.701291
  4. Ducassou A, Uro-Coste E, Verrelle P, et al. αvβ3 Integrin and Fibroblast growth factor receptor 1 (FGFR1): Prognostic factors in a phase I–II clinical trial associating continuous administration of Tipifarnib with radiotherapy for patients with newly diagnosed glioblastoma. Eur J Cancer. 2013;49(9):2161–2169. doi: 10.1016/j.ejca.2013.02.033
  5. Gouazé-Andersson V, Delmas C, Taurand M, et al. FGFR1 induces glioblastoma radioresistance through the PLCγ/Hif1α pathway. Cancer Res. 2016;76(10):3036–3044. doi: 10.1158/0008-5472.CAN-15-2058
  6. Ciechomska IA, Gielniewski B, Wojtas B, et al. EGFR/FOXO3a/BIM signaling pathway determines chemosensitivity of BMP4-differentiated glioma stem cells to temozolomide. Exp Mol Med. 2020;52:1326–1340. doi: 10.1038/s12276-020-0479-9
  7. Kim E-J, Kim S-O, Jin X, et al. Epidermal growth factor receptor variant III renders glioma cancer cells less differentiated by JAGGED1. Tumour Biol. 2015;36(4):2921–2928. doi: 10.1007/s13277-014-2922-9
  8. Yuan J, Xiao G, Peng G, et al. MiRNA-125a-5p inhibits glioblastoma cell proliferation and promotes cell differentiation by targeting TAZ. Biochem Biophys Res Commun. 2015;457(2):171–176. doi: 10.1016/j.bbrc.2014.12.078
  9. Yin D, Chen W, O’Kelly J, et al. Connective tissue growth factor associated with oncogenic activities and drug resistance in glioblastoma multiforme. Int J Cancer. 2010;127(10):2257–2267. doi: 10.1002/ijc.25257
  10. Silber J, Lim DA, Petritsch C, et al. miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC Med. 2008;24(6):14. doi: 10.1186/1741-7015-6-14
  11. Sana J, Busek P, Fadrus P, et al. Identification of microRNAs differentially expressed in glioblastoma stem-like cells and their association with patient survival. Sci Rep. 2018;8:2836. doi: 10.1038/s41598-018-20929-6
  12. Tomei S, Volontè A, Ravindran S, et al. MicroRNA expression profile distinguishes glioblastoma stem cells from differentiated tumor cells. J Pers Med. 2021;11(4):264. doi: 10.3390/jpm11040264
  13. Cardoso AM, Morais CM, Pena F, et al. Differentiation of glioblastoma stem cells promoted by miR-128 or miR-302a overexpression enhances senescence-associated cytotoxicity of axitinib. Hum Mol Genet. 2021;30(3-4):160–171. doi: 10.1093/hmg/ddab011
  14. Safa AR, Saadatzadeh MR, Cohen-Gadol AA, et al. Glioblastoma stem cells (GSCs) epigenetic plasticity and interconversion between differentiated non-GSCs and GSCs. Genes Dis. 2015;2(2):152–163. doi: 10.1016/j.gendis.2015.02.001
  15. Zhu J, Wang H, Fan Y, et al. Targeting the NF-E2-related factor 2 pathway: A novel strategy for glioblastoma. Oncol Rep. 2014;32(2):443–450. doi: 10.3892/or.2014.3259
  16. Gouazé-Andersson V, Ghérardi MJ, Lemarié A, et al. FGFR1/FOXM1 pathway: a key regulator of glioblastoma stem cells radioresistance and a prognosis biomarker. Oncotarget. 2018;9(60):31637–31649. doi: 10.18632/oncotarget.25827
  17. Korkolopoulou P, Levidou G, El-Habr EA, et al. Sox11 expression in astrocytic gliomas: Correlation with nestin/c-Met/IDH1-R132H expression phenotypes, p-Stat-3 and survival. Br J Cancer. 2013;108(10):2142–2152. doi: 10.1038/bjc.2013.176
  18. Calvert AE, Chalastanis A, Wu Y, et al. Cancer-associated IDH1 promotes growth and resistance to targeted therapies in the absence of mutation. Cell Rep. 2017;19(9):1858–1873. doi: 10.1016/j.celrep.2017.05.014
  19. Bai Y, Lathia JD, Zhang P, et al. Molecular targeting of TRF2 suppresses the growth and tumorigenesis of glioblastoma stem cells. Glia. 2014;62(10):1687–1698. doi: 10.1002/glia.22708
  20. Chudnovsky Y, Kim D, Zheng S. ZFHX4 interacts with the NuRD core memberCHD4 and regulates the glioblastoma tumor-initiating cell state. Cell Rep. 2014;6:313–324. doi: 10.1016/j.celrep.2013.12.032
  21. Zhou D, Alver BM, Li S, et al. Distinctive epigenomes characterize glioma stem cells and their response to differentiation cues. Genome Biol. 2018;19(1):43. doi: 10.1186/s13059-018-1420-6
  22. MacLeod G, Bozek DA, Rajakulendran N, et al. The functional genomic circuitry of human glioblastoma stem cells. BioRxiv. 2018. doi: 10.1101/358432
  23. Zhang J, Chen L, Han L, et al. EZH2 is a negative prognostic factor and exhibits pro-oncogenic activity in glioblastoma. Cancer Lett. 2015;356(2 Pt B):929–936. doi: 10.1016/j.canlet.2014.11.003
  24. Huang M, Zhang D, Wu JY, et al. Wnt-mediated endothelial transformation into mesenchymal stem cell-like cells induces chemoresistance in glioblastoma. Sci Transl Med. 2020;12(532):eaay7522. doi: 10.1126/scitranslmed.aay7522
  25. Fiscon G, Conte F, Licursi V, et al. Computational identification of specific genes for glioblastoma stem-like cells identity. Sci Rep. 2018;8:7769. doi: 10.1038/s41598-018-26081-5
  26. Suva ML, Rheinbay E, Gillespie SM, et al. Reconstructing and reprogramming the tumor-propagating potential of glioblastoma stem-like cells. Cell. 2014;157(3):580–594. doi: 10.1016/j.cell.2014.02.030
  27. Rheinbay E, Suvà ML, Gillespiet SM, et al. An aberrant transcription factor network essential for Wnt signaling and stem cell maintenance in glioblastoma. Cell Rep. 2013;3(5):1567–1579. doi: 10.1016/j.celrep.2013.04.021
  28. Kärrlander M, Lindberg N, Olofsson T, et al. Histidine-rich glycoprotein can prevent development of mouse experimental glioblastoma. PLoS One. 2009;4(12):e8536. doi: 10.1371/journal.pone.0008536
  29. González-Gómez P, Crecente-Campo J, Zahonero C, et al. Controlled release microspheres loaded with BMP7 suppress primary tumors from human glioblastoma. Oncotarget. 2015;6(13):10950–1063. doi: 10.18632/oncotarget.3459
  30. Rodriguez V, Bailey R, Larion M, et al. Retinoid receptor turnover mediated by sumoylation, ubiquitination and the valosin-containing protein is disrupted in glioblastoma. Sci Rep. 2019;9(1):16250. doi: 10.1038/s41598-019-52696-3
  31. Zeng H, Yang Z, Xu N, et al. Connective tissue growth factor promotes temozolomide resistance in glioblastoma through TGF-β1-dependent activation of Smad/ERK signaling. Cell Death Dis. 2017;8(6):e2885. doi: 10.1038/cddis.2017.248
  32. Clark PA, Iida M, Treisman DM, et al. Activation of multiple ERBB family receptors mediates glioblastoma cancer stem-like cell resistance to EGFR-targeted inhibition. Neoplasia. 2012;14(5):420–428. doi: 10.1596/neo.12432
  33. Maris C, D’Haene N, Trépant A-L, et al. IGF-IR: a new prognostic biomarker for human glioblastoma. Br J Cancer. 2015;113(5):729–737. doi: 10.1038/bjc.2015.242
  34. Tirrò E, Massimino M, Romano C, et al. Prognostic and therapeutic roles of the insulin growth factor system in glioblastoma. Front Oncol. 2021;10:612385. doi: 10.3389/fonc.2020.612385
  35. Schreck KC, Taylor P, Marchionni L, et al. The Notch target Hes1 directly modulates Gli1 expression and hedgehog signaling: a potential mechanism of therapeutic resistance. Clin Cancer Res. 2016;22(14):3700–3701. doi: 10.1158/1078-0432.CCR-16-1194
  36. Yang F, Nam S, Brown CE, et al. A novel berbamine derivative inhibits cell viability and induces apoptosis in cancer stem-like cells of human glioblastoma, via up-regulation of miRNA-4284 and JNK/AP-1 signaling. PLoS One. 2014;9(4):e94443. doi: 10.1371/journal.pone.0094443
  37. Liu Z-H, Dai X-M, Du B. Hes1: a key role in stemness, metastasis and multidrug resistance. Cancer Biol Ther. 2015;16(3):353–359. doi: 10.1080/15384047.2015.1016662
  38. Popescu AM, Alexandru O, Brindusa C, et al. Targeting the VEGF and PDGF signaling pathway in glioblastoma treatment. Int J Clin Exp Pathol. 2015;8(7):7825–7837.
  39. Gouazé-Andersson V, Ghérardi M-J, Lemarié A, et al. FGFR1/FOXM1 pathway: a key regulator of glioblastoma stem cells radioresistance and a prognosis biomarker. Oncotarget. 2018;9:31637–31649. doi: 10.18632/oncotarget.25827
  40. Fan TY, Wang H, Xiang P, et al. Inhibition of EZH2 reverses chemotherapeutic drug TMZ chemosensitivity in glioblastoma. Int J Clin Exp Pathol. 2014;7(10):6662–6670.
  41. Zhang L, Wang H. FTY720 inhibits the Nrf2/ARE pathway in human glioblastoma cell lines and sensitizes glioblastoma cells to temozolomide. Pharmacol Rep. 2017;69(6):1186–1193. doi: 10.1016/j.pharep.2017.07.003
  42. Zhou Y, Wang H-D, Zhu L. Knockdown of Nrf2 enhances autophagy induced by temozolomide in U251 human glioma cell line. Oncol Rep. 2013;29(1):394–400. doi: 10.3892/or.2012.2115
  43. Ji X, Wang H, Zhu J, et al. Correlation of Nrf2 and HIF-1α in glioblastoma and their relationships to clinicopathologic features and survival. Neurol Res. 2013;35(10):1044–1050. doi: 10.1179/1743132813Y.0000000251
  44. Rocha CR, Kajitani GS, Quinet A, et al. NRF2 and glutathione are key resistance mediators to temozolomide in glioma and melanoma cells. Oncotarget. 2016;7(30):48081–48092. doi: 10.18632/oncotarget.10129
  45. García-Gómez P, Dadras M, Bellomo C, et al. NOX4 regulates TGFβ-induced proliferation and self-renewal in glioblastoma stem cells. BioRxiv. 2019. doi: 10.1101/804013
  46. Agnihotri S, Wolf A, Picard D, et al. GATA4 is a regulator of astrocyte cell proliferation and apoptosis in the human and murine central nervous system. Oncogene. 2009;28(34):3033–3046. doi: 10.1038/onc.2009.159
  47. Lan J, Xue Y, Chen H, et al. Hypoxia-induced miR-497 decreases glioma cell sensitivity to TMZ by inhibiting apoptosis. FEBS Lett. 2014;588(8):3333–3339. doi: 10.1016/j.febslet.2014.07.021
  48. Zhang JM, Sun CY, Yu SZ, et al. Relationship between miR-218 and CDK6 expression and their biological impact on glioma cell proliferation and apoptosis. Zhonghua Bing Li Xue Za Zhi. 2011;40(7):454–459. (In Chinese)
  49. Xia H, Yan Y, Hu M, et al. MiR-218 sensitizes glioma cells to apoptosis and inhibits tumorigenicity by regulating ECOP-mediated suppression of NF-κB activity. Neuro Oncol. 2013;15:413–422. doi: 10.1093/neuonc/nos296
  50. Ahmed SP, Castresana JS, Shahi MH. Glioblastoma and MiRNAs. Cancers (Basel). 2021;13(7):1581. doi: 10.3390/cancers13071581
  51. Li L, Gao R, Yu Y, et al. Tumor suppressor activity of miR-451: Identification of CARF as a new target. Sci Rep. 2018;8:375. doi: 10.1038/s41598-017-18559-5
  52. Korać P, Antica M, Matulić M. MiR-7 in cancer development. Biomedicines. 2021;9(3):325. doi: 10.3390/biomedicines9030325
  53. Duan J, Zhou K, Tang X, et al. MicroRNA-34a inhibits cell proliferation and induces cell apoptosis of glioma cells via targeting of Bcl-2. Mol Med Rep. 2016;14:432–438. doi: 10.3892/mmr.2016.5255
  54. Shan ZN, Tian R, Zhang M, et al. miR128-1 inhibits the growth of glioblastoma multiforme and glioma stem-like cells via targeting BMI1 and E2F3. Oncotarget. 2016;7:78813–78826. doi: 10.18632/oncotarget.12385
  55. Chen M, Medarova Z, Moore А. Role of microRNAs in glioblastoma. Oncotarget. 2021;12:1707–1723. doi: 10.18632/oncotarget.28039
  56. Anthiya S, Griveau A, Loussouarn C, et al. MicroRNA-based drugs for brain tumours. Trends Cancer. 2018;4(3):222–238. doi: 10.1016/j.trecan.2017.12.008
  57. Banelli B, Forlani A, Allemanni G, et al. MicroRNA in glioblastoma: an overview. Int J Genomics. 2017;2017:7639084. doi: 10.1155/2017/7639084
  58. Tang H, Bian Y, Tu C, et al. The miR-183/96/182 cluster regulates oxidative apoptosis and sensitizes cells to chemotherapy in gliomas. Curr Cancer Drug Targets. 2013;13(2):221–231. doi: 10.2174/1568009611313020010
  59. Chen Y-Y, Ho H-L, Lin S-C, et al. Upregulation of miR-125b, miR-181d, and miR-221 predicts poor prognosis in MGMT promoter-unmethylated glioblastoma patients. Am J Clin Pathol. 2018;149(5):412–417. doi: 10.1093/ajcp/aqy008
  60. Song J, Ouyang Y, Che J, et al. Potential value of miR-221/222 as diagnostic, prognostic, and therapeutic biomarkers for diseases. Front Immunol. 2017;8:56. doi: 10.3389/fimmu.2017.00056
  61. Chen L, Zhang J, Han L, et al. Downregulation of miR-221/222 sensitizes glioma cells to temozolomide by regulating apoptosis independently of p53 status. Oncol Rep. 2012;27:854–860. doi: 10.3892/or.2011.1535
  62. Li W, Guo F, Wang P, et al. miR-221/222 confers radioresistance in glioblastoma cells through activating Akt independent of PTEN status. Curr Mol Med. 2014;14:185–195. doi: 10.2174/1566524013666131203103147
  63. Shu M, Zheng X, Wu S, et al. Targeting oncogenic miR-335 inhibits growth and invasion of malignant astrocytoma cells. Mol Cancer. 2011;10:59. doi: 10.1186/1476-4598-10-59
  64. Scarola M, Schoeftner S, Schneider C, et al. miR-335 directly targets Rb1 (pRb/p105) in a proximal connection to p53-dependent stress response. Cancer Res. 2010;70(17):6925–6933. doi: 10.1158/0008-5472.CAN-10-0141
  65. Yang F, Nam S, Brown CE, et al. A novel berbamine derivative inhibits cell viability and induces apoptosis in cancer stem-like cells of human glioblastoma, via up-regulation of miRNA-4284 and JNK/AP-1 signaling. PLoS One. 2014;9(4):e94443. doi: 10.1371/journal.pone.0094443
  66. Izquierdo-Garcia JL, Viswanath P, Eriksson P, et al. Metabolic reprogramming in mutant IDH1 glioma cells. PLoS One. 2015;10(2):e0118781. doi: 10.1371/journal.pone.0118781
  67. Valdés-Rives SA, Casique-Aguirre D, Germán-Castelán L, et al. Apoptotic signaling pathways in glioblastoma and therapeutic implications. Biomed Res Int. 2017;2017:7403747. doi: 10.1155/2017/7403747
  68. Verhaak RGW, Hoadley KA, Purdom E, et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010;17:98–110. doi: 10.1016/j.ccr.2009.12.020
  69. Miller CR, Perry A. Glioblastoma. Arch Pathol Lab Med. 2007;131(3):397–406. doi: 10.5858/2007-131-397-G
  70. Mellai M, Piazzi A, Caldera V, et al. Promoter hypermethylation of the EMP3 gene in a series of 229 human gliomas. Biomed Res Int. 2013;2013:756302. doi: 10.1155/2013/756302
  71. Li K, Ouyang L, He M, et al. IDH1 R132H mutation regulates glioma chemosensitivity through Nrf2 pathway. Oncotarget. 2017;8(17):28865–28879. doi: 10.18632/oncotarget.15868
  72. Colardo M, Segatto M, Di Bartolomeo S. Targeting RTK-PI3K-mTOR axis in gliomas: an update. Int J Mol Sci. 2021;22:4899. doi: 10.3390/ijms22094899
  73. Duzgun Z, Eroglu Z, Biray Avci C. Role of mTOR in glioblastoma. Gene. 2016;575(2 Pt 1):187–190. doi: 10.1016/j.gene.2015.08.060
  74. Zając A, Sumorek-Wiadro J, Langner E, et al. Involvement of PI3K pathway in glioma cell resistance to temozolomide treatment. Int J Mol Sci. 2021;22(10):5155. doi: 10.3390/ijms22105155
  75. Zhou W, Liu L, Xue Y, et al. Combination of endothelial-monocyte-activating polypeptide-II with temozolomide suppress malignant biological behaviors of human glioblastoma stem cells via miR-590-3p/MACC1 inhibiting PI3K/AKT/mTOR signal pathway. Front Mol Neurosci. 2017;10:68. doi: 10.3389/fnmol.2017.00068
  76. Shang C, Hong Y, Guo Y, et al. Influence of the MACC1 gene on sensitivity to chemotherapy in human U251 glioblastoma cells. Asian Pac J Cancer Prev. 2015;16(1):195–199. doi: 10.7314/apjcp.2015.16.1.195
  77. Pojo M, Gonçalves CS, Xavier-Magalhães A, et al. A transcriptomic signature mediated by HOXA9 promotes human glioblastoma initiation, aggressiveness and resistance to temozolomide. Oncotarget. 2015;6(10):7657–7674. doi: 10.18632/oncotarget.3150
  78. Le Mercier M, Lefranc F, Mijatovic T, et al. Evidence of galectin-1 involvement in glioma chemoresistance. Toxicol Appl Pharmacol. 2008;229(2):172–183. doi: 10.1016/j.taap.2008.01.009
  79. Sasaki A, Udaka Y, Tsunoda Y, et al. Analysis of p53 and miRNA expressions after irradiation in glioblastoma cell lines. Anticancer Res. 2012;32(11):4709–4713.
  80. Jesionek-Kupnicka D, Braun M, Trąbska-Kluch B, et al. MiR-21, miR-34a, miR-125b, miR-181d and miR-648 levels inversely correlate with MGMT and TP53 expression in primary glioblastoma patients. Arch Med Sci. 2019;15(2):504–512. doi: 10.5114/aoms.2017.69374
  81. Giacomelli C, Natali L, Trincavelli ML, et al. New insights into the anticancer activity of carnosol: p53 reactivation in the U87MG human glioblastoma cell line. Int J Biochem Cell Biol. 2016;74:95–108. doi: 10.1016/j.biocel.2016.02.019
  82. Vadysirisack DD, Baenke F, Ory B, et al. Feedback control of p53 translation by REDD1 and mTORC1 limits the p53-dependent DNA damage response. Mol Cell Biol. 2011;31(21):4356–4365. doi: 10.1128/MCB.05541-11
  83. George J, Gondi CS, Dinh DH, et al. Restoration of tissue factor pathway inhibitor-2 in a human glioblastoma cell line triggers caspase-mediated pathway and apoptosis. Clin Cancer Res. 2007;13(12):3507–3517. doi: 10.1158/1078-0432.CCR-06-3023
  84. Wagner L, Marschall V, Karl S, et al. Smac mimetic sensitizes glioblastoma cells to Temozolomide-induced apoptosis in a RIP1- and NF-κB-dependent manner. Oncogene. 2013;32(8):988–997. doi: 10.1038/onc.2012.108
  85. Gondi CS, Talluri L, Dinh DH, et al. RNAi-mediated downregulation of MMP-2 activates the extrinsic apoptotic pathway in human glioma xenograft cells. Int J Oncol. 2009;35(4):851–859. doi: 10.3892/ijo_00000399
  86. Mohanty S, Chen Z, Li K, et al. A novel theranostic strategy for MMP-14-expressing glioblastomas impacts survival. Mol Cancer Ther. 2017;16(9):1909–1921. doi: 10.1158/1535-7163.MCT-17-0022
  87. Tamannai M, Farhangi S, Truss M, et al. The inhibitor of growth 1 (ING1) is involved in trichostatin A-induced apoptosis and caspase 3 signaling in p53-deficient glioblastoma cells. Oncol Res. 2010;18(10):469–480. doi: 10.3727/096504010x12704916124828
  88. Kouri FM, Jensen SA, Stegh AH. The role of Bcl-2 family proteins in therapy responses of malignant astrocytic gliomas: Bcl2L12 and beyond. Scientific World J. 2012;2012:838916. doi: 10.1100/2012/838916
  89. Burton TR, Henson ES, Azad MB, et al. BNIP3 acts as transcriptional repressor of death receptor-5 expression and prevents TRAIL-induced cell death in gliomas. Cell Death Dis. 2013;4(4):e587. doi: 10.1038/cddis.2013.100
  90. Lin S-P, Lee Y-T, Wang J-Y, et al. Survival of cancer stem cells under hypoxia and serum depletion via decrease in PP2A activity and activation of p38-MAPKAPK2-Hsp27. PLoS One. 2012;7(11):e49605. doi: 10.1371/journal.pone.0049605
  91. Markouli M, Strepkos D, Papavassiliou AG, Piperi C. Targeting of endoplasmic reticulum (ER) stress in gliomas. Pharmacol Res. 2020;157:104823. doi: 10.1016/j.phrs.2020.104823
  92. Jakubowicz-Gil J, Bądziul D, Langner E, et al. Temozolomide and sorafenib as programmed cell death inducers of human glioma cells. Pharmacol Rep. 2017;69(4):779–787. doi: 10.1016/j.pharep.2017.03.008
  93. Jin F, Zhao L, Guo Y-J, et al. Influence of Etoposide on anti-apoptotic and multidrug resistance-associated protein genes in CD133 positive U251 glioblastoma stem-like cells. Brain Res. 2010;1336:103–111. doi: 10.1016/j.brainres.2010.04.005
  94. Zheng LT, Lee S, Yin GN, et al. Down-regulation of lipocalin 2 contributes to chemoresistance in glioblastoma cells. J Neurochem. 2009;111(5):1238–1251. doi: 10.1111/j.1471-4159.2009.06410.x
  95. Zeng L, Kang C, Di C, et al. The adherens junction-associated protein 1 is a negative transcriptional regulator of MAGEA2, which potentiates temozolomide-induced apoptosis in GBM. Int J Oncol. 2014;44(4):1243–1251. doi: 10.3892/ijo.2014.2277

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Signaling mechanisms of differentiation and MDR in glioblastomas. See text for explanations. The figure shows the membrane of a glioblastoma cell, with some receptors included in it (BMPR — Bone morphogenetic protein receptor; CDH1, EGFR, Notch receptor, SMO — smoothened, frizzled class receptor) and intracellular signal transmission pathways that activate or inhibit differentiation. c-Fos — is a 380 amino acid protein with a basic leucine zipper region for dimerisation and DNA-binding and a transactivation domain at C-terminus; DLL4 — Delta like canonical Notch ligand 4; JAK — Janus kinase; KLF4 — Krüppel-like factor 4 transcription factor; MAPKK (MAP2K1) — Mitogen-activated protein kinase kinase 1; MAPKKK — Mitogen activated protein kinase-like protein; NICD — Notch intracellular domain; RA — Retinoic acid; RAC (AKT1) — AKT serine/threonine kinase 1; RAF (ZHX2) — Zinc fingers and homeoboxes 2; RAS — Guanosine-nucleotide-binding single-subunit small GTPase; RPS6K — Ribosomal protein S6 kinase; SHH — Sonic hedgehog protein; SOS — Son of Sevenless is a guanine nucleotide exchange factor; VAV1 — VAV guanine nucleotide exchange factor 1; YAP1 — Yes-associated protein 1. The remaining designations of molecules are given in the list of abbreviations

Download (370KB)
3. Fig. 2. Signaling mechanisms of apoptosis and MDR in glioblastomas See text for explanations. The figure shows the membrane of a glioblastoma cell, with some receptors included in it (EGFR, Frizzled — Frizzled related protein 1, IGFR1 — Insulin growth factor receptor 1, Jagged 1, Notch receptor, SMO — Smoothened, frizzled class receptor, TGFR1 — Transforming growth factor beta receptor 1) and intracellular signal transmission pathways that activate or inhibit apoptosis. AC — acetyl group; APC — APC regulator of WNT signaling pathway; ATP — Adenosine triphosphate; AXIN1 — Axin 1; bCAT — Catenin-beta 1; Ca2+ — calcium; c-Fos — is a 380 amino acid protein with a basic leucine zipper region for dimerisation and DNA-binding and a transactivation domain at C-terminus; cAMP — Cyclic adenosine monophosphate; CCbL1 (KYAT1) — Kynurenine aminotransferase 1; CREB1 — cAMP responsive element binding protein 1; DAG — Diacylglycerol; DLL4 — Delta like canonical Notch ligand 4; Dv1 (IFT81) — Intraflagellar transport 81; E2F4, 5 — E2F transcription factor 4, -5; GBP (LGALS1) — Galectin 1; GSK3B — Glycogen synthase kinase 3 beta; IRS1 — Insulin receptor substrate 1; JAK — Janus kinase; KLF4 — Krüppel-like factor 4 transcription factor; MAPKK (MAP2K1) — Mitogen-activated protein kinase kinase 1; MAPKKK — Mitogen activated protein kinase-like protein; NICD — Notch intracellular domain; PIP2 — Phosphatidylinositol 4,5-bisphosphate; PIP3 — Phosphatidylinositol (3,4,5)-trisphosphate; PKC — Protein kinase C; RA — Retinoic acid; RAC (AKT1) — AKT serine/threonine kinase 1; RAF (ZHX2) — Zinc fingers and homeoboxes 2; RAS — Guanosine-nucleotide-binding single-subunit small GTPase; RhoA — RAS homolog family member A; ROCK — Rho-associated protein kinase; RPS6K — Ribosomal protein S6 kinase; SHH — Sonic hedgehog protein; SOS — Son of Sevenless is a guanine nucleotide exchange factor; Sp1 — Sp1 transcription factor; TCF4 — Basic helix-loop-helix transcription factor 4 also known as immunoglobulin transcription factor 2 (ITF-2); VAV1 — Vav guanine nucleotide exchange factor 1; YAP1 — Yes-associated protein 1; Yb1 (YBX1) — Y-box binding protein 1. The remaining designations of molecules are given in the list of abbreviations

Download (425KB)

Copyright (c) 2023 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 74760 от 29.12.2018 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies