Chaga and its bioactive complexes: history and perspectives

Cover Page


Cite item

Full Text

Abstract

A review of research field related to well-known Russian medicinal fungal material, Chaga, is caused by the need to summarize information about the effects of its individual compounds on molecular targets of cancer cells. Chaga raw material (sterile bodies of the fungus Inonotus obliquus) is a complex fungus tissue which includes wood degradation products, and products of assimilation wood tissue components by the fungus. Chaga raw material is rich in polyphenols, triterpenoids of fungal and plant origin, and polysaccharides. In the early 1960s, Chaga raw material was included in the USSR State Pharmacopoeia and was recommended for use as a non-specific drug for the treatment of gastritis, stomach ulcers, polyposis, precancerous diseases and some forms of malignant tumors in cases where radiation therapy and surgical intervention are not destinated. However, large pharmacological potential of Chaga at the current moment seems to be still not realized. First of all, the multidirectional effect of various Chaga bioactive complexes on the molecular targets of the cancer cell is obvious: inhibiting cyclin-dependent kinases and proapoptotic (triterpenoids), immuno-mediated cytotoxic and pro-inflammatory (polysaccharides), genoprotective and antiapoptotic (polyphenols). It is obviously that complex action of these substances on cancer tissue has less pronounced effect than the targeted one. Consequently, the clinical trials of purified bioactive complexes of chaga, primarily of proapoptotic (inotodiol, betulinic acid) and anti-inflammatory (3,4-dihydroxybenzalacetone) action, are on the agenda. Based on the data reviewed, it is suggested that careful study of Chaga raw material in the future may lead to elaboration of new and more effective pharmaceuticals

About the authors

Ivan V. Zmitrovich

Komarov Botanical Institute RAS, St. Petersburg, Russia

Author for correspondence.
Email: iv_zmitrovich@mail.ru
ORCID iD: 0000-0002-3927-2527

Dr. Biol. Sci., Leading Researcher, Laboratory of Systematics and Geography of Mushrooms

Russian Federation, 197376, г. Санкт-Петербург, ул. Профессора Попова, д. 2

Nina P. Denisova

Komarov Botanical Institute RAS, St. Petersburg, Russia

Email: deni1963@bk.ru

Dr. Biol. Sciences, until 1999 - Leading Researcher at the Laboratory of Mushroom

Russian Federation, 197376, г. Санкт-Петербург, ул. Профессора Попова, д. 2

Mikhail Eduardovich Balandaykin

Ульяновский государственный университет, Ульяновск, Россия

Email: 131119892007@rambler.ru

Ph.D. biol. Sci., Leading Researcher

432970, Российская Федерация, г. Ульяновск, улица Льва Толстого, дом 42

Nina V. Belova

Komarov Botanical Institute RAS, St. Petersburg, Russia

Email: cultures@mail.ru

Candidate Chem. Sci., Leading Researcher, Laboratory of Mushroom Biochemistry

Russian Federation, 197376, г. Санкт-Петербург, ул. Профессора Попова, д. 2

Margarita A. Bondartseva

Komarov Botanical Institute RAS, St. Petersburg, Russia

Email: bondartseva@mail.ru

Prof., Dr. Biol. Sci., Chief Scientific Researcher, Laboratory of Mushroom Biochemistry

Russian Federation, 197376, г. Санкт-Петербург, ул. Профессора Попова, д. 2

Lidiya G. Perevedentseva

Perm National Research University, Perm, Russia

Email: perevperm@mail.ru

Prof., Dr. Biol. Sci., Professor, Department of Botany

Russian Federation, 614990, Пермский край, г. Пермь, ул. Букирева, 15

Vladimir Perelygin

Saint-Petersburg State and Chemical Pharmaceutical University, Saint-Petersburg, Russia

Email: vladimir.pereligin@pharminnotech.com
ORCID iD: 0000-0002-0999-5644
SPIN-code: 3128-7451
ResearcherId: AAV-6556-2020

Doctor  of  Medicine,  Professor,  Head  of  the  Industrial Ecology Department

Russian Federation, 197376, Россия,Санкт-Петербург, ул. Профессора Попова, д. 14,литер.А; 191028 Россия, Санкт-Петербург, ул. Моховая, д.37, Лит Б, помещение №14

Gennady Pavlovich Yakovlev

Saint-Petersburg State and Chemical Pharmaceutical University, Saint-Petersburg, Russia

Email: yakovlevgp@yandex.ru

проф., д-р биол. наук, профессор кафедры фармакогнозии 

Russian Federation

References

  1. Государственная фармакопея СССР. 9-е издание. – М.: Медгиз, 1961. – 911 с.
  2. Бондарцев А.С. Трутовые грибы Европейской части СССР и Кавказа. – М.; Л.: Изд-во АН СССР, 1953. – 1006 с.
  3. Glycobiology. 2000; 10: 339–46. doi: 10.1093/glycob/10.4.339.
  4. Maret S. Fungi in Khanty folk medicine. Journal of Ethnopharmacology. 1991; 31: 175–79.
  5. Stamets P. Mycelium running. − Toronto: ten speed press, 2005. – 339 p.
  6. Булатов П.К., Березина М.П., Якимов П.А. Чага, ее свойства и применение при раке IV стадии // П.К. Булатов и др. (ред.). Чага и ее лечебное применение при раке IV стадии. – Л.: Медгиз, 1959. – С. 7–22.
  7. Низковская О.П. К биологии возбудителя чаги на березе // П.К. Булатов и др. (ред.). Чага и ее лечебное применение при раке IV стадии. – Л.: Медгиз, 1959. – С. 32–35.
  8. Слепян Э.И. Особенности патологических изменений в строении ствола Betula verrucosa Ehrh. при развитии на нем гриба Inonotus obliquus (Pers.) Pil. // П.А. Якимов и др. (ред.). Комплексное изучение физиологически активных веществ низших растений. – М.; Л.: Изд-во АН СССР, 1961. – С. 18–32.
  9. Мильберг Г.К. Организация производства лечебного препарата из чаги // П.А. Якимов и др. (ред.). Комплексное изучение физиологически активных веществ низших растений. – М.; Л.: Изд-во АН СССР, 1961. – С. 268–276.
  10. Кузнецова Г.А. Химия пигментов чаги // П.К. Булатов и др. (ред.). Чага и ее лечебное применение при раке IV стадии. – Л.: Медгиз, 1959. – С. 85–89.
  11. Платонова Е.Г. Характеристика воднорастворимых углеводных комплексов чаги и некоторых других трутовиков // П.А. Якимов и др. (ред.). Комплексное изучение физиологически активных веществ низших растений. – М.; Л.: Изд-во АН СССР, 1961. – С. 63–69.
  12. Шиврина А.Н., Ловягина Е.В., Платонова Е.Г. О химическом составе чаги // П.К. Булатов и др. (ред.). Чага и ее лечебное применение при раке IV стадии. – Л.: Медгиз, 1959. – С. 55–61.
  13. Кроткина Н.А. Влияние чаги на перевиваемые опухоли у крыс // П.К. Булатов и др. (ред.). Чага и ее лечебное применение при раке IV стадии. – Л.: Медгиз, 1959. – С. 114–118.
  14. Скворцов С.С. Влияние чаги на простейших // П.К. Булатов и др. (ред.). Чага и ее лечебное применение при раке IV стадии. – Л.: Медгиз, 1959. – С. 141–142.
  15. Березина М.П. Физиологические исследования больных раком IV стадии во время лечения чагой // П.К. Булатов и др. (ред.). Чага и ее лечебное применение при раке IV стадии. – Л.: Медгиз, 1959. – С. 143–159.
  16. Булатов П.К. Клинические наблюдения больных раком IV стадии при лечении чагой // П.К. Булатов и др. (ред.). Чага и ее лечебное применение при раке IV стадии. – Л.: Медгиз, 1959. – С. 261–270.
  17. Яцкевич В.В. Показатели периферической крови у больных раком IV стадии при лечении чагой // П.К. Булатов и др. (ред.). Чага и ее лечебное применение при раке IV стадии. – Л.: Медгиз, 1959. – С. 313–317.
  18. Солженицын А.И. Раковый корпус: повесть в 2 ч. – London: The Bodley Head, 1968. – 425 р.
  19. Денисова Н.П. Лечебные свойства грибов. Этномикологический очерк. – СПб: Изд-во СПбГМУ, 1998. – 59 с.
  20. Переведенцева Л.Г. Лекарственные грибы Пермского края. – Пермь: Проектное бюро “Рейкьявик”, 2011. – 146 с.
  21. Белова Н.В. О необходимости изучения биологии и биохимической активности Inonotus obliquus // Микология и фитопатология. 2014. – Т. 48, № 6. – С. 401–403.
  22. Змитрович И. В. Метаболиты базидиальных грибов, эффективные в терапии рака и их молекулярные мишени: Обзор // Вестник Пермского университета. Биология. 2015. –Вып. 3. – С. 264–286.
  23. Ячевский А.А. Определитель грибов. Т. 1. Совершенные грибы. – Петроград, 1913.
  24. Ванин С.И. Лесная фитопатология. – Л.: Лесбумиздат, 1934. – 422 с.
  25. Campbell AH, Davidson RW. A Poria obliqua as the fruiting stage of the fungus causing the sterile conks on birch. Mycologia. 1938; 30: 553–60.
  26. Balandaykin ME, Zmitrovich IV. Review on Chaga medicinal mushroom, Inonotus obliquus (higher basidiomycetes): realm of medicinal applications and approaches on estimating its resource potential. International Journal of Medicinal Mushrooms. 2015; 17: 95–104. doi: 10.1615/IntJMedMushrooms.v17.i2.10.
  27. Kahlos K, Lesnau A, Lange W et al. Preliminary tests of antiviral activity of two Inonotus obliquus strains. Fitoterapia. 1996; 6: 344–47.
  28. Babitskaya V, Bisko N, Mitropolskaya NI. Melanin complex from medicinal mushroom Inonotus obliquus (Pers.: Fr.) Pilat (Chaga) (Aphyllophoromycetidae). International Journal of Medicinal Mushrooms. 2002; 4: 139–145.
  29. Ishibashi K, Miura NN, Adachi Y et al. Relationship between solubility of grifolan, a fungal 1,3-beta-D-glucan, and production of tumor necrosis factor by macrophages in vitro. Bioscience, Biotechnology, Biochemistry. 2001; 65: 1993–2000. DOI: doi.org/10.1271/bbb.65.1993.
  30. Mueller A, Raptis J, Rice PJ et al. The influence of glucan polymer structure and solution conformation on binding to (1→3)-beta-D-glucan receptors in a human monocyte-like cell line.
  31. Cleary JA, Kelly GE, Husband AJ. The effect of molecular weight and beta-1,6-linkages on priming of macrophage function in mice by (1,3)-beta-D-glucan. Immunology and Cell Biology. 1999; 77: 395. doi: 10.1046/j.1440-1711.1999.00848.x.
  32. Moradali MF, Mostafavi H, Ghods S et al. Immunomodulating and anticancer agents in the realm of macromycetes fungi (macrofungi). International Immunopharmacology. 2007; 7: 701–24.
  33. Rhee SJ, Cho SY, Kim KM, Cha DS, Park HJ. A comparative study of analytical methods for alkali-soluble β-glucan in medicinal mushroom, Chaga (Inonotus obliquus). LWT–Food Science andTechnology. 2008; 41: 545–49. doi: 10.1016/j.lwt.2007.03.028.
  34. Kim YR. Immunomodulatory activity of the water extract from medicinal mushroom Inonotus obliquus. Mycobiology. 2005;33(3):158–62. doi: 10.1016/j.lfs.2005.02.023.
  35. Kim YO, Han SB, Lee HW et al. Immuno-stimulating effect of the endo-polysaccharide produced by submerged culture of Inonotus obliquus. Life Sci. 2005;77(19):2438–56. DOI:
  36. Song Y, Hui J, Kou W et al. Identification of Inonotus obliquus and analysis of antioxidation and antitumor activities of polysaccharides. Current Microbiology. 2008; 57: 454–62. doi: 10.1007/s00284-008-9233-6.
  37. Won DP, Lee JS, Kwon DS et al. Immunostimulating activity by polysaccharides isolated from fruiting body of Inonotus obliquus. Molecules. Cells. 2011. 31(2): 165–73. doi: 10.1007/s10059-011-0022-x.
  38. Kahlos K, Schantz MV, Hiltunen R. 3 β-hydroxy-lanosta-8, 24-dien-21, a new triterpene from Inonotus obliquus. Acta Pharmaceutica Fennica. 1984; 92. P. 197–98.
  39. Kahlos K, Hiltunen R. Gas chromatographic mass spectrometric study of some sterols and lupines from Inonotus obliquus. Acta Pharmaceutica Fennica. 1987; 96: 85–89.
  40. Kahlos K, Hiltunen R. Gas chromatographic mass spectrometric identification of some lanostanes from Inonotus obliquus. Acta Pharmaceutica Fennica. 1988; 97: 45–90.
  41. Zheng WF, Liu T, Xiang XY, Gu Q. Sterol composition in field-grown and cultured mycelia of Inonotus obliquus. Yao Xue Xue Bao. 2007; 42: 750–56.
  42. Nomura M, Takahashi T, Uesugi A et al. Inotodiol, a lanostane triterpenoid, from Inonotus obliquus inhibits cell proliferation through caspase-3-dependent apoptosis. Anticancer Research. 2008; 28:2691–96.
  43. Jiang JH, Dou Y, Feng YJ, Bondartseva MA et al.. The anti-tumor activity and MDR reversal properties of constituents from Inonotus obliquus. Mikologiya i fitopatologiya. 2007; 41: 455–460.
  44. Zhong XH, Kuang R, Lu SJ et al. Progress of research on Inonotus obliquus. China Journal of Integrative Medicine. 2009; 15: 156–60. doi: 10.1007/s11655-009-0156-2.
  45. Chung MJ, Chung CK, Jeong Y et al. Anticancer activity of subfractions containing pure compounds of Chaga mushroom (Inonotus obliquus) extract in human cancer cells and in Balbc/c mice bearing Sarcoma-180 cells. Nutritional Research Pract. 2010; 4:177–82. doi: 10.4162/nrp.2010.4.3.177.
  46. Kumar P, Bhadauria AS, Singh AK. et al. Betulinic acid as apoptosis activator: molecular mechanisms, mathematical modeling and chemical modifications. Life Science. 2018; 209: 24–33. doi: 10.1016/j.lfs.2018.07.056.
  47. Pisha E, Chai H, Lee IS et al. Discovery of betulinic acid as a selective inhibitor of human melanoma that functions by induction of apoptosis. Nature Medicine. 1995; 1: 1046–51.
  48. Krasutsky PA. Birch bark research and development. Natural Product Reports. 2006; 23: 919–42.
  49. Sati S., Sati N, Sati OP. Bioactive constituents and medicinal importance of genus Alnus. Pharmacognosy Review. 2011; 5: 174–83. doi: 10.4103/0973-7847.91115.
  50. Babitskaya VG, Shcherba VV, Ikonnikova NV. Melanin complex of the fungus Inonotus obliquus. Applied Biochemistry and Microbiology. 2000; 36: 439–44.
  51. Eiseman YC, Casadevall A. Synthesis and assembly of fungal melanin. Applied Microbiology and Biotechnology. 2011; 93: 931–40. doi: 10.1007/s00253-011-3777-2.
  52. Сысоева М.А. [и др.] Разделение водных извлечений чаги с использованием этилацетата. I. Антиоксидантная активность // Химия растительного сырья. 2007. – № 4. – С. 101‒104.
  53. Сысоева М.А. [и др.] Разделение водных извлечений чаги с использованием этилацетата. II. Парамагнитные свойства хромогенов чаги // Химия растительного сырья. 2007. – № 4. – С. 105‒109.
  54. Сысоева М.А. [и др.] Разделение водных извлечений чаги с использованием этилацетата. III. Состав липидов, отделяемых из водного извлечения чаги этилацетатом // Химия растительного сырья. 2008. – № 1. – С. 111‒114.
  55. Сысоева М.А. [и др.] Разделение водных извлечений чаги с использованием этилацетата. IV. Состав веществ фенольной и терпеновой природы, отделяемых из водного извлечения чаги этилацетатом // Химия растительного сырья. 2009. – № 4. – С. 117‒122.
  56. Sung B, Pandey MK, Nakajima Y et al. Identification of a novel blocker of IKBA kinase activation that enhances apoptosis and inhibits proliferation and invasion by suppressing nuclear factor-KB. Molecular Cancer Therapy. 2008; 7: 191–201. doi: 10.1158/1535-7163.MCT-07-0406.
  57. Takakura K, Takatou S, Tomiyama R et al. Inhibition of nuclear factor-κB p65 phosphorylation by 3,4-dihydroxybenzalacetone and caffeic acid phenethyl ester. Journal of Pharmacological Science. 2018; 137: 248–55. doi: 10.1016/j.jphs.2018.07.003.
  58. Jones PA, Baylin SB. The epigenomics of cancer. Cell. 2007; 128: 683–692. doi: 10.1016/j.cell.2007.01.029.
  59. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011; 144: 646–674. doi: 10.1016/j.cell.2011.02.013.
  60. Blagosklonny MV. Molecular theory of cancer. Cancer Biology and Therapy. 2005; 4: 621–27. doi: 10.4161/cbt.4.6.1818.
  61. Demoulin SA, Somja J, Duray A. Cervical(pre) neoplastic microenvironment promotes the emergence of tolerogenic dendritic cells via RANKL secretion. Oncoimmunology. 2015; 4(6): e1008334.
  62. Testy ND. Regulation of genomic instability in preneoplastic cells. In: J. Toose (ed.). Genetic instability in cancer. N.Y.: Cold Spring Harbor Laboratory Press, 1996, pp. 217–24.
  63. Hunter T. Oncoprotein networks. Cell. 1997; 88: 333–346.
  64. Blagosklonny MV. Cell proliferation and cancer therapy. In: LM Berstein (ed.). Hormones, age and cancer. Saint Petersburg: Nauka, 2005, pp. 68–93.
  65. Zmitrovich IV, Belova NV, Balandaykin ME et al. Cancer without pharmacological illusions and a niche for mycotherapy (Review). International Journal of Medicinal Mushrooms. 2019; 21: 105–119. doi: 10.1615/IntJMedMushrooms.2019030047.
  66. Kang JH, Jang JE, Mishra SK et al. Ergosterol peroxide from Chaga mushroom (Inonotus obliquus) exhibits anti-cancer activity by down-regulation of the β-catenin pathway in colorectal cancer. Journal of Ethnopharmacology. 2015; 173: 303–12. doi: 10.1016/j.jep.2015.07.030.
  67. Youn MJ, Kim JK, Park SY et al. Chaga mushroom (Inonotus obliquus) induces G0/G1 arrest and apoptosis in human hepatoma HepG2 cells. World Journal of Gastroenterology. 2008 14(4): 511–17. doi: 10.3748/wjg.14.511.
  68. Lee KR, Lee JS, Lee S et al. Polysaccharide isolated from the liquid culture broth of Inonotus obliquus suppresses invasion of B16-F10 melanoma cells via AKT/NF-κB signaling pathway. Molecular Medicine Reports. 2016; 14: 4429–35. doi: 10.3892/mmr.2016.5771.
  69. Herberman R (ed.). Natural cells mediated immunity against tumors. – N.Y.: Acad. Press, 1980. – 1100 p.
  70. Kägi D, Ledermann B, Bürki K et al. Molecular mechanisms of lymphocyte-mediated cytotoxity and their role in immunological protection and pathogenesis in vivo. Annual Review Biochemistry. 1996; 14: 207–32. DOI: 0.1146/annurev.immunol.14.1.207.
  71. Froelich CD., Orth K, Turbov J. et al. New paradigm for lymphocyte granule-mediated cytotoxity. Target cells bind and internalize granzime B, but an endosomolytic agent is necessary for cytosolic delivery and subsequent apoptosis. Journal of Biological Chemistry. 1996; 271: 29073–29079.
  72. Недоспасов С. А. Врожденный иммунитет и его значение для биологии и медицины // Вестник РАН. 2013. – Т. 83, № 9. – С. 771–783.
  73. Brown GD, Gordon S. Immune recognition: a new receptor for β-glucans. Nature. 2001; 413:36–37. doi: 10.1038/35092620.
  74. Lee IK, Kim YS, Jang YW et al. New antioxidant polyphenols from the medicinal mushroom Inonotus obliquus. Bioorganic Medicinal Chemistry Letters. 2007; 17: 6678–81. doi: 10.1016/j.bmcl.2007.10.072.
  75. Nakajima Y, Sato Y, Konishi T. Antioxidant small phenolic ingredients in Inonotus obliquus (Persoon) Pilat (Chaga). Chemical Pharmacy Bulletin (Tokyo). 2007. 55: 1222–6. doi: 10.1248/cpb.55.1222.
  76. Hwang BS, Lee IK, Yun BS. Phenolic compounds from the fungus Inonotus obliquus and their antioxidant properties. Journal of Antibiotics. 2016; 69: 108–10.
  77. Burmasova MA, Utebaeva AA, Sysoeva EV et al. Melanins of Inonotus obliquus: bifidogenic and antioxidant properties. Biomolecules. 2019; 9: 248. doi: 10.3390/biom9060248.
  78. Mendelsohn A., Larrick JW. Paradoxal effects of antioxidants on cancer. Rejuvenation Research. 2014; 17: 306–11. doi: 10.1089/rej.2014.1577.
  79. Sayin VI, Ibrahim MX, Larsson E et al. Antioxidants accelerate lung cancer progres-sion in mice. Scientific Translations. Medicine. 2014; 21: 221. doi: 10.1126/scitranslmed.3007653.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Zmitrovich I.V., Denisova N.P., Balandaykin M.E., Belova N.V., Bondartseva M.A., Perevedentseva L.G., Perelygin V., Yakovlev G.P.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 76969 от 11.10.2019. 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies