SUPPORTING DEVICES IN THE TREATMENT OF CHRONIC HEART FAILURE IN ELDERLY AND OLD PATIENTS

  • Authors: Hubulava G.1, Kozlov K.L.2,3, Bogomolov A.N.4, Volkov A.5, Fedorets V.N.6, Senkina E.I.7
  • Affiliations:
    1. First Saint Petersburg state medical University named after academician I. P. Pavlov
    2. «Saint Petersburg Institute of Bioregulation and gerontology»
    3. «Military Medical Academy named after S. M. Kirov» Ministry of Defense of the Russian Federation
    4. Научно-исследовательского центра «Санкт-Петербургский институт биорегуляции и геронтологии»
    5. Military Medical Academy named after S. M. Kirov Ministry of Defense of the Russian Federation
    6. FSBEI HE St. Petersburg GPMU, Ministry of Health of Russia, Saint Petersburg, Russia
    7. Autonomous Scientific Non-Profit Organization for Higher Education, Research Center “St. Petersburg Institute of Bioregulation and Gerontology”
  • Issue: Vol 2, No 3 (2020)
  • Pages: 40-57
  • Section: Biomedical Sciences
  • URL: https://journals.eco-vector.com/PharmForm/article/view/41944
  • DOI: https://doi.org/10.17816/phf41944
  • Cite item

Abstract


Chronic heart failure (CHF) is a widespread disease associated with high rates of disability and mortality, as well as a decrease in the quality of life. Moreover, the vast majority of patients are elderly and senile. Modern surgical methods of treating heart failure are able to increase the duration and quality of life of such patients, however, the need far exceeds the volume of this care, and some highly effective methods common in Western countries are still not used in Russian clinical practice.

Elderly age is a risk factor for the development of senile asthenia (frailty) and concomitant pathology. Large abdominal surgery is often contraindicated for patients with signs of senile asthenia, and the method of choice in patients with severe heart failure is the implantation of devices for long-term mechanical circulatory support (LT-MCS). After implantation of LT-MCS, a regression of signs of senile asthenia may be observed.

The topic of an integrated approach to non-drug treatment of heart failure in elderly and senile patients in Russia has not been studied enough. In particular, the implantation of LT-MCS is not used in Russian clinical practice, while in many Western countries for many years it has been the main and most effective treatment for severe heart failure. Systematization of the available up-to-date information on this topic could help increase the duration and quality of life of patients with severe heart failure.


About the authors

Gennadiy Hubulava

First Saint Petersburg state medical University named after academician I. P. Pavlov

Email: ggkh07@rambler.ru

Russian Federation, 194175, Russia, St. Petersburg, Lebedeva st., 6.

Academician of the Russian Academy of Sciences, doctor of medical Sciences, Professor, head of the Department of faculty surgery with courses of laparoscopic and cardiovascular surgery with the clinic, chief cardiac surgeon of Saint Petersburg and the North-Western district of the Russian Federation, honored doctor of the Russian Federation

Kirill L. Kozlov

«Saint Petersburg Institute of Bioregulation and gerontology»; «Military Medical Academy named after S. M. Kirov» Ministry of Defense of the Russian Federation

Author for correspondence.
Email: kozlov_kl@mail.ru

Russian Federation, 197110, Russia, St. Petersburg, Dinamo ave., 3; 194175, Russia, St. Petersburg, Lebedeva st., 6.

Doctor of Medicine, Professor, 1. Deputy director for educational and methodological work Research center, Professor of the 1st department (surgery for advanced medical doctors) named after P. A. Kupriyanov

Andrey N. Bogomolov

Научно-исследовательского центра «Санкт-Петербургский институт биорегуляции и геронтологии»

Email: aendru@mail.ru

Russian Federation, 197110, г. Санкт-Петербург, пр. Динамо, д.3.

кандидат медицинских наук, старший научный сотрудник лаборатории возрастной патологии сердечно-сосудистой системы отдела Клинической Геронтологии и Гериатрии

Aleksey Volkov

Military Medical Academy named after S. M. Kirov Ministry of Defense of the Russian Federation

Email: spb.volkov@mail.ru

Russian Federation, 194175, Russia, St. Petersburg, Lebedeva st., 6

Deputy Chief of the 1st department (surgery for advanced medical doctors) named after P. A. Kupriyanov

Viktor N. Fedorets

FSBEI HE St. Petersburg GPMU, Ministry of Health of Russia, Saint Petersburg, Russia

Email: victor.fedorets@gmail.com

Russian Federation, 194100, Russia, Saint Petersburg, Litovskaya str., 2

Doctor of Medicine, Professor of the Department of Faculty Therapynamed after professor V.A. Valdman

Ekaterina Ivanovna Senkina

Autonomous Scientific Non-Profit Organization for Higher Education, Research Center “St. Petersburg Institute of Bioregulation and Gerontology”

Email: 5436588@gmail.com

Russian Federation, 197110, St. Petersburg, Dinamo ave., 3

Researcher, Laboratory of Age-related Pathology of the Cardiovascular System, Department of Clinical Gerontology and Geriatrics, Autonomous Scientific Non-Profit Organization for Higher Education, Research Center “St. Petersburg Institute of Bioregulation and Gerontology”

References

  1. Braunschweig F., Cowie M. R., Auricchio A. What are the costs of heart failure? // Europace. 2011. Vol. 13. P. 13-17. doi: 10.1093/europace/eur081
  2. Агеев Ф. Т., Беленков Ю. Н., Фомин И. В. и др. Распространенность хронической сердечной недостаточности в Европейской части Российской Федерации – данные ЭПОХА–ХСН // Журнал Сердечная Недостаточность. 2006. Том 7. № 1. С. 112–115.
  3. Бадин Ю. В., Фомин И. В. Выживаемость больных ХСН в когортной выборке Нижегородской области (данные 1998–2002 годов.). Всероссийская конференция ОССН: «Сердечная недостаточность, 2005 год» – М., 2005. – С. 31–32.
  4. Peura J. L., Colvin-Adams M., Francis G. S. et al. Recommendations for the use of mechanical circulatory support: device strategies and patient selection: a scienti c statement from the American Heart Association // Circulation. 2012. Vol. 126. № 22. P. 2648-2667.
  5. Pursnani S., Korley F., Gopaul R. et al. Percutaneous coronary intervention versus optimal medical therapy in stable coronary artery disease: a systematic review and meta-analysis of randomized clinical trials // Circ. Cardiovasc. Interv. 2012. № 5. P. 476 – 490.
  6. Dor V., Civaia F., Alexandrescu C. et al. Favorable effects of left ventricular reconstruction in patients excluded from the Surgical Treatments for Ischemic Heart Failure (STICH) trial // J. Thorac. Cardiovasc. Surg. 2011. Vol. 141. P. 905–916.
  7. Raphael C. E., Finegold J. A., Barron A. J. et al. The effect of duration of follow-up and presence of competing risk on lifespan-gain from implantable cardioverter defibrillator therapy: who benefits the most? // Eur. Heart J. 2015. Vol. 36. P. 1676–1688.
  8. Goldenberg I., Kutyifa V., Klein H. U. et al. Survival with cardiac-resynchronization therapy in mild heart failure // N. Engl. J. Med. 2014. Vol. 370. P. 1694–1701.
  9. Steffel J., Robertson M., Singh J.P. et al. The effect of QRS duration on cardiac resynchronization therapy in patients with a narrow QRS complex: a subgroup analysis of the EchoCRT trial // Eur. Heart J. 2015. Vol. 36. P. 1983–1989.
  10. Ускач Т. М., Терещенко С. Н., Павленко Т. В. и др. Модуляция сердечной сократимости как возможность терапии хронической сердечной недостаточности у пациентов с синусовым ритмом и фибрилляцией предсердий. // Кардиология. 2019. Том 59 № 2S. С. 4-14. https://doi.org/10.18087/cardio.2616.
  11. Abraham W. T., Kuck K. H., Goldsmith R. L. et al. A Randomized Controlled Trial to Evaluate the Safety and Efficacy of Cardiac Contractility Modulation // JACC Heart Fail. 2018. № 6. P. 874-888.
  12. Kirklin J. K., Xie R., Cowger J. et al. Second annual report from the ISHLT Mechanically Assisted Circulatory Support Registry // J. Heart Lung Transplant. 2018. Vol. 37. P. 685–691.
  13. Gustafsson F., Shaw S., Lavee J. et al. Six-month outcomes after treatment of advanced heart failure with a full magnetically levitated continuous flow left ventricular assist device: report from the ELEVATE registry // Eur. Heart J. 2018. Vol. 39. P. 3454–3460.
  14. Noly P. E., Kirsch M., Quessard A. et al. Temporary right ventricular support following left ventricle assist device implantation: a comparison of two techniques // Interact. CardioVasc. Thorac. Surg. 2014. Vol. 19. P. 49–55.
  15. Levin A. P., Jaramillo N., Garan A. R. et al. Outcomes of contemporary mechanical circulatory support device configurations in patients with severe biventricular failure // J. Thorac. Cardiovasc. Surg. 2016. Vol. 151. P. 530–535.
  16. Schmack B., Weymann A., Ruschitzka F. et al. Successful support of biventricular heart failure patients by new EXCORVR Adult pumps with bileaflet valves: a prospective study // Clin. Res. Cardiol. 2018. Vol. 107. P. 413–420.
  17. Cheng A., Trivedi J. R., Van Berkel V. H. et al. Comparison of total artificial heart and biventricular assist device sup- port as bridge-to-transplantation // J. Card. Surg. 2016. Vol. 31. P. 648–653.
  18. Den Uil. C. A., Akin S., Jewbali L. S. et al. Short-term mechanical circulatory support as a bridge to durable left ventricular assist device implantation in refractory cardiogenic shock: a systematic review and meta-analysis // Eur. J. Cardiothorac. Surg. 2017. Vol. 52. P. 14–25.
  19. Shah P., Pagani F. D., Desai S. S. et al. Outcomes of patients receiving temporary circulatory support before durable ventricular assist device // Ann. Thorac. Surg. 2017. Vol. 103 P. 106–112.
  20. Lund L. H., Stehlik J. Risk scores and biomarkers in heart failure: a journey to predictive accuracy and clinical utility // J. Heart Lung Transplant. 2016. Vol. 35. P. 711–713.
  21. Cowger J. A., Stulak J. M., Shah P. et al. Impact of center left ventricular assist device volume on outcomes after implantation: an INTERMACS analysis // JACC Heart Fail. 2017. № 5. P. 691–699.
  22. Joseph S. M., Manghelli J. L., Vader J. M. et al. Prospective assessment of frailty using the fried criteria in patients undergoing left ventricular assist device therapy // Am. J. Cardiol. 2017. Vol. 120. P. 1349–1354.
  23. Maurer M. S., Horn E., Reyentovich A. et al. Can a left ventricular assist device in individuals with advanced systolic heart failure improve or reverse frailty? // J. Am. Geriatr. Soc. 2017. Vol. 65. P. 2383–2390.
  24. Ushaj E. B., Badami A., Osaki S. et al. Impact of age on outcomes following continuous-flow left ventricular assist device implantation // Interact. CardioVasc. Thorac. Surg. 2015. Vol. 20. P. 743–748.
  25. Morgan J., Nemeh H., Paone G. Should left ventricular assist devices be implanted in patients seventy years of age and older: a comparative analysis // Heart Surg. Forum. 2014. Vol. 17. P. 182–186.
  26. Van den Berge J. C., Constantinescu A. A., Boiten H. J. et al. Short- and long-term prognosis of patients with acute heart failure with and without diabetes: changes over the last three decades // Diabetes Care. 2018. Vol. 41. P. 143–149.
  27. Makdisi G., Jan M. Y., Dungy-Poythress L. et al. Successful delivery in a patient with left ventricular assist device and unplanned pregnancy // Ann. Thorac. Surg. 2017. Vol. 104. P. 31–33.
  28. Kirklin J. K., Pagani F. D., Kormos R. L. et al. Eighth annual INTERMACS report: special focus on framing the impact of adverse events // J. Heart Lung Transplant. 2017. Vol. 36. P. 1080–1086.
  29. Vandenbogaart E., Doering L., Chen B. et al. Evaluation of the SIPAT instrument to assess psychosocial risk in heart transplant candidates: a retrospective single center study // Heart Lung. 2017. Vol. 46. P. 273–279.
  30. Potapov EV, Antonides C, Crespo-Leiro MG, Combes A, F€arber G, Hannan MM et al. 2019 EACTS Expert Consensus on long-term mechanical circulatory support. Eur J Cardiothorac Surg 2019;56:230–70. doi: 10.1093/ejcts/ezz098
  31. Sigurdardottir V., Bjortuft O., Eiskjær H. et al. Long-term follow-up of lung and heart transplant recipients with pre-transplant malignancies // J Heart Lung Transplant. 2012. Vol. 31. P. 1276–1280.
  32. Yost G., Tatooles A., Bhat G. Preoperative nutritional assessment with the prognostic nutrition index in patients undergoing left ventricular assist device implantation // ASAIO J. 2018. Vol. 64. P. 52–55.
  33. Pagano D., Milojevic M., Meesters M. I. et al. 2017 EACTS/EACTA Guidelines on patient blood man- agement for adult cardiac surgery // Eur. J. Cardiothorac. Surg. 2018. Vol. 53. P. 79–111.
  34. Bishop M. A., Streiff M. B., Ensor C. R. et al. Pharmacist-managed international normalized ratio patient self-testing is associated with increased time in therapeutic range in patients with left ventricular assist devices at an academic medical center // ASAIO J. 2014. Vol. 60. P. 193–198.
  35. Marko C., Xhelili E., Lackner T. et al. Exercise performance during the first two years after left ventricular assist device implantation // ASAIO J. 2017. Vol. 63. P. 408–413.doi: 10.1097/MAT.0000000000000569.
  36. Topkara V.K., Garan A.R., Fine B. et al. Myocardial recovery in patients receiving contemporary left ventricular assist devices: results from the Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS) // Circ. Heart Fail. 2016. Vol. 9. P. 1–11.
  37. Lenneman A. J., Birks E. J. Treatment strategies for myocardial recovery in heart failure // Current Treatment Options in Cardiovascular Medicine. 2014. Vol. 16. P. 287.
  38. Birks E. J., Drakos S. G., Lowes B. D. et al. Outcome and primary endpoint results from a prospective multi-center study of myocardial recovery using LVADs: remission from Stage D. Heart Failure (RESTAGE-HF) // J. Heart. Lung. Transplant. 2018. Vol. 37. P. 142.
  39. Kormos R. L., McCall M., Althouse A. et al. Left ventricular assist device malfunctions: it is more than just the pump // Circulation. 2017. Vol. 136. P. 1714–1725.
  40. Cubillo E. I. 4th, Weis R. A., Ramakrishna H. Emergent reconnection of a transected left ventricular assist device driveline // J. Emerg. Med. 2014. Vol. 47. P. 546–551.
  41. Potapov E. V., Netuka I., Kaufmann F. et al. Strategy for surgical correction and mitigation of outflow graft twist with a centrifugal-flow left ventricular assist system // J. Heart Lung Transplant. 2018. Vol. 37. P. 670–673.
  42. Scandroglio A. M., Kaufmann F., Pieri M. et al. Diagnosis and treatment algorithm for blood flow obstructions in patients with left ventricular assist device // J. Am. Coll. Cardiol. 2016. Vol. 67. P. 2758–2768.
  43. Luc J. G. Y., Tchantchaleishvili V., Phan K. et al. Medical therapy compared with surgical device exchange for left ventricular assist device thrombosis: a systematic review and meta-analysis // ASAIO J. 2018. (in press).
  44. Hanke J. S., El Sherbini A., Rojas S. V. et al. Aortic outflow graft stenting in patient with left ventricular assist device outflow graft thrombosis // Artif. Organs. 2016. Vol. 40. P. 414–416.
  45. Goldstein D. J., Aaronson K. D., Tatooles A. J. et al. Gastrointestinal bleeding in recipients of the HeartWare ventricular assist system // JACC Heart Fail. 2015. № 3. P. 303–313.
  46. Patil N. P., Mohite P. N., Sabashnikov A. et al. Does postoperative blood pressure influence development of aortic regurgitation following continuous-flow left ventricular assist device implantation? // Eur. J. Cardiothorac. Surg. 2016. Vol. 49. P. 788–794.
  47. Gasparovic H., Kopjar T., Saeed D. et al. De novo aortic regurgitation after continuous-flow left ventricular assist device implantation // Ann. Thorac. Surg. 2017. Vol. 104. P. 704–711.
  48. Loghmanpour N. A., Kormos R. L., Kanwar M. K. et al. A Bayesian model to predict right ventricular failure following left ventricular assist device therapy // JACC Heart Fail. 2016. Vol. 4. P. 711–721.
  49. Takeda K., Takayama H., Colombo P.C. et al. Incidence and clinical significance of late right heart failure during continuous-flow left ventricular assist device support // J. Heart Lung Transplant. 2015. Vol. 34. P. 1024–1032.
  50. Kirklin J. K., Naftel D. C., Pagani F. D. et al. Seventh INTERMACS annual report: 15,000 patients and counting // J. Heart Lung Transplant. 2015. Vol. 34. P. 1495–1504.
  51. Aslam S., Xie R., Cowger J. et al. Bloodstream infections in mechanical circulatory support device recipients in the International Society of Heart and Lung Transplantation Mechanically Assisted Circulation Support Registry: epidemiology, risk factors, and mortality // J. Heart Lung Transplant. 2018. Vol. 37. P. 1013–1020.
  52. Kusne S., Mooney M., Danziger-Isakov L. et al. An ISHLT consensus document for prevention and management strat- egies for mechanical circulatory support infection // J. Heart Lung Transplant. 2017. Vol. 36. P. 1137–1153.
  53. Wordingham S. E., McIlvennan C. K., Fendler T. J. et al. Palliative care clinicians caring for patients before and after continuous flow-left ventricular assist device // J. Pain Symptom Manage. 2017. Vol. 54. P. 601–608.
  54. Piepoli M. F., Conraads V., Corra` U. et al. Exercise training in heart failure: from theory to practice. A consensus document of the Heart Failure Association and the European Association for Cardiovascular Prevention and Rehabilitation // Eur. J. Heart Fail. 2011. Vol. 13. P. 347–357.
  55. Van Spall H. G. C., Rahman T., Mytton O. et al. Comparative effectiveness of transitional care services in patients discharged from the hospital with heart failure: a systematic review and network meta-analysis // Eur. J. Heart Fail. 2017. Vol. 19. № 11. P. 1427-1443.
  56. Виноградова Н. Г. Городской центр лечения хронической сердечной недостаточности: организация работы и эффективность лечения пациентов с хронической сердечной недостатосностью // Кардиология. 2019. Том 59. № 2. С. 31-39.
  57. Ponikowski P., Anker S. D., AlHabib K. F. et al. Heart failure: preventing disease and death worldwide: Addressing heart failure // ESC Heart Failure. 2014. Vol. 1. № 1. P. 4–25. doi: 10.1002/ehf2.12005.
  58. Moza arian D., Benjamin E. J., Go A. S. et al. Heart Disease and Stroke Statistics—2016 Update: A Report from the American Heart Association // Circulation. 2016. Vol. 133. №4. P. 38– 360. doi: 10.1161/CIR .0000000000000350
  59. Cleland J. G., Freemantle N., Erdmann E. et al. Long-term mortality with cardiac resynchronization therapy in the Cardiac Resynchronization-Heart Failure (CARE-HF) trial // Eur. J. Heart Fail. 2012. Vol. 14. P. 628–634.
  60. Hunt S. A., Baker D. W., Chin M. H. et al. ACC/AHA guidelines for the evaluation and management of chronic heart failure in the adult: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Revise the 1995 Guidelines for the Evaluation and Management of Heart Failure // J. Am. Coll. Cardiol. 2001. Vol. 88. P. 2101–2113.
  61. Slaughter M. S., Rogers J. G., Milano C. A. et al. Advanced heart failure treated with continuous-flow left ventricular assist device // N. Engl. J. Med. 2009. Vol. 361. P. 2241–2251. doi: 10.1056/NEJMoa0909938.
  62. Mehra M. R., Goldstein D. J., Uriel N. et al. Two-year outcomes with a magnetically levitated cardiac pump in heart failure // N. Engl. J. Med. 2018. Vol. 378. P. 1386–1395.
  63. Uriel N., Levin A. P., Sayer G. T. et al. Left ventricular decompression during speed optimization ramps in patients supported by continuous-flow left ventricular assist devices: device-specific performance characteristics and impact on diagnostic algorithms // J. Card. Fail. 2015. Vol. 21. P. 785–791.
  64. Mehra M. R., Naka Y., Uriel N. et al. A fully magnetically levitated circulatory pump for advanced heart failure // N. Engl. J. Med. 2017. Vol. 376. P. 440-450.
  65. Schmitto J. HeartMate 3 Fully Magnetically Levitated Left Ventricular Assist Device for the Treatment of Advanced Heart Failure: 2-year CE Mark Study Results // San Diego, California: ISHLT Annual Meeting, 2017.

Statistics

Views

Abstract - 42

PDF (Russian) - 3

Cited-By


Article Metrics

Metrics Loading ...

PlumX

Dimensions

Refbacks

  • There are currently no refbacks.

Copyright (c) 2020 Pharmacy Formulas

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies