Патофизиологические и генетические механизмы мигрени

Обложка


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Мигрень — гетерогенное неврологическое заболевание, характеризуется развитием периодических приступов сильной пульсирующей головной боли и связанными с ней нарушениями, которые встречаются у 11–15 % взрослого населения планеты. В статье рассмотрены основные формы мигрени — мигрень с аурой, мигрень без ауры, наследственная гемиплегическая мигрень в контексте их основных клинических симптомов, молекулярных генетических факторов риска, участвующих в сосудистых и неврологических процессах, в том числе активации тригеминоваскулярной системы. Акцент сделан на роли полиморфизмов генов гормонов, нейромедиаторов, их рецепторов, дисбаланса ионов, ионных каналов, цитокинов и ростовых факторов, молекул адгезии, метаболических ферментов, матриксных металлопротеиназ, ферментов сосудистого тонуса, антиоксидантной защиты, метаболизма липидов, белков с еще не установленной функцией.

Полный текст

Доступ закрыт

Об авторах

Александр Николаевич Чернов

Институт экспериментальной медицины

Автор, ответственный за переписку.
Email: al.chernov@mail.ru
ORCID iD: 0000-0003-2464-7370
Scopus Author ID: 26649406700

научный сотрудник, отдела общей патологии и патологической физиологии 

Россия, 197376, Санкт-Петербург, ул. Академика Павлова, д. 12

Эльвира Сафуановна Галимова

Институт экспериментальной медицины; Институт эволюционной физиологии и биохимии им. И.М. Сеченова Российской академии наук

Email: elya-4@yandex.ru
ORCID iD: 0000-0002-8773-0932
Scopus Author ID: 24331659400

канд. биол. наук, старший научный сотрудник междисциплинарной лаборатории нейробиологии

Россия, 197376, Санкт-Петербург, ул. Академика Павлова, д. 12; 194223, Санкт-Петербург, пр. Торезы, д.44

Список литературы

  1. Sintas C., Fernández-Morales J., Vila-Pueyo M. et al. Replication study of previous migraine genome-wide association study findings in a Spanish sample of migraine with aura // Cephalalgia. 2015. Vol. 35, No. 9. P. 776–782. doi: 10.1177/0333102414557841
  2. Viana M., Tronvik E.A., Do T.P. et al. Clinical features of visual migraine aura: a systematic review // J. Headache Pain. 2019. Vol. 20. P. 64. doi: 10.1186/s10194-019-1008-x
  3. Rainero I., Vacca A., Roveta F. et al. Targeting MTHFR for the treatment of migraines // Expert. Opin. Ther. Targets. 2019. Vol. 23, No. 1. P. 29–37. doi: 10.1080/14728222.2019.1549544
  4. Hoffmann J., Charles A. Glutamate and its receptors as therapeutic targets for migraine // Neurotherapeutics. 2018. Vol. 15, No. 2. P. 361–370. doi: 10.1007/s13311-018-0616-5
  5. Sutherland H.G., Albury C.L., Griffiths L.R. Advances in genetics of migraine // J. Headache Pain. 2019. Vol. 20, No. 1. P. 72. doi: 10.1186/s10194-019-1017-9
  6. Fuh J.L., Chung M.Y., Yao S.C. et al. Susceptible genes of restless legs syndrome in migraine // Cephalalgia. 2016. Vol. 36, No. 11. P. 1028–1037. doi: 10.1177/0333102415620907
  7. Pollock C.E., Sutherland H.G., Maher B.H. et al. The NRP1 migraine risk variant shows evidence of association with menstrual migraine // J. Headache Pain. 2018. Vol. 19, No. 1. P. 31. doi: 10.1186/s10194-018-0857-z
  8. Androulakis XM., Sen S., Kodumuri N. et al. Migraine age of onset and association with ischemic stroke in late life: 20 years follow-up in ARIC // Headache. 2019. Vol. 59, No. 4. P. 556–566. doi: 10.1111/head.13468
  9. Andreou AP., Edvinsson L. Mechanisms of migraine as a chronic evolutive condition // J. Headache Pain. 2019. Vol. 20, No. 1. P. 117. doi: 10.1186/s10194-019-1066-0
  10. Geyik S., Ergun S., Kuzudişli S. et al. Plasma urotensin-2 level and Thr21Met but not Ser89Asn polymorphisms of the urotensin-2 gene are associated with migraines // J. Headache Pain. 2016. Vol. 17. P. 36. doi: 10.1186/s10194-016-0623-z
  11. Wang Q., Liu Z.Y., Zhou J. Ultrasonic assessment of carotid intima-media thickness in migraine: a meta-analysis // J. Int. Med. Res. 2019. Vol. 47, No. 7. P. 2848–2855. doi: 10.1177/0300060519851354
  12. Meza-Velázquez R., López-Márquez F., Espinosa-Padilla S. et al. Association of diamine oxidase and histamine N-methyltransferase polymorphisms with presence of migraine in a group of Mexican mothers of children with allergies // Neurologia. 2017. Vol. 32, No. 8. P. 500–507. doi: 10.1016/j.nrl.2016.02.025
  13. Tosenberger A., Ataullakhanov F., Bessonov N. et al. Modelling of platelet–fibrin clot formation in flow with a DPD–PDE method // J. Math. Biol. 2016. Vol. 72, No. 3. P. 649–681. doi: 10.1007/s00285-015-0891-2
  14. Moore E., Fraley M.E., Bell I.M. et al. Characterization of ubrogepant: a potent and selective antagonist of the human calcitonin gene-related peptide receptor // J. Pharmacol. Exp. Ther. 2020. P. jpet.119.261065. doi: 10.1124/jpet.119.261065
  15. Yılmaz N., Yılmaz M., Sirin B. et al. The relationship between levels of plasma-soluble urokinase plasminogen activator receptor (suPAR) and presence of migraine attack and aura // J. Recept. Signal. Transduct. Res. 2017. Vol. 37, No. 5. P. 447–452. doi: 10.1080/10799893.2017.1328440
  16. Barbanti P., Aurilia C., Egeo G. et al. Dopaminergic symptoms in migraine: A cross-sectional study on 1148 consecutive headache center-based patients // Cephalalgia. 2020. Vol. 40, No. 11. P. 1168–1176. doi: 10.1177/0333102420929023
  17. Fawzi M.S., El-Shal A.S., Rashad N.M., Fathy H.A. Influence of tumor necrosis factor alpha gene promoter polymorphisms and its serum level on migraine susceptibility in Egyptian patients // J. Neurol. Sci. 2015. Vol. 348, No. 1–2. P. 74–80. doi: 10.1016/j.jns.2014.11.009
  18. Ran C., Michalska J.M., Fourier C. et al. Analysis of NOS gene polymorphisms in relation to cluster headache and predisposing factors in Sweden // Brain Sci. 2020. Vol. 11, No. 1. P. 34. doi: 10.3390/brainsci11010034
  19. Dong H., Wang Z.H., Dong B. et al. Endothelial nitric oxide synthase (-786T>C) polymorphism and migraine susceptibility: A meta-analysis // Medicine (Baltimore). 2018. Vol. 97, No. 36. P. e12241. doi: 10.1097/MD.0000000000012241
  20. Warfvinge K., Krause D.N., Maddahi A. et al. Estrogen receptors α, β and GPER in the CNS and trigeminal system – molecular and functional aspects // J. Headache Pain. 2020. Vol. 21, No. 1. P. 131. doi: 10.1186/s10194-020-01197-0
  21. Krause D.N., Warfvinge K., Haanes K.A., Edvinsson L. Hormonal influences in migraine – interactions of oestrogen, oxytocin and CGRP // Nat. Rev. Neurol. 2021. Vol. 17, No. 10. P. 621-633. doi: 10.1038/s41582-021-00544-2
  22. Hoffmann J., Charles A. Glutamate and its receptors as therapeutic targets for migraine // Neurotherapeutics. 2018. Vol. 15, No. 2. P. 361–370. doi: 10.1007/s13311-018-0616-5
  23. Edvinsson J.C.A., Viganò A., Alekseeva A. et al. On behalf of the European Headache Federation School of Advanced Studies (EHF-SAS) The fifth cranial nerve in headaches // J. Headache Pain. 2020. Vol. 21, No. 1. P. 65. doi: 10.1186/s10194-020-01134-1
  24. Goadsby P.J., Holland P.R., Martins-Oliveira M. et al. Pathophysiology of migraine: a disorder of sensory processing // Physiol. Rev. 2017. Vol. 97, No. 2. P. 553–622. doi: 10.1152/physrev.00034.2015
  25. Harriott A.M., Takizawa T., Chung D.Y., Chen S.P. Spreading depression as a preclinical model of migraine // J. Headache Pain. 2019. Vol. 20, No. 1. P. 45. doi: 10.1186/s10194-019-1001-4
  26. Yemisci M., Eikermann-Haerter K. Aura and Stroke: relationship and what we have learnt from preclinical models // J. Headache Pain. 2019. Vol. 20, No. 1. P. 63. doi: 10.1186/s10194-019-1016-x
  27. DaSilva A.F., Nascimento T.D., Jassar H. et al. Dopamine D2/D3 imbalance during migraine attack and allodynia in vivo // Neurology. 2017. Vol. 88, No. 17. P. 1634–1641. doi: 10.1212/WNL.0000000000003861
  28. Su M., Yu S. Chronic migraine: A process of dysmodulation and sensitization // Mol. Pain. 2018. Vol. 14. P. 1744806918767697. doi: 10.1177/1744806918767697
  29. Deen M., Hansen H.D., Hougaard A. et al. High brain serotonin levels in migraine between attacks: A 5-HT4 receptor binding PET study // Neuroimage Clin. 2018. Vol. 18. P. 97–102. doi: 10.1016/j.nicl.2018.01.016
  30. Tietjen G.E., Collins S.A. Hypercoagulability and migraine // Headache. 2018. Vol. 58, No. 1. P. 173–183. doi: 10.1111/head.13044
  31. Gonçalves F.M., Martins-Oliveira A., Lacchini R. et al. Matrix metalloproteinase (MMP)-2 gene polymorphisms affect circulating MMP-2 levels in patients with migraine with aura // Gene. 2013. Vol. 512, No. 1. P. 35–40. doi: 10.1016/j.gene.2012.09.109
  32. Ikemoto S., Matsuura R., Hamano S.-I. et al. Elevated serum MMP-9 and MMP/TIMP-1 ratio in patients with migrainous infrarction and hemiplegic migraine // J. Neurol. Neurosci. 2018. Vol. 9, No. 6. P. 278. doi: 10.21767/2171-6625.1000278
  33. Kursun O., Yemisci M., van den Maagdenberg A.M.J.M., Karatas H. Migraine and neuroinflammation: the inflammasome perspective // J. Headache Pain. 2021. Vol. 22, No. 1. P. 55. doi: 10.1186/s10194-021-01271-1
  34. Kaplan D.I., Isom L.L., Petrou S. Role of sodium channels in epilepsy // Cold. Spring Harb. Perspect. Med. 2016. Vol. 6, No. 6. P. a022814. doi: 10.1101/cshperspect.a022814
  35. Murakami M., Sato H., Taketomi Y. Updating phospholipase A2 biology // Biomolecules. 2020. Vol. 10, No. 10. P. 1457. doi: 10.3390/biom10101457
  36. Cacciapuoti F. Migraine homocysteine-related: Old and new mechanisms // Neurol. Clin. Neurosci. 2017. Vol. 5, No. 5. P. 137–140. doi: 10.1111/ncn3.12128
  37. Gandini M.A., Souza I.A., Ferron L. et al. The de novo CACNA1A pathogenic variant Y1384C associated with hemiplegic migraine, early onset cerebellar atrophy and developmental delay leads to a loss of Cav2.1 channel function // Mol. Brain. 2021. Vol. 14, No. 1. P. 27. doi: 10.1186/s13041-021-00745-2
  38. Gorlewicz A., Kaczmarek L. Pathophysiology of trans-synaptic adhesion molecules: implications for epilepsy // Front. Cell Dev. Biol. 2018. Vol. 6. P. 119. doi: 10.3389/fcell.2018.00119
  39. Sumi T., Harada K. Mechanism underlying hippocampal long-term potentiation and depression based on competition between endocytosis and exocytosis of AMPA receptors // Sci. Rep. 2020. Vol. 10, No. 1. P. 14711. doi: 10.1038/s41598-020-71528-3
  40. Wang M. Role of NR2A-containing receptors in early stage of migraine // Biol. Psychiat. 2017. Vol. 81, No. 10. P. S40. doi: 10.1016/j.biopsych.2017.02.107
  41. Long T., He W., Pan Q. et al. Microglia P2X4R-BDNF signalling contributes to central sensitization in a recurrent nitroglycerin-induced chronic migraine model // J. Headache Pain. 2020. Vol. 21, No. 1. P. 4. doi: 10.1186/s10194-019-1070-4
  42. Coskun S., Varol S., Ozdemir H.H. et al. Association of brain-derived neurotrophic factor and nerve growth factor gene polymorphisms with susceptibility to migraine // Neuropsychiatr. Dis. Treat. 2016. Vol. 12. P. 1779–1785. doi: 10.2147/NDT.S108814
  43. Liu W., Wang X., O’Connor M. et al. Brain-derived neurotrophic factor and its potential therapeutic role in stroke comorbidities // Neural. Plast. 2020. Vol. 2020. P. 1969482. doi: 10.1155/2020/1969482
  44. Clemow D.B., Johnson K.W., Hochstetler H.M. et al. Lasmiditan mechanism of action – review of a selective 5-HT1F agonist // J. Headache Pain. 2020. Vol. 21, No. 1. P. 71. doi: 10.1186/s10194-020-01132-3
  45. Ochoa-de la Paz L.D., Gulias-Cañizo R., D’Abril Ruíz-Leyja E. et al. The role of GABA neurotransmitter in the human central nervous system, physiology, and pathophysiology // Rev. Mex. Neurocienc. 2021. Vol. 22, No. 2. P. 67–76. doi: 10.24875/rmn.20000050
  46. Deen M., Hansen H.D., Hougaard A. et al. High brain serotonin levels in migraine between attacks: A 5-HT4 receptor binding PET study // Neuroimage Clin. 2018. Vol. 18. P. 97–102. doi: 10.1016/j.nicl.2018.01.016
  47. Dux M., Rosta J., Messlinger K. TRP Channels in the focus of trigeminal nociceptor sensitization contributing to primary headaches // Int. J. Mol. Sci. 2020. Vol. 21, No. 1. P. 342. doi: 10.3390/ijms21010342
  48. Benemei S., Dussor G. TRP Channels and migraine: Recent developments and new therapeutic opportunities // Pharmaceuticals (Basel). 2019. Vol. 12, No. 2. P. 54. doi: 10.3390/ph12020054
  49. García-Martín E., Esguevillas G., Serrador M. et al. Gamma-aminobutyric acid (GABA) receptors GABRA4, GABRE, and GABRQ gene polymorphisms and risk for migraine // J. Neural. Transm. (Vienna). 2018. Vol. 125, No. 4. P. 689–698. doi: 10.1007/s00702-017-1834-4
  50. Stærmose T.G., Knudsen M.K., Kasch H., Blicher J.U. Cortical GABA in migraine with aura – an ultrashort echo magnetic resonance spectroscopy study // J. Headache Pain. 2019. Vol. 20, No. 1. P. 110. doi: 10.1186/s10194-019-1059-z
  51. Harriott A.M., Dueker N., Cheng Y.C. et al. Polymorphisms in migraine-associated gene, atp1a2, and ischemic stroke risk in a biracial population: the genetics of early onset stroke study // Springerplus. 2013. Vol. 2, No. 1. P. 46. doi: 10.1186/2193-1801-2-46
  52. Fan C., Wolking S., Lehmann-Horn F. et al. Early-onset familial hemiplegic migraine due to a novel SCN1A mutation // Cephalalgia. 2016. Vol. 36, No. 13. P. 1238–1247. doi: 10.1177/0333102415608360
  53. Moskowitz M.A., Bolay H., Dalkara T. Deciphering migraine mechanisms: clues from familial hemiplegic migraine genotypes // Ann. Neurol. 2004. Vol. 55, No. 2. P. 276–280. doi: 10.1002/ana.20035
  54. Domitrz I., Kosiorek M., Żekanowski C., Kamińska A. Genetic studies of Polish migraine patients: screening for causative mutations in four migraine-associated genes // Hum. Genomics. 2016. Vol. 10. P. 3. doi: 10.1186/s40246-015-0057-8
  55. Ambrosini A., D’Onofrio M., Buzzi M.G. et al. Possible Involvement of the CACNA1E gene in migraine: A search for single nucleotide polymorphism in different clinical henotypes // Headache. 2017. Vol. 57, No. 7. P. 1136–1144. doi: 10.1111/head.13107
  56. Maher B.H., Taylor M., Stuart S. et al. Analysis of 3 common polymorphisms in the KCNK18 gene in an Australian migraine case-control cohort // Gene. 2013. Vol. 528, No. 2. P. 343–346. doi: 10.1016/j.gene.2013.07.030
  57. Fang J., An X., Chen S. et al. Case-control study of GRIA1 and GRIA3 gene variants in migraine // J. Headache Pain. 2015. Vol. 17. P. 2. doi: 10.1186/s10194-016-0592-2
  58. García-Martín E., Martínez C., Serrador M. et al. Gamma-aminobutyric acid (Gaba) receptors rho (Gabrr) gene polymorphisms and risk for migraine // Headache. 2017. Vol. 57, No. 7. P. 1118–1135. doi: 10.1111/head.13122
  59. Moran M.M., Szallasi A. Targeting nociceptive transient receptor potential channels to treat chronic pain: current state of the field // Br. J. Pharmacol. 2018. Vol. 175, No. 12. P. 2185–2203. doi: 10.1111/bph.14044
  60. Chen S.P., Fuh J.L., Chung M.Y. et al. Genome-wide association study identifies novel susceptibility loci for migraine in Han Chinese resided in Taiwan // Cephalalgia. 2018. Vol. 38, No. 3. P. 466–475. doi: 10.1177/0333102417695105
  61. Menon S., Lea R.A., Roy B. et al. The human μ-opioid receptor gene polymorphism (A118G) is associated with head pain severity in a clinical cohort of female migraine with aura patients // J. Headache Pain. 2012. Vol. 13, No. 7. P. 513–519. doi: 10.1007/s10194-012-0468-z
  62. Tamura M., Ishizawa M., Isojima T. et al. Functional analyses of a novel missense and other mutations of the vitamin D receptor in association with alopecia // Sci. Rep. 2017. Vol. 7, No. 1. P. 5102. doi: 10.1038/s41598-017-05081- x
  63. Palmirotta R., Barbanti P., De Marchis M.L. et al. Is SOD2 Ala16Val polymorphism associated with migraine with aura phenotype? // Antioxid. Redox Signal. 2015. Vol. 22, No. 3. P. 275–279. doi: 10.1089/ars.2014.6069
  64. Ghosh J., Joshi G., Pradhan S., Mittal B. Potential role of aromatase over estrogen receptor gene polymorphisms in migraine susceptibility: a case control study from North India // PLoS One. 2012. Vol. 7, No. 4. P. e34828. doi: 10.1371/journal.pone.0034828
  65. Saygi S., Alehan F., Erol İ. et al. TGF-β1 genotype in pediatric migraine patients // J. Child Neurol. 2015. Vol. 30, No. 1. P. 27–31. doi: 10.1177/0883073814527163
  66. Hiew L.F., Poon C.H., You H.Z., Lim L.W. TGF-β/Smad signalling in neurogenesis: implications for neuropsychiatric diseases // Cells. 2021. Vol. 10, No. 6. P. 1382. doi: 10.3390/cells10061382
  67. Yoo T., Kim S.-G., Yang S.H. et al. A DLG2 deficiency in mice leads to reduced sociability and increased repetitive behavior accompanied by aberrant synaptic transmission in the dorsal striatum // Mol. Autism. 2020. Vol. 11, No. 1. P. 19. doi: 10.1186/s13229-020-00324-7
  68. Chasman D.I., Schürks M., Anttila V. et al. Genome-wide association study reveals three susceptibility loci for common migraine in the general population // Nat. Genet. 2011. Vol. 43, No. 7. P. 695–698. doi: 10.1038/ng.856
  69. Lee H.-H., Chen C.-C., Ong J.-R. et al. Association of rs2651899 polymorphism in the positive regulatory domain 16 and common migraine subtypes: a meta-analysis // Headache. 2020. Vol. 60, No. 1. P. 71–80. doi: 10.1111/head.13670
  70. Zandifar A., Soleimani S., Iraji N. et al. Association between promoter region of the uPAR (rs344781) gene polymorphism in genetic susceptibility to migraine without aura in three Iranian hospitals // Clin. Neurol. Neurosurg. 2014. Vol. 120. P. 45–48. doi: 10.1016/j.clineuro.2014.02.003
  71. Ozan B., Demiryürek S., Safdar M. et al. Lack of association between urotensin-II (UTS2) gene polymorphisms (Thr21Met and Ser89Asn) and migraine // Bosn. J. Basic. Med. Sci. 2017. Vol. 17, No. 3. P. 268–273. doi: 10.17305/bjbms.2017.2138
  72. Chen M., Tang W., Hou L. et al. Tumor necrosis factor (TNF) -308G>A, nitric oxide synthase 3 (NOS3) +894G>T polymorphisms and migraine risk: a meta-analysis // PLoS One. 2015. Vol. 10, No. 6. P. e0129372. doi: 10.1371/journal.pone.0129372
  73. Hamad N., Alzoubi K.H., Swedan S.F. et al. Association between tumor necrosis factor alpha and lymphotoxin alpha gene polymorphisms and migraine occurrence among Jordanians // Neurol. Sci. 2021. Vol. 42, No. 9. P. 3625–3630. doi: 10.1007/s10072-020-04967-5
  74. Kaur S., Ali A., Pandey A.K., Singh B. Association of MTHFR gene polymorphisms with migraine in North Indian population // Neurol. Sci. 2018. Vol. 39, No. 4. P. 691–698. doi: 10.1007/s10072-018-3276-7
  75. Scher A.I., Eiriksdottir G., Garcia M. et al. Lack of association between the MTHFR C677T variant and migraine with aura in an older population: could selective survival play a role? // Cephalalgia. 2013. Vol. 33, No. 5. P. 308–315. doi: 10.1177/0333102412469739
  76. García-Martín E., Navarro-Muñoz S., Rodriguez C. et al. Association between endothelial nitric oxide synthase (NOS3) rs2070744 and the risk for migraine // Pharmacogenomics J. 2020. Vol. 20, No. 3. P. 426–432. doi: 10.1038/s41397-019-0133-x
  77. Güler S., Gürkan H., Tozkir H. et al. An investigation of the relationship between the eNOS gene polymorphism and diagnosed migraine // Balkan. J. Med. Genet. 2015. Vol. 17, No. 2. P. 49–59. doi: 10.2478/bjmg-2014-0074
  78. García-Martín E., Martínez C., Serrador M. et al. Neuronal nitric oxide synthase (nNOS, NOS1) rs693534 and rs7977109 variants and risk for migraine // Headache. 2015. Vol. 55, No. 9. P. 1209–1217. doi: 10.1111/head.12617
  79. Wan D., Wang C., Zhang X. et al. Association between angiotensin-converting enzyme insertion/deletion polymorphism and migraine: a meta-analysis // Int. J. Neurosci. 2016. Vol. 126, No. 5. P. 393–399. doi: 10.3109/00207454.2015.1025395
  80. An X.K., Fang J., Yu Z.Z. et al. Multilocus analysis reveals three candidate genes for Chinese migraine susceptibility // Clin. Genet. 2017. Vol. 92, No. 2. P. 143–149. doi: 10.1111/cge.12962
  81. Ichihara M., Kamiya T., Hara H., Adachi T. The MEF2A and MEF2D function as scaffold proteins that interact with HDAC1 or p300 in SOD3 expression in THP-1 cells // Free Radic. Res. 2018. Vol. 52, No. 7. P. 799–807. doi: 10.1080/10715762.2018.1475730
  82. Anttila V., Winsvold B.S., Gormley P. et al. Genome-wide meta-analysis identifies new susceptibility loci for migraine // Nat. Genet. 2013. Vol. 45, No. 8. P. 912–917. doi: 10.1038/ng.2676
  83. Gormley P., Anttila V., Winsvold B.S. et al. Meta-analysis of 375,000 individuals identifies 38 susceptibility loci for migraine // Nat. Genet. 2016. Vol. 48, No. 8. P. 856–866. doi: 10.1038/ng.3598
  84. Jiang Y., Wu R., Chen C. et al. Six novel rare non-synonymous mutations for migraine without aura identified by exome sequencing // J. Neurogenet. 2015. Vol. 29, No. 4. P. 188–194. doi: 10.3109/01677063.2015.1122787

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Схема сосудистых механизмов, лежащих в основе патогенеза мигрени

Скачать (824KB)
3. Рис. 2. Схема нейрональных механизмов, лежащих в основе патогенеза мигрени. CGRP — кальцитонин-ген-связанный пептид; АДФ — аденозиндифосфат

Скачать (450KB)

© Чернов А.Н., Галимова Э.С., 2021

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 74760 от 29.12.2018 г.


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах