Morpholine derivatives as potential agents for neurological manifestations of nervous system diseases


Diseases of the nervous system, especially those of vascular, traumatic, and neurodegenerative nature, are characterized by high prevalence, disability and mortality rates, and therefore have a particularly big medical and social impact. Currently, pharmacotherapy options for these diseases are limited to a relatively small number of clinically proven drugs, which is largely due to the difficulties associated with the translation of preclinical studies results. This explains the essential importance of discovering and developing new drugs, both effective and safe, that could be used to reduce clinical manifestations of neurological disorders. The present review is aimed to give a detailed account of several biologically active derivatives of morpholine, a six-membered heterocyclic compound. As demonstrated by a number of in vitro and in vivo studies using cell and animal models, morpholine derivatives should be considered viable drug candidates for a broad range of neurological diseases.

About the authors

Veronika A. Prikhodko

Saint-Petersburg Chemical Pharmaceutical University, Saint Petersburg, Russia


Russian Federation, 197376, Санкт-Петербург, ул. Профессора Попова, д. 14,литер.А

graduate student at the Department of Pharmacology and Clinical Pharmacology

Yuriy I. Sysoev

Saint-Petersburg Chemical Pharmaceutical University;
Institute of Translational Biomedicine, Saint-Petersburg State University, Saint Petersburg, Russia


Russian Federation, 197376, Санкт-Петербург, ул. Профессора Попова, д. 14,литер.А

senior lecturer at the Department of Pharmacology and Clinical Pharmacology;research officer

Sergey Okovityi

Saint-Petersburg Chemical-Pharmaceutical Academy, St.-Petersburg

Author for correspondence.
ORCID iD: 0000-0003-4294-5531

Russian Federation, 197376, Санкт-Петербург, ул. Профессора Попова, д. 14,литер.А

доктор медицинских наук, профессор, заведующий кафедрой фармакологии и клинической фармакологии


  1. 10 ведущих причин смерти в мире // Всемирная организация здравоохранения [сайт]. – 2018. – 24 мая. – URL: (дата обращения: 09.02.2020).
  2. Feigin V, Nichols E, Alam T, et al. Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet Neurology. 2019; 18 (5): 459-80. doi: 10.1016/s1474-4422(18)30499-x.
  3. Самородская, И.В. Динамика показателей смертности населения от острого нарушения мозгового кровообращения в России и США за 15-летний период / И. В. Самородская [и др.] // Архив патологии. – 2018. – Т. 80. – № 2. – С. 30-37.
  4. Таппахов, А. А. Эпидемиология болезни Паркинсона в мире и в России / А.А. Тапахов [и др.] // Забайкальский медицинский вестник. – 2016. – №. 4. – С. 151-159.
  5. Здравоохранение в России. 2017 : статистический сборник / Федеральная служба государственной статистики (Росстат) ; [редколлегия: А. Е. Суринов (пред.) [и др.] – Москва : Росстат, 2017. – 170 с.
  6. Литвинова, М.А. Инсульт: современные тенденции развития и профилактическая работа врача/ М.А. Литвинова // Здоровье и образование в XXI веке. – 2017. – Т. 19. – № 9. – С. 20-23.
  7. Мухамедьяров, М.А. Периферическая дисфункция как один из механизмов патогенеза нейродегенеративных заболеваний / М.А. Мухамедьяров [и др.] // Гены и клетки. – 2015. – Т. 10. – № 4. – С. 8-14.
  8. Эксперт: рост нейродегенеративных болезней в России может достичь 56% к 2030 году. // ТАСС [сайт]. – 2019. – 12 апр. – URL: (дата обращения: 09.02.2020).
  9. 10 фактов о деменции // Всемирная организация здравоохранения [сайт]. – 2017. – апр. – URL: (дата обращения: 09.02.2020).
  10. Sosa-Ortiz A, Acosta-Castillo I, Prince M. Epidemiology of Dementias and Alzheimer’s Disease. Arch Med Res. 2012; 43 (8): 600-8. doi: 10.1016/j.arcmed.2012.11.003.
  11. Васенина, Е. Е. Современные тенденции в эпидемиологии деменции и ведении пациентов с когнитивными нарушениями / Е.Е. Васенина, О.С. Левин, А.Г. Сонин // Журнал неврологии и психиатрии. – 2017. – Т. 117. – № 6-2. – С. 87-95.
  12. Dorsey E, Constantinescu R, Thompson J, et al. Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology. 2006; 68 (5): 384-6. doi: 10.1212/01.wnl.0000247740.47667.03.
  13. Garner J. The Significance of Meaning: Why Do Over 90% of Behavioral Neuroscience Results Fail to Translate to Humans, and What Can We Do to Fix It? ILAR J. 2014; 55 (3): 438-56. doi: 10.1093/ilar/ilu047.
  14. van der Worp H, Howells D, Sena E, et al. Can Animal Models of Disease Reliably Inform Human Studies? PLoS Med. 2010; 7 (3): e1000245. doi: 10.1371/journal.pmed.1000245.
  15. Lin C, Huang P, Lu C, Wu R, Hu W, Wang J. Polygonapholine, an alkaloid with a novel skeleton, isolated from Polygonatum alte-lobatum. Tetrahedron. 1997; 53 (6): 2025-8. doi: 10.1016/s0040-4020(96)01165-9.
  16. Bobzin S, Faulkner D. Aromatic alkaloids from the marine sponge Chelonaplysilla sp. J Org Chem. 1991; 56 (14): 4403-7. doi: 10.1021/jo00014a015.
  17. Ciminiello P, Dell’Aversano C, Fattorusso E, et al. Oxazinin-1, -2 and -3 − A Novel Toxic Compound and Its Analogues from the Digestive Glands ofMytilus galloprovincialis. European J Org Chem. 2001; 2001 (1): 49-53. doi: 10.1002/1099-0690(200101)2001:1<49::aid-ejoc49>;2-7.
  18. Haydar S, Ghiron C, Bettinetti L, et al. SAR and biological evaluation of SEN12333/WAY-317538: Novel alpha 7 nicotinic acetylcholine receptor agonist. Bioorg Med Chem. 2009; 17 (14): 5247-58. doi: 10.1016/j.bmc.2009.05.040.
  19. Eikelenboom P, van Gool W. Neuroinflammatory perspectives on the two faces of Alzheimer’s disease. J Neural Transm. 2004; 111 (3): 281-294. doi: 10.1007/s00702-003-0055-1.
  20. Ferraro L. The Cannabinoid Receptor Agonist WIN 55,212-2 Regulates Glutamate Transmission in Rat Cerebral Cortex: an In Vivo and In Vitro Study. Cerebral Cortex. 2001; 11 (8): 728-33. doi: 10.1093/cercor/11.8.728.
  21. Black K, Koller J, Campbell M, Gusnard D, Bandak S. Quantification of Indirect Pathway Inhibition by the Adenosine A2a Antagonist SYN115 in Parkinson Disease. Journal of Neuroscience. 2010; 30 (48): 16284-92. doi: 10.1523/jneurosci.2590-10.2010.
  22. Francardo V, Bez F, Wieloch T, Nissbrandt H, Ruscher K, Cenci M. Pharmacological stimulation of sigma-1 receptors has neurorestorative effects in experimental parkinsonism. Brain. 2014; 137 (7): 1998-2014. doi: 10.1093/brain/awu107.
  23. Bilsland L, Dick J, Pryce G, et al. Increasing cannabinoid levels by pharmacological and genetic manipulation delay disease progression in SOD1 mice. The FASEB Journal. 2006; 20 (7): 1003-5. doi: 10.1096/fj.05-4743fje.
  24. Baker D, Pryce G, Croxford J, et al. Cannabinoids control spasticity and tremor in a multiple sclerosis model. Nature. 2000; 404 (6773): 84-7. doi: 10.1038/35003583.
  25. Hyrskyluoto A, Pulli I, Törnqvist K, Huu Ho T, Korhonen L, Lindholm D. Sigma-1 receptor agonist PRE084 is protective against mutant huntingtin-induced cell degeneration: involvement of calpastatin and the NF-κB pathway. Cell Death Dis. 2013; 4 (5): e646-e646. doi: 10.1038/cddis.2013.170.
  26. Fernández-López D, Faustino J, Derugin N, et al. Reduced infarct size and accumulation of microglia in rats treated with WIN 55,212-2 after neonatal stroke. Neuroscience. 2012; 207: 307-15. doi: 10.1016/j.neuroscience.2012.01.008.
  27. Porrino L, Daunais J, Rogers G, Hampson R, Deadwyler S. Facilitation of Task Performance and Removal of the Effects of Sleep Deprivation by an Ampakine (CX717) in Nonhuman Primates. PLoS Biol. 2005;3(9):e299. doi: 10.1371/journal.pbio.0030299.
  28. Maurice T, Su T, Parish D, Nabeshima T, Privat A. PRE-084, a σ selective PCP derivative, attenuates MK-801-induced impairment of learning in mice. Pharmacology Biochemistry and Behavior. 1994; 49 (4): 859-69. doi: 10.1016/0091-3057(94)90235-6.
  29. Aracava Y, Pereira E, Maelicke A, Albuquerque E. Memantine Blocks α7* Nicotinic Acetylcholine Receptors More Potently Than N-Methyl-D-aspartate Receptors in Rat Hippocampal Neurons. Journal of Pharmacology and Experimental Therapeutics. 2004; 312 (3): 1195-205. doi: 10.1124/jpet.104.077172.
  30. Gaviraghi G, Ghiron C, Bothmann H, Roncarati R, Terstappenn G. Modulators of Alpha7 Nicotinic Acetylcholine Receptors and Therapeutic Uses Thereof. Republic of Korea patent KR20077001304. 2007 Jan 18.
  31. Roncarati R, Scali C, Comery T, et al. Procognitive and Neuroprotective Activity of a Novel α7 Nicotinic Acetylcholine Receptor Agonist for Treatment of Neurodegenerative and Cognitive Disorders. Journal of Pharmacology and Experimental Therapeutics. 2009; 329 (2): 459-68. doi: 10.1124/jpet.108.150094.
  32. Wang H, Yu M, Ochani M, et al. Nicotinic acetylcholine receptor α7 subunit is an essential regulator of inflammation. Nature. 2002; 421 (6921): 384-8. doi: 10.1038/nature01339.
  33. Suzuki T, Hide I, Matsubara A, et al. Microglial α7 nicotinic acetylcholine receptors drive a phospholipase C/IP3 pathway and modulate the cell activation toward a neuroprotective role. J Neurosci Res. 2006; 83 (8): 1461-70. doi: 10.1002/jnr.20850
  34. D'Ambra T, Estep K, Bell M, et al. Conformationally restrained analogs of pravadoline: nanomolar potent, enantioselective, (aminoalkyl)indole agonists of the cannabinoid receptor. J Med Chem. 1992; 35 (1): 124-35. doi: 10.1021/jm00079a016.
  35. Bell M, D'Ambra T, Kumar V, et al. Antinociceptive (aminoalkyl)indoles. J Med Chem. 1991; 34 (3): 1099-110. doi: 10.1021/jm00107a034.
  36. Frost J, Dart M, Tietje K, et al. Indol-3-yl-tetramethylcyclopropyl Ketones: Effects of Indole Ring Substitution on CB2Cannabinoid Receptor Activity. J Med Chem. 2008; 51 (6): 1904-12. doi: 10.1021/jm7011613.
  37. Jiménez-Jiménez F, Alonso-Navarro H, Ayuso-Peralta L, Jabbour-Wadih T. Estrés oxidativo y enfermedad de Alzheimer. Revista de Neurología. 2006; 42 (07): 419. doi: 10.33588/rn.4207.2005225.
  38. Aguirre-Rueda D, Guerra-Ojeda S, Aldasoro M, et al. WIN 55,212-2, Agonist of Cannabinoid Receptors, Prevents Amyloid β1-42 Effects on Astrocytes in Primary Culture. PLoS ONE. 2015; 10 (4): e0122843. doi: 10.1371/journal.pone.0122843.
  39. Martín-Moreno A, Reigada D, Ramírez B, et al. Cannabidiol and Other Cannabinoids Reduce Microglial Activation In Vitro and In Vivo: Relevance to Alzheimer's Disease. Mol Pharmacol. 2011; 79 (6): 964-73. doi: 10.1124/mol.111.071290.
  40. Parsons C, Stöffler A, Danysz W. Memantine: a NMDA receptor antagonist that improves memory by restoration of homeostasis in the glutamatergic system - too little activation is bad, too much is even worse. Neuropharmacology. 2007; 53 (6): 699-723. doi: 10.1016/j.neuropharm.2007.07.013.
  41. Zhuang S, Bridges D, Grigorenko E, et al. Cannabinoids produce neuroprotection by reducing intracellular calcium release from ryanodine-sensitive stores. Neuropharmacology. 2005; 48 (8): 1086-96. doi: 10.1016/j.neuropharm.2005.01.005.
  42. Koch M, Kreutz S, Böttger C, et al. The cannabinoid WIN 55,212-2-mediated protection of dentate gyrus granule cells is driven by CB1 receptors and modulated by TRPA1 and Cav2.2 channels. Hippocampus. 2011; 21 (5): 554-64. doi: 10.1002/hipo.20772.
  43. Navarro-Dorado J, Villalba N, Prieto D, et al. Vascular Dysfunction in a Transgenic Model of Alzheimer's Disease: Effects of CB1R and CB2R Cannabinoid Agonists. Front Neurosci. 2016; 10. doi: 10.3389/fnins.2016.00422.
  44. Tagliaferro P, Javier Ramos A, Onaivi E, Evrard S, Lujilde J, Brusco A. Neuronal cytoskeleton and synaptic densities are altered after a chronic treatment with the cannabinoid receptor agonist WIN 55,212-2. Brain Res. 2006; 1085 (1): 163-76. doi: 10.1016/j.brainres.2005.12.089.
  45. Mouro F, Ribeiro J, Sebastião A, Dawson N. Chronic, intermittent treatment with a cannabinoid receptor agonist impairs recognition memory and brain network functional connectivity. J Neurochem. 2018; 147 (1): 71-83. doi: 10.1111/jnc.14549.
  46. Candelaria-Cook F, Hamilton D. Chronic cannabinoid agonist (WIN 55,212-2) exposure alters hippocampal dentate gyrus spine density in adult rats. Brain Res. 2014; 1542: 104-10. doi: 10.1016/j.brainres.2013.10.039.
  47. More S, Choi D. Promising cannabinoid-based therapies for Parkinson’s disease: motor symptoms to neuroprotection. Mol Neurodegener. 2015; 10 (1). doi: 10.1186/s13024-015-0012-0.
  48. Anderson L, Anderson J, Chase T, Walters J. The cannabinoid agonists WIN 55,212-2 and CP 55,940 attenuate rotational behavior induced by a dopamine D1 but not a D2 agonist in rats with unilateral lesions of the nigrostriatal pathway. Brain Res. 1995; 691 (1-2): 106-14. doi: 10.1016/0006-8993(95)00645-7.
  49. Kluger B, Triolo P, Jones W, Jankovic J. The therapeutic potential of cannabinoids for movement disorders. Movement Disorders. 2015; 30 (3): 313-27. doi: 10.1002/mds.26142.
  50. Fanarioti E, Mavrikaki M, Panagis G, Mitsacos A, Nomikos G, Giompres P. Behavioral and Neurochemical Changes in Mesostriatal Dopaminergic Regions of the Rat after Chronic Administration of the Cannabinoid Receptor Agonist WIN55,212-2. International Journal of Neuropsychopharmacology. 2015; 18 (6). doi: 10.1093/ijnp/pyu097.
  51. Jeon P, Yang S, Jeong H, Kim H. Cannabinoid receptor agonist protects cultured dopaminergic neurons from the death by the proteasomal dysfunction. Anat Cell Biol. 2011; 44 (2): 135. doi: 10.5115/acb.2011.44.2.135.
  52. Richter A, Löscher W. (+)-WIN 55,212-2, a novel cannabinoid receptor agonist, exerts antidystonic effects in mutant dystonic hamsters. Eur J Pharmacol. 1994; 264 (3): 371-7. doi: 10.1016/0014-2999(94)00490-0.
  53. Miller A, Walker J. Effects of a cannabinoid on spontaneous and evoked neuronal activity in the substantia nigra pars reticulata. Eur J Pharmacol. 1995; 279 (2-3): 179-85. doi: 10.1016/0014-2999(95)00151-a.
  54. Price D, Martínez A, Seillier A, et al. WIN55,212-2, a cannabinoid receptor agonist, protects against nigrostriatal cell loss in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. European Journal of Neuroscience. 2009; 29 (11): 2177-86. doi: 10.1111/j.1460-9568.2009.06764.x.
  55. Pintor A, Tebano M, Martire A, et al. The cannabinoid receptor agonist WIN 55,212-2 attenuates the effects induced by quinolinic acid in the rat striatum. Neuropharmacology. 2006; 51 (5): 1004-12. doi: 10.1016/j.neuropharm.2006.06.013.
  56. Пчелина, С. Н. Альфа-синуклеин как биомаркер болезни Паркинсона / С.Н. Пчелина // Анналы клинической и экспериментальной неврологии. – 2011. – Т. 5. – № 4. – С. 46-51.
  57. Zhang L, Chang M, Li H, et al. Proteomic changes of PC12 cells treated with proteasomal inhibitor PSI. Brain Res. 2007; 1153: 196-203. doi: 10.1016/j.brainres.2007.03.073.
  58. Fox S, Kellett M, Moore A, Crossman A, Brotchie J. Randomised, double-blind, placebo-controlled trial to assess the potential of cannabinoid receptor stimulation in the treatment of dystonia. Movement Disorders. 2001; 17 (1): 145-9. doi: 10.1002/mds.1280.
  59. García-Arencibia M, González S, de Lago E, Ramos J, Mechoulam R, Fernández-Ruiz J. Evaluation of the neuroprotective effect of cannabinoids in a rat model of Parkinson's disease: Importance of antioxidant and cannabinoid receptor-independent properties. Brain Res. 2007; 1134: 162-70. doi: 10.1016/j.brainres.2006.11.063.
  60. Martínez A, Macheda T, Morgese M, Trabace L, Giuffrida A. The cannabinoid agonist WIN55212-2 decreases l-DOPA-induced PKA activation and dyskinetic behavior in 6-OHDA-treated rats. Neurosci Res. 2012; 72 (3): 236-42. doi: 10.1016/j.neures.2011.12.006.
  61. Morgese M, Cassano T, Cuomo V, Giuffrida A. Anti-dyskinetic effects of cannabinoids in a rat model of Parkinson's disease: Role of CB1 and TRPV1 receptors. Exp Neurol. 2007; 208 (1): 110-9. doi: 10.1016/j.expneurol.2007.07.021.
  62. Segovia G, Mora F, Crossman A, Brotchie J. Effects of CB1 cannabinoid receptor modulating compounds on the hyperkinesia induced by high-dose levodopa in the reserpine-treated rat model of Parkinson's disease. Movement Disorders. 2003; 18 (2): 138-49. doi: 10.1002/mds.10312.
  63. Carroll C, Zeissler M, Hanemann C, Zajicek J. Δ9-tetrahydrocannabinol (Δ9-THC) exerts a direct neuroprotective effect in a human cell culture model of Parkinson's disease. Neuropathol Appl Neurobiol. 2012; 38 (6): 535-47. doi: 10.1111/j.1365-2990.2011.01248.x.
  64. Maneuf Y, Crossman A, Brotchie J. The Cannabinoid Receptor Agonist WIN 55,212-2 Reduces D2, but Not D1, Dopamine Receptor-Mediated Alleviation of Akinesia in the Reserpine-Treated Rat Model of Parkinson's Disease. Exp Neurol. 1997; 148 (1): 265-70. doi: 10.1006/exnr.1997.6645.
  65. del Bello F, Giannella M, Giorgioni G, Piergentili A, Quaglia W. Receptor Ligands as Helping Hands to L-DOPA in the Treatment of Parkinson’s Disease. Biomolecules. 2019; 9 (4): 142. doi: 10.3390/biom9040142.
  66. Kvernmo T, Härtter S, Burger E. A review of the receptor-binding and pharmacokinetic properties of dopamine agonists. Clin Ther. 2006; 28 (8): 1065-78. doi: 10.1016/j.clinthera.2006.08.004.
  67. Sebastianutto I, Maslava N, Hopkins C, Cenci M. Validation of an improved scale for rating l-DOPA-induced dyskinesia in the mouse and effects of specific dopamine receptor antagonists. Neurobiol Dis. 2016; 96: 156-70. doi: 10.1016/j.nbd.2016.09.001.
  68. Charvin D, Conquet F, Manteau B, Pomel V. Novel Chromone Oxime Derivative and Its Use as Allosteric Modulator of Metabotropic Glutamate Receptors. Australia; AU2015308438, 2017.
  69. Charvin D, Pomel V, Ortiz M, et al. Discovery, Structure–Activity Relationship, and Antiparkinsonian Effect of a Potent and Brain-Penetrant Chemical Series of Positive Allosteric Modulators of Metabotropic Glutamate Receptor 4. J Med Chem. 2017; 60 (20): 8515-37. doi: 10.1021/acs.jmedchem.7b00991.
  70. Charvin D, Di Paolo T, Bezard E, et al. An mGlu4-Positive Allosteric Modulator Alleviates Parkinsonism in Primates. Movement Disorders. 2018; 33 (10): 1619-31. doi: 10.1002/mds.27462.
  71. What the Body Does to Foliglurax in Healthy Volunteers - Full Text View - Published 2020. Accessed February 9, 2020.
  72. Binding of Foliglurax to Regions in the Brain in Healthy Participants and in Patients With Parkinson's Disease (PD). Available from:
  73. Study to Evaluate the Efficacy, Safety and Tolerability of PXT002331 (Foliglurax) in Reducing Motor Complications of Levodopa Therapy in Parkinson Disease's Patients. Available from:
  74. Ferre S, Quiroz C, Woods A, et al. An Update on Adenosine A2A-Dopamine D2 Receptor Interactions: Implications for the Function of G Protein-Coupled Receptors. Curr Pharm Des. 2008; 14 (15): 1468-74. doi: 10.2174/138161208784480108.
  75. Michel A, Downey P, Nicolas J, Scheller D. Unprecedented Therapeutic Potential with a Combination of A2A/NR2B Receptor Antagonists as Observed in the 6-OHDA Lesioned Rat Model of Parkinson's Disease. PLoS ONE. 2014; 9 (12): e114086. doi: 10.1371/journal.pone.0114086.
  76. Michel A, Downey P, Van Damme X, De Wolf C, Schwarting R, Scheller D. Behavioural Assessment of the A2a/NR2B Combination in the Unilateral 6-OHDA-Lesioned Rat Model: A New Method to Examine the Therapeutic Potential of Non-Dopaminergic Drugs. PLoS ONE. 2015; 10 (8): e0135949. doi: 10.1371/journal.pone.0135949.
  77. Michel A, Nicolas J, Rose S, et al. Antiparkinsonian effects of the "Radiprodil and Tozadenant" combination in MPTP-treated marmosets. PLoS ONE. 2017; 12 (8): e0182887. doi: 10.1371/journal.pone.0182887.
  78. Search of: tozadenant – List Results Available from:
  79. Black K, Koller J, Bandak S. A Randomized, Double-Blind, Placebo-Controlled Cross-Over Trial of the Adenosine 2a Antagonist SYN115 in Parkinson Disease. Neurology. 2010; 74 (9): A317.
  80. Hauser R, Olanow C, Kieburtz K, et al. Tozadenant (SYN115) in patients with Parkinson's disease who have motor fluctuations on levodopa: a phase 2b, double-blind, randomised trial. The Lancet Neurology. 2014; 13 (8): 767-76. doi: 10.1016/s1474-4422(14)70148-6.
  81. Pourcher E, Huot P. Adenosine 2A Receptor Antagonists for the Treatment of Motor Symptoms in Parkinson's Disease. Mov Disord Clin Pract. 2015; 2 (4): 331-40. doi: 10.1002/mdc3.12187.
  82. Maurice T. Beneficial effect of the σ1 receptor agonist PRE-084 against the spatial learning deficits in aged rats. Eur J Pharmacol. 2001; 431 (2): 223-7. doi: 10.1016/s0014-2999(01)01436-4.
  83. Skuza G, Rogóż Z. Antidepressant-like effect of PRE-084, a selective σ1 receptor agonist, in Albino Swiss and C57BL/6J mice. Pharmacological Reports. 2009; 61 (6): 1179-1183. doi: 10.1016/s1734-1140(09)70181-1.
  84. Brown C, Fezoui M, Selig W, Schwartz C, Ellis J. Antitussive activity of sigma-1 receptor agonists in the guinea-pig. Br J Pharmacol. 2004; 141 (2): 233-40. doi: 10.1038/sj.bjp.0705605.
  85. Gao Q, Yang B, Chen J, Shi S, Yang H, Liu X. Sigma-1 Receptor Stimulation with PRE-084 Ameliorates Myocardial Ischemia-Reperfusion Injury in Rats. Chin Med J. 2018; 131 (5): 539-43. doi: 10.4103/0366-6999.226076.
  86. Большакова, А.В. Рецептор сигма-1 как потенциальная фармакологическая мишень при лечении нейропатологии / А.В. Большакова [и др.] // Научно-технические ведомости Санкт-Петербургского государственного политехнического университета. Физико-математические науки. – 2016. – № 1 (237). – С. 48-65.
  87. Albayrak S, Zhao Q, Siesjö B, Smith M. Effect of transient focal ischemia on blood-brain barrier permeability in the rat: correlation to cell injury. Acta Neuropathol. 1997; 94 (2): 158-63. doi: 10.1007/s004010050688.
  88. Chi O, Barsoum S, Grayson J, Hunter C, Liu X, Weiss H. Effects of Cannabinoid Receptor Agonist WIN 55,212-2 on Blood-Brain Barrier Disruption in Focal Cerebral Ischemia in Rats. Pharmacology. 2012; 89 (5-6): 333-8. doi: 10.1159/000338755.
  89. Li Q, Yan H, Wilson W, Swartzwelder H. Modulation of NMDA and AMPA-mediated synaptic transmission by CB1 receptors in frontal cortical pyramidal cells. Brain Res. 2010; 1342: 127-37. doi: 10.1016/j.brainres.2010.04.029.
  90. Martínez-Orgado J. Neuroprotection by the cannabinoid agonist WIN-55212 in an in vivo newborn rat model of acute severe asphyxia. Molecular Brain Research. 2003; 114 (2): 132-9. doi: 10.1016/s0169-328x(03)00163-3.
  91. Alonso-Alconada D, Álvarez A, Álvarez F, Martínez-Orgado J, Hilario E. The Cannabinoid WIN 55212-2 Mitigates Apoptosis and Mitochondrial Dysfunction After Hypoxia Ischemia. Neurochem Res. 2011; 37 (1): 161-170. doi: 10.1007/s11064-011-0594-z.
  92. Fernández-López D, Pazos M, Tolón R, et al. The Cannabinoid Agonist Win55212 Reduces Brain Damage in an In Vivo Model of Hypoxic-Ischemic Encephalopathy in Newborn Rats. Pediatr Res. 2007; 62 (3): 255-60. doi: 10.1203/pdr.0b013e318123fbb8.
  93. Vannucci R, Towfighi J, Vannucci S. Hypoxic Preconditioning and Hypoxic-Ischemic Brain Damage in the Immature Rat: Pathologic and Metabolic Correlates. J Neurochem. 2002; 71 (3): 1215-20. doi: 10.1046/j.1471-4159.1998.71031215.x.
  94. Fernández-López D, Pradillo J, García-Yébenes I, Martínez-Orgado J, Moro M, Lizasoain I. The Cannabinoid WIN55212-2 Promotes Neural Repair After Neonatal Hypoxia–Ischemia. Stroke. 2010; 41 (12): 2956-64. doi: 10.1161/strokeaha.110.599357.
  95. Sun J, Fang Y, Ren H, et al. WIN55,212-2 protects oligodendrocyte precursor cells in stroke penumbra following permanent focal cerebral ischemia in rats. Acta Pharmacol Sin. 2012; 34 (1): 119-28. doi: 10.1038/aps.2012.141.
  96. Hu B, Wang Q, Chen Y, et al. Neuroprotective effect of WIN 55,212-2 pretreatment against focal cerebral ischemia through activation of extracellular signal-regulated kinases in rats. Eur J Pharmacol. 2010; 645 (1-3): 102-7. doi: 10.1016/j.ejphar.2010.07.024.
  97. Nagayama T, Sinor A, Simon R, et al. Cannabinoids and Neuroprotection in Global and Focal Cerebral Ischemia and in Neuronal Cultures. The Journal of Neuroscience. 1999; 19 (8): 2987-95. doi: 10.1523/jneurosci.19-08-02987.1999.
  98. Bonfils P, Reith J, Hasseldam H, Johansen F. Estimation of the hypothermic component in neuroprotection provided by cannabinoids following cerebral ischemia. Neurochem Int. 2006; 49 (5): 508-18. doi: 10.1016/j.neuint.2006.03.015.
  99. Mazzon E, Giacoppo S. Can cannabinoids be a potential therapeutic tool in amyotrophic lateral sclerosis? Neural Regen Res. 2016; 11 (12): 1896. doi: 10.4103/1673-5374.197125.
  100. Croxford J. Therapeutic Potential of Cannabinoids in CNS Disease. CNS Drugs. 2003; 17 (3): 179-202. doi: 10.2165/00023210-200317030-00004.
  101. Velayudhan L, Diepen E, Marudkar M, et al. Therapeutic Potential of Cannabinoids in Neurodegenerative Disorders: A Selective Review. Curr Pharm Des. 2014; 20 (13): 2218-30. doi: 10.2174/13816128113199990434.
  102. van den Bos M, Geevasinga N, Higashihara M, Menon P, Vucic S. Pathophysiology and Diagnosis of ALS: Insights from Advances in Neurophysiological Techniques. Int J Mol Sci. 2019; 20 (11): 2818. doi: 10.3390/ijms20112818.
  103. Banci L, Bertini I, Boca M, et al. SOD1 and Amyotrophic Lateral Sclerosis: Mutations and Oligomerization. PLoS ONE. 2008; 3 (2): e1677. doi: 10.1371/journal.pone.0001677.
  104. Mancuso R, Oliván S, Rando A, Casas C, Osta R, Navarro X. Sigma-1R Agonist Improves Motor Function and Motoneuron Survival in ALS Mice. Neurotherapeutics. 2012; 9 (4): 814-26. doi: 10.1007/s13311-012-0140-y.
  105. Peviani M, Salvaneschi E, Bontempi L, et al. Neuroprotective effects of the Sigma-1 receptor (S1R) agonist PRE-084, in a mouse model of motor neuron disease not linked to SOD1 mutation. Neurobiol Dis. 2014; 62: 218-32. doi: 10.1016/j.nbd.2013.10.010.
  106. Житнухин, Ю.Л. Особенности динамики циркулирующих и экспрессируемых цитокинов при индукции экспериментального аллергического энцефаломиелита / Ю.Л. Житнухин [и др.] // Медицинская иммунология. – 2008. – Т. 10. – № 2-3. – С. 193-202.
  107. Gafni J, Ellerby L. Calpain Activation in Huntington's Disease. The Journal of Neuroscience. 2002; 22 (12): 4842-9. doi: 10.1523/jneurosci.22-12-04842.2002.
  108. Traynelis S, Wollmuth L, McBain C, et al. Glutamate Receptor Ion Channels: Structure, Regulation, and Function. Pharmacol Rev. 2010; 62 (3): 405-96. doi: 10.1124/pr.109.002451.
  109. Hampson R, España R, Rogers G, Porrino L, Deadwyler S. Mechanisms underlying cognitive enhancement and reversal of cognitive deficits in nonhuman primates by the ampakine CX717. Psychopharmacology (Berl). 2008; 202 (1-3): 355-69. doi: 10.1007/s00213-008-1360-z.
  110. Wesensten N, Reichardt R, Balkin T. Ampakine (CX717) Effects on Performance and Alertness During Simulated Night Shift Work. Aviat Space Environ Med. 2007; 78 (10): 937-43. doi: 10.3357/asem.2055.2007.
  111. Boyle J, Stanley N, James L, et al. Acute sleep deprivation: the effects of the AMPAKINE compound CX717 on human cognitive performance, alertness and recovery sleep. Journal of Psychopharmacology. 2011; 26 (8): 1047-57. doi: 10.1177/0269881111405353.
  112. CX717 in the Treatment of Adult ADHD. Available from:
  113. Faghih R, Dwight W, Pan J, et al. Synthesis and SAR of aminoalkoxy-biaryl-4-carboxamides: novel and selective histamine H3 receptor antagonists. Bioorg Med Chem Lett. 2003; 13 (7): 1325-8. doi: 10.1016/s0960-894x(03)00118-5.
  114. Witte D, Yao B, Miller T, et al. Detection of multiple H3receptor affinity states utilizing [3H]A-349821, a novel, selective, non-imidazole histamine H3receptor inverse agonist radioligand. Br J Pharmacol. 2006; 148 (5): 657-70. doi: 10.1038/sj.bjp.0706752.
  115. Esbenshade T, Fox G, Krueger K, et al. Pharmacological and behavioral properties of A-349821, a selective and potent human histamine H3 receptor antagonist. Biochem Pharmacol. 2004; 68 (5): 933-45. doi: 10.1016/j.bcp.2004.05.048.
  116. Крайнова Ю.С. Исследование суточной двигательной активности и обмена белка NAP-22, мажорного субстрата протеинкиназы с, на экспериментальной модели синдрома дефицита внимания с гиперактивностью у детей / Ю.C. Крайнова, Г.Т. Иванова // Медицина: теория и практика. – 2019. – Т. 4. – № S. – С. 280-281.
  117. Barkley R, McMurray M, Edelbrock C, Robbins K. Side Effects of Metlyiphenidate in Children with Attention Deficit Hyperactivity Disorder: A Systemic, Placebo-Controlled Evaluation. Pediatrics. 1990;86(2):184-192.
  118. Matsuno K, Matsunaga K, Senda T, Mita S. Increase in extracellular acetylcholine level by sigma ligands in rat frontal cortex. J Pharmacol Exp Ther. 1993; 265 (2): 851-9.
  119. Maurice T, Su T, Parish D, Privat A. Prevention of nimodipine-induced impairment of learning by the selective σ ligand PRE-084. J Neural Transm. 1995; 102 (1): 1-18. doi: 10.1007/bf01276561.
  120. Воробьёва, О.В. Нейрофармакологический потенциал сигма1-рецепторов – новые терапевтические возможности / О.В. Воробьёва // Журнал неврологии и психиатрии им. С.С. Корсакова. Спецвыпуски. – 2012. – Т. 112. – № 10. – С. 51-56.
  121. Peeters M, Romieu P, Maurice T, Su T, Maloteaux J, Hermans E. Involvement of the sigma1 receptor in the modulation of dopaminergic transmission by amantadine. European Journal of Neuroscience. 2004; 19 (8): 2212-20. doi: 10.1111/j.0953-816x.2004.03297.x.
  122. Terada K, Migita K, Matsushima Y, et al. Cholinesterase inhibitor rivastigmine enhances nerve growth factor-induced neurite outgrowth in PC12 cells via sigma-1 and sigma-2 receptors. PLoS ONE. 2018; 13 (12): e0209250. doi: 10.1371/journal.pone.0209250.
  123. Ramakrishnan N, Visser A, Schepers M, et al. Dose-dependent sigma-1 receptor occupancy by donepezil in rat brain can be assessed with 11C-SA4503 and microPET. Psychopharmacology (Berl). 2014; 231 (20): 3997-4006. doi: 10.1007/s00213-014-3533-2.
  124. Chernov N, Shutov R, Barygin O, et al. Synthesis of Chromone-Containing Allylmorpholines through a Morita-Baylis-Hillman-Type Reaction. European J Org Chem. 2018; 2018 (45): 6304-13. doi: 10.1002/ejoc.201801159.
  125. Wu Q, Tymianski M. Targeting NMDA receptors in stroke: new hope in neuroprotection. Mol Brain. 2018;11(1). doi: 10.1186/s13041-018-0357-8
  126. Новиков, В.Е. Возможности фармакологической нейропротекции при черепно-мозговой травме / В.Е. Новиков // Психофармакология и биологическая наркология. – 2007. – Т. 7. – № 2. – С. 1500-1509.
  127. Kamal M, Shakil S, Nawaz M, et al. Inhibition of Butyrylcholinesterase with Fluorobenzylcymserine, An Experimental Alzheimer's Drug Candidate: Validation of Enzoinformatics Results by Classical and Innovative Enzyme Kinetic Analyses. CNS & Neurological Disorders – Drug Targets. 2017; 16 (7). doi: 10.2174/1871527316666170207160606.
  128. Liere V, Sandhu G, DeMorrow S. Recent advances in hepatic encephalopathy. F1000Res. 2017; 6: 1637. doi: 10.12688/f1000research.11938.1
  129. Akhtar M, Ali S, Rashidi H, van der Kooy F, Verpoorte R, Richardson M. Developmental Effects of Cannabinoids on Zebrafish Larvae. Zebrafish. 2013; 10 (3): 283-93. doi: 10.1089/zeb.2012.0785.
  130. Shabani M, Hosseinmardi N, Haghani M, Shaibani V, Janahmadi M. Maternal exposure to the CB1 cannabinoid agonist WIN 55212–2 produces robust changes in motor function and intrinsic electrophysiological properties of cerebellar Purkinje neurons in rat offspring. Neuroscience. 2011; 172: 139-52. doi: 10.1016/j.neuroscience.2010.10.031.
  131. Antonelli T, Tomasini M, Tattoli M, et al. Prenatal Exposure to the CB1 Receptor Agonist WIN 55,212-2 Causes Learning Disruption Associated with Impaired Cortical NMDA Receptor Function and Emotional Reactivity Changes in Rat Offspring. Cerebral Cortex. 2005; 15 (12): 2013-20. doi: 10.1093/cercor/bhi076.
  132. Acorda Provides Update on Tozadenant Development Program. Available from:



Abstract - 205

PDF (Russian) - 48


Article Metrics

Metrics Loading ...




  • There are currently no refbacks.

Copyright (c) 2020 Pharmacy Formulas

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies