Pathophysiological and genetic mechanisms of migraine

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Migraine is a heterogeneous neurological disease characterized by the development of periodic attacks of severe throbbing headache and related disorders, which occur in 11–15% of the adult population of the planet. The article discusses the main forms of migraine with aura, migraine without aura, hereditary hemiplegic migraine in the context of their main clinical symptoms, molecular genetic risk factors involved in vascular and neurological processes, including activation trigeminovascular system. Emphasis is placed on the role of polymorphisms, hormone genes, neurotransmitters, their receptors, ion imbalance, ion channels, cytokines and growth factors, adhesion molecules, metabolic enzymes, matrix metalloproteases, vascular tone enzymes, antioxidant defense, lipid metabolism, proteins with a not yet established function.

Full Text

Restricted Access

About the authors

Alexander N. Chernov

Institute for Experimental Medicine

Author for correspondence.
Email: al.chernov@mail.ru
ORCID iD: 0000-0003-2464-7370
Scopus Author ID: 26649406700

Research Associate, Department of General Pathology and Pathological Physiology

Russian Federation, 12, Academician Pavlov Str., Saint Petersburg, 197376

Elvira S. Galimova

Institute for Experimental Medicine; Sechenov Institute of Evolutionary Physiology and Biochemistry Russian Academy of Sciences

Email: elya-4@yandex.ru
ORCID iD: 0000-0002-8773-0932
Scopus Author ID: 24331659400

Cand. Sci. (Biol.), Senior Researcher of Interdisciplinary Laboratory of Neurobiology

Russian Federation, 12, Academician Pavlov Str., Saint Petersburg, 197376; 44, Toreza prosp, St. Petersburg, 194223

References

  1. Sintas C, Fernández-Morales J, Vila-Pueyo M, et al. Replication study of previous migraine genome-wide association study findings in a Spanish sample of migraine with aura. rs1801133 у женщин с МА 2015;35(9):776–782. doi: 10.1177/0333102414557841
  2. Viana M, Tronvik EA, Do TP, et al. Clinical features of visual migraine aura: a systematic review. J Headache Pain. 2019;20:64. doi: 10.1186/s10194-019-1008-x
  3. Rainero I, Vacca A, Roveta F, et al. Targeting MTHFR for the treatment of migraines. Expert Opin Ther Targets. 2019;23(1):29–37. doi: 10.1080/14728222.2019.1549544
  4. Hoffmann J, Charles A. Glutamate and its receptors as therapeutic targets for migraine. Neurotherapeutics. 2018;15(2):361–370. doi: 10.1007/s13311-018-0616-5
  5. Sutherland HG, Albury CL, Griffiths LR. Advances in genetics of migraine. J Headache Pain. 2019;20(1):72. doi: 10.1186/s10194-019-1017-9
  6. Fuh JL, Chung MY, Yao SC, et al. Susceptible genes of restless legs syndrome in migraine. Cephalalgia. 2016;36(11):1028–1037. doi: 10.1177/0333102415620907
  7. Pollock CE, Sutherland HG, Maher BH, et al. The NRP1 migraine risk variant shows evidence of association with menstrual migraine. J Headache Pain. 2018;19(1):31. doi: 10.1186/s10194-018-0857-z
  8. Androulakis XM, Sen S, Kodumuri N, et al. Migraine age of onset and association with ischemic stroke in late life: 20 years follow-up in ARIC. Headache. 2019;59(4):556–566. doi: 10.1111/head.13468
  9. Andreou AP, Edvinsson L. Mechanisms of migraine as a chronic evolutive condition. J Headache Pain. 2019;20(1):117. doi: 10.1186/s10194-019-1066-0
  10. Geyik S, Ergun S, Kuzudişli S, et al. Plasma urotensin-2 level and Thr21Met but not Ser89Asn polymorphisms of the urotensin-2 gene are associated with migraines. J Headache Pain. 2016;17:36. doi: 10.1186/s10194-016-0623-z
  11. Wang Q, Liu ZY, Zhou J. Ultrasonic assessment of carotid intima-media thickness in migraine: a meta-analysis. J Int Med Res. 2019;47(7):2848–2855. doi: 10.1177/0300060519851354
  12. Meza-Velázquez R, López-Márquez F, Espinosa-Padilla S, et al. Association of diamine oxidase and histamine N-methyltransferase polymorphisms with presence of migraine in a group of Mexican mothers of children with allergies. Neurologia. 2017;32(8):500–507. doi: 10.1016/j.nrl.2016.02.025
  13. Tosenberger A, Ataullakhanov F, Bessonov N, et al. Modelling of platelet–fibrin clot formation in flow with a DPD–PDE method. J Math Biol. 2016;72(3):649–681. doi: 10.1007/s00285-015-0891-2
  14. Moore E, Fraley ME, Bell IM, et al. Characterization of ubrogepant: a potent and selective antagonist of the human calcitonin gene-related peptide receptor. J Pharmacol Exp Ther. 2020; jpet.119.261065. doi: 10.1124/jpet.119.261065
  15. Yılmaz N, Yılmaz M, Sirin B, et al. The relationship between levels of plasma-soluble urokinase plasminogen activator receptor (suPAR) and presence of migraine attack and aura. J Recept Signal Transduct Res. 2017;37(5):447–452. doi: 10.1080/10799893.2017.1328440
  16. Barbanti P, Aurilia C, Egeo G, et al. Dopaminergic symptoms in migraine: A cross-sectional study on 1148 consecutive headache center-based patients. Cephalalgia. 2020;40(11):1168–1176. doi: 10.1177/0333102420929023
  17. Fawzi MS, El-Shal AS, Rashad NM, Fathy HA. Influence of tumor necrosis factor alpha gene promoter polymorphisms and its serum level on migraine susceptibility in Egyptian patients. J Neurol Sci. 2015;348(1–2):74–80. doi: 10.1016/j.jns.2014.11.009
  18. Ran C, Michalska JM, Fourier C, et al. Analysis of NOS gene polymorphisms in relation to cluster headache and predisposing factors in Sweden. Brain Sci. 2020;11(1):34. doi: 10.3390/brainsci11010034
  19. Dong H, Wang ZH, Dong B, et al. Endothelial nitric oxide synthase (-786T>C) polymorphism and migraine susceptibility: A meta-analysis. Medicine (Baltimore). 2018;97(36):e12241. doi: 10.1097/MD.0000000000012241
  20. Warfvinge K, Krause DN, Maddahi A, et al. Estrogen receptors α, β and GPER in the CNS and trigeminal system – molecular and functional aspects. J Headache Pain. 2020;21(1):131. doi: 10.1186/s10194-020-01197-0
  21. Krause DN, Warfvinge K, Haanes KA, Edvinsson L. Hormonal influences in migraine – interactions of oestrogen, oxytocin and CGRP. Nat Rev Neurol. 2021;17(10):621–633. doi: 10.1038/s41582-021-00544-2
  22. Hoffmann J, Charles A. Glutamate and its receptors as therapeutic targets for migraine. Neurotherapeutics. 2018;15(2):361–370. doi: 10.1007/s13311-018-0616-5
  23. Edvinsson JCA, Viganò A, Alekseeva A, et al. On behalf of the European Headache Federation School of Advanced Studies (EHF-SAS) The fifth cranial nerve in headaches. J Headache Pain. 2020;21(1):65. doi: 10.1186/s10194-020-01134-1
  24. Goadsby PJ, Holland PR, Martins-Oliveira M, et al. Pathophysiology of migraine: a disorder of sensory processing. Physiol Rev. 2017;97(2):553–622. doi: 10.1152/physrev.00034.2015
  25. Harriott AM, Takizawa T, Chung DY, Chen SP. Spreading depression as a preclinical model of migraine. J Headache Pain. 2019;20(1):45. doi: 10.1186/s10194-019-1001-4
  26. Yemisci M, Eikermann-Haerter K. Aura and Stroke: relationship and what we have learnt from preclinical models. J Headache Pain. 2019;20(1):63. doi: 10.1186/s10194-019-1016-x
  27. DaSilva AF, Nascimento TD, Jassar H, et al. Dopamine D2/D3 imbalance during migraine attack and allodynia in vivo. Neurology. 2017;88(17):1634–1641. doi: 10.1212/WNL.0000000000003861
  28. Su M, Yu S. Chronic migraine: A process of dysmodulation and sensitization. Mol Pain. 2018;14:1744806918767697. doi: 10.1177/1744806918767697
  29. Deen M, Hansen HD, Hougaard A, et al. High brain serotonin levels in migraine between attacks: A 5-HT4 receptor binding PET study. Neuroimage Clin. 2018;18:97–102. doi: 10.1016/j.nicl.2018.01.016
  30. Tietjen GE, Collins SA. Hypercoagulability and migraine. Headache. 2018;58(1):173–183. doi: 10.1111/head.13044
  31. Gonçalves FM, Martins-Oliveira A, Lacchini R, et al. Matrix metalloproteinase (MMP)-2 gene polymorphisms affect circulating MMP-2 levels in patients with migraine with aura. Gene. 2013;512(1):35–40. doi: 10.1016/j.gene.2012.09.109
  32. Ikemoto S, Matsuura R, Hamano S-I, et al. Elevated serum MMP-9 and MMP/TIMP-1 ratio in patients with migrainous infrarction and hemiplegic migraine. J Neurol Neurosci. 2018;9(6):278. doi: 10.21767/2171-6625.1000278
  33. Kursun O, Yemisci M, van den Maagdenberg AMJM, Karatas H. Migraine and neuroinflammation: the inflammasome perspective. J Headache Pain. 2021;22(1):55. doi: 10.1186/s10194-021-01271-1
  34. Kaplan DI, Isom LL, Petrou S. Role of sodium channels in epilepsy. Cold Spring Harb Perspect Med. 2016;6(6):a022814. doi: 10.1101/cshperspect.a022814
  35. Murakami M, Sato H, Taketomi Y. Updating phospholipase A2 biology. Biomolecules. 2020;10(10):1457. doi: 10.3390/biom10101457
  36. Cacciapuoti F. Migraine homocysteine-related: Old and new mechanisms. Neurol Clin Neurosci. 2017;5(5):137–140. doi: 10.1111/ncn3.12128
  37. Gandini MA, Souza IA, Ferron L, et al. The de novo CACNA1A pathogenic variant Y1384C associated with hemiplegic migraine, early onset cerebellar atrophy and developmental delay leads to a loss of Cav2.1 channel function. Mol Brain. 2021;14(1):27. doi: 10.1186/s13041-021-00745-2
  38. Gorlewicz A, Kaczmarek L. Pathophysiology of trans-synaptic adhesion molecules: implications for epilepsy. Front Cell Dev Biol. 2018;6:119. doi: 10.3389/fcell.2018.00119
  39. Sumi T, Harada K. Mechanism underlying hippocampal long-term potentiation and depression based on competition between endocytosis and exocytosis of AMPA receptors. Sci Rep. 2020;10(1):14711. doi: 10.1038/s41598-020-71528-3
  40. Wang M. Role of NR2A-containing receptors in early stage of migraine. Biol Psychiat. 2017;81(10):S40. doi: 10.1016/j.biopsych.2017.02.107
  41. Long T, He W, Pan Q, et al. Microglia P2X4R-BDNF signalling contributes to central sensitization in a recurrent nitroglycerin-induced chronic migraine model. J Headache Pain. 2020;21(1):4. doi: 10.1186/s10194-019-1070-4
  42. Coskun S, Varol S, Ozdemir HH, et al. Association of brain-derived neurotrophic factor and nerve growth factor gene polymorphisms with susceptibility to migraine. Neuropsychiatr Dis Treat. 2016;12:1779–1785. doi: 10.2147/NDT.S108814
  43. Liu W, Wang X, O’Connor M, et al. Brain-derived neurotrophic factor and its potential therapeutic role in stroke comorbidities. Neural Plast. 2020;2020:1969482. doi: 10.1155/2020/1969482
  44. Clemow DB, Johnson KW, Hochstetler HM, et al. Lasmiditan mechanism of action – review of a selective 5-HT1F agonist. J Headache Pain. 2020;21(1):71. doi: 10.1186/s10194-020-01132-3
  45. Ochoa-de la Paz LD, Gulias-Cañizo R, D’Abril Ruíz-Leyja E, et al. The role of GABA neurotransmitter in the human central nervous system, physiology, and pathophysiology. Rev Mex Neurocienc. 2021;22(2):67–76. doi: 10.24875/rmn.20000050
  46. Deen M, Hansen HD, Hougaard A, et al. High brain serotonin levels in migraine between attacks: A 5-HT4 receptor binding PET study. Neuroimage Clin. 2018;18:97–102. doi: 10.1016/j.nicl.2018.01.016
  47. Dux M, Rosta J, Messlinger K. TRP Channels in the focus of trigeminal nociceptor sensitization contributing to primary headaches. Int J Mol Sci. 2020;21(1):342. doi: 10.3390/ijms21010342
  48. Benemei S, Dussor G. TRP Channels and migraine: Recent developments and new therapeutic opportunities. Pharmaceuticals (Basel). 2019;12(2):54. doi: 10.3390/ph12020054
  49. García-Martín E, Esguevillas G, Serrador M, et al. Gamma-aminobutyric acid (GABA) receptors GABRA4, GABRE, and GABRQ gene polymorphisms and risk for migraine. J Neural Transm (Vienna). 2018;125(4):689–698. doi: 10.1007/s00702-017-1834-4
  50. Stærmose TG, Knudsen MK, Kasch H, Blicher JU. Cortical GABA in migraine with aura – an ultrashort echo magnetic resonance spectroscopy study. J Headache Pain. 2019;20(1):110. doi: 10.1186/s10194-019-1059-z
  51. Harriott AM, Dueker N, Cheng YC, et al. Polymorphisms in migraine-associated gene, atp1a2, and ischemic stroke risk in a biracial population: the genetics of early onset stroke study. Springerplus. 2013;2(1):46. doi: 10.1186/2193-1801-2-46
  52. Fan C, Wolking S, Lehmann-Horn F, et al. Early-onset familial hemiplegic migraine due to a novel SCN1A mutation. Cephalalgia. 2016;36(13):1238–1247. doi: 10.1177/0333102415608360
  53. Moskowitz MA, Bolay H, Dalkara T. Deciphering migraine mechanisms: clues from familial hemiplegic migraine genotypes. Ann Neurol. 2004;55(2):276–280. doi: 10.1002/ana.20035
  54. Domitrz I, Kosiorek M, Żekanowski C, Kamińska A. Genetic studies of Polish migraine patients: screening for causative mutations in four migraine-associated genes. Hum Genomics. 2016;10:3. doi: 10.1186/s40246-015-0057-8
  55. Ambrosini A, D’Onofrio M, Buzzi MG, et al. Possible Involvement of the CACNA1E gene in migraine: A search for single nucleotide polymorphism in different clinical henotypes. Headache. 2017;57(7):1136–1144. doi: 10.1111/head.13107
  56. Maher BH, Taylor M, Stuart S, et al. Analysis of 3 common polymorphisms in the KCNK18 gene in an Australian migraine case-control cohort. Gene. 2013;528(2):343–346. doi: 10.1016/j.gene.2013.07.030
  57. Fang J, An X, Chen S, et al. Case-control study of GRIA1 and GRIA3 gene variants in migraine. J Headache Pain. 2015;17:2. doi: 10.1186/s10194-016-0592-2
  58. García-Martín E, Martínez C, Serrador M, et al. Gamma-aminobutyric acid (Gaba) receptors rho (Gabrr) gene polymorphisms and risk for migraine. Headache. 2017;57(7):1118–1135. doi: 10.1111/head.13122
  59. Moran MM, Szallasi A. Targeting nociceptive transient receptor potential channels to treat chronic pain: current state of the field. Br J Pharmacol. 2018;175(12):2185–2203. doi: 10.1111/bph.14044
  60. Chen SP, Fuh JL, Chung MY, et al. Genome-wide association study identifies novel susceptibility loci for migraine in Han Chinese resided in Taiwan. Cephalalgia. 2018;38(3):466–475. doi: 10.1177/0333102417695105
  61. Menon S, Lea RA, Roy B, et al. The human μ-opioid receptor gene polymorphism (A118G) is associated with head pain severity in a clinical cohort of female migraine with aura patients. J Headache Pain. 2012;13(7):513–519. doi: 10.1007/s10194-012-0468-z
  62. Tamura M, Ishizawa M, Isojima T, et al. Functional analyses of a novel missense and other mutations of the vitamin D receptor in association with alopecia. Sci Rep. 2017;7(1):5102. doi: 10.1038/s41598-017-05081- x
  63. Palmirotta R, Barbanti P, De Marchis ML, et al. Is SOD2 Ala16Val polymorphism associated with migraine with aura phenotype? Antioxid Redox Signal. 2015;22(3):275–279. doi: 10.1089/ars.2014.6069
  64. Ghosh J, Joshi G, Pradhan S, Mittal B. Potential role of aromatase over estrogen receptor gene polymorphisms in migraine susceptibility: a case control study from North India. PLoS One. 2012;7(4):e34828. doi: 10.1371/journal.pone.0034828
  65. Saygi S, Alehan F, Erol İ, et al. TGF-β1 genotype in pediatric migraine patients. J Child Neurol. 2015;30(1):27–31. doi: 10.1177/0883073814527163
  66. Hiew LF, Poon CH, You HZ, Lim LW. TGF-β/Smad signalling in neurogenesis: implications for neuropsychiatric diseases. Cells. 2021;10(6):1382. doi: 10.3390/cells10061382
  67. Yoo T, Kim S-G, Yang SH, et al. A DLG2 deficiency in mice leads to reduced sociability and increased repetitive behavior accompanied by aberrant synaptic transmission in the dorsal striatum. Mol Autism. 2020;11(1):19. doi: 10.1186/s13229-020-00324-7
  68. Chasman DI, Schürks M, Anttila V, et al. Genome-wide association study reveals three susceptibility loci for common migraine in the general population. Nat Genet. 2011;43(7):695–698. doi: 10.1038/ng.856
  69. Lee H-H, Chen C-C, Ong J-R, et al. Association of rs2651899 polymorphism in the positive regulatory domain 16 and common migraine subtypes: a meta-analysis. Headache. 2020;60(1):71–80. doi: 10.1111/head.13670
  70. Zandifar A, Soleimani S, Iraji N, et al. Association between promoter region of the uPAR (rs344781) gene polymorphism in genetic susceptibility to migraine without aura in three Iranian hospitals. Clin Neurol Neurosurg. 2014;120:45–48. doi: 10.1016/j.clineuro.2014.02.003
  71. Ozan B, Demiryürek S, Safdar M, et al. Lack of association between urotensin-II (UTS2) gene polymorphisms (Thr21Met and Ser89Asn) and migraine. Bosn J Basic Med Sci. 2017;17(3):268–273. doi: 10.17305/bjbms.2017.2138
  72. Chen M, Tang W, Hou L, et al. Tumor necrosis factor (TNF) -308G>A, nitric oxide synthase 3 (NOS3) +894G>T polymorphisms and migraine risk: a meta-analysis. PLoS One. 2015;10(6):e0129372. doi: 10.1371/journal.pone.0129372
  73. Hamad N, Alzoubi KH, Swedan SF, et al. Association between tumor necrosis factor alpha and lymphotoxin alpha gene polymorphisms and migraine occurrence among Jordanians. Neurol Sci. 2021;42(9):3625–3630. doi: 10.1007/s10072-020-04967-5
  74. Kaur S, Ali A, Pandey AK, Singh B. Association of MTHFR gene polymorphisms with migraine in North Indian population. Neurol Sci. 2018;39(4):691–698. doi: 10.1007/s10072-018-3276-7
  75. Scher AI, Eiriksdottir G, Garcia M, et al. Lack of association between the MTHFR C677T variant and migraine with aura in an older population: could selective survival play a role? Cephalalgia. 2013;33(5):308–315. doi: 10.1177/0333102412469739
  76. García-Martín E, Navarro-Muñoz S, Rodriguez C, et al. Association between endothelial nitric oxide synthase (NOS3) rs2070744 and the risk for migraine. Pharmacogenomics J. 2020;20(3):426–432. doi: 10.1038/s41397-019-0133-x
  77. Güler S, Gürkan H, Tozkir H, et al. An investigation of the relationship between the eNOS gene polymorphism and diagnosed migraine. Balkan J Med Genet. 2015;17(2):49–59. doi: 10.2478/bjmg-2014-0074
  78. García-Martín E, Martínez C, Serrador M, et al. Neuronal nitric oxide synthase (nNOS, NOS1) rs693534 and rs7977109 variants and risk for migraine. Headache. 2015;55(9):1209–1217. doi: 10.1111/head.12617
  79. Wan D, Wang C, Zhang X, et al. Association between angiotensin-converting enzyme insertion/deletion polymorphism and migraine: a meta-analysis. Int J Neurosci. 2016;126(5):393–399. doi: 10.3109/00207454.2015.1025395
  80. An XK, Fang J, Yu ZZ, et al. Multilocus analysis reveals three candidate genes for Chinese migraine susceptibility. Clin Genet. 2017;92(2):143–149. doi: 10.1111/cge.12962
  81. Ichihara M, Kamiya T, Hara H, Adachi T. The MEF2A and MEF2D function as scaffold proteins that interact with HDAC1 or p300 in SOD3 expression in THP-1 cells. Free Radic Res. 2018;52(7):799–807. doi: 10.1080/10715762.2018.1475730
  82. Anttila V, Winsvold BS, Gormley P, et al. Genome-wide meta-analysis identifies new susceptibility loci for migraine. Nat Genet. 2013;45(8):912–917. doi: 10.1038/ng.2676
  83. Gormley P, Anttila V, Winsvold BS, et al. Meta-analysis of 375,000 individuals identifies 38 susceptibility loci for migraine. Nat Genet. 2016;48(8):856–866. doi: 10.1038/ng.3598
  84. Jiang Y, Wu R, Chen C, et al. Six novel rare non-synonymous mutations for migraine without aura identified by exome sequencing. J Neurogenet. 2015;29(4):188–194. doi: 10.3109/01677063.2015.1122787

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Diagram of the vascular mechanisms underlying the pathogenesis of migraine

Download (824KB)
3. Fig. 2. Diagram of the neuronal mechanisms underlying the pathogenesis of migraine. CGRP, calcitonin gene-related peptide; ADP, adenosine diphosphate

Download (450KB)

Copyright (c) 2021 Chernov A.N., Galimova E.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 74760 от 29.12.2018 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies