Recent achievements, problems and future prospects in the field of personalized bioengineering of organs and tissues
- Authors: Tyukavin A.I.1, Kadyrov G.I.2
-
Affiliations:
- Pavlov First Saint Petersburg State Medical University
- Iona Group, an international bioinformatics Internet platform
- Section: Biomedical Sciences
- URL: https://journals.eco-vector.com/PharmForm/article/view/693740
- DOI: https://doi.org/10.17816/phf693740
- ID: 693740
Cite item
Full Text
Abstract
The article reviews current tissue engineering technologies for restoring or replacing organs and tissues. The principles, technologies, and stages of creating tissue-engineered constructs are presented. The main processes of biodegradation of tissue-engineered products after implantation are described. The most successful and promising achievements of tissue bioengineering for personalized regeneration of bronchi, myocardium and heart valves, blood vessels, skin, as well as the possibility of obtaining tissue-engineered personalized teeth are highlighted. The most promising directions for the further development of personalized bioengineering are outlined. Ethical and legal issues related to the procurement of initial donor biological material and the subsequent use of bioengineered products in patients are discussed. The presented literature sources illuminate contemporary trends and advances in the field of 3D tissue engineering and regenerative medicine, focusing on the creation of functional tissue constructs for the restoration of damaged organs.
About the authors
Alexander I. Tyukavin
Pavlov First Saint Petersburg State Medical University
Author for correspondence.
Email: alexander.tukavin@pharminnotech.com
ORCID iD: 0000-0001-5129-4414
SPIN-code: 8476-5366
Scopus Author ID: 6603645369
ResearcherId: V-6699-2017
Doctor of Medical Sciences, Professor, Professor of the Department of Pathophysiology with a course in clinical Pathophysiology
Russian Federation, Saint PetersburgGumar I. Kadyrov
Iona Group, an international bioinformatics Internet platform
Email: gumakad@gmail.com
Генеральный директор
Russian Federation, Санкт-ПетербургReferences
- Lavreshin, A. V. Tissue engineering of the human aortic root by the decellularization method: specialty 03.03.04 "Cell biology, cytology, histology": abstract of a dissertation for the degree of candidate of medical sciences / Lavreshin Aleksey Vladimirovich. – St. Petersburg, 2016. – 22 p. (In Russ.).
- Eskandar K. The rise of 3D bioprinting: from organs to personalized medicine. Patient-Oriented Medicine and Pharmacy. 2025;3(1):6–15. doi: https://doi.org/10.37489/2949-1924-0075. (In Russ.).
- Robert S. Langer A biochemical and biomedical engineer, Langer works at the cutting edge of research into biologically compatible synthetic materials. / [Jelektronnyj resurs] // Science History Institute : [sajt]. — URL: https://www.sciencehistory.org/education/scientific-biographies/robert-s-langer.
- Ganesan O., Kiwanuka H., Hamaguchi R., Orgill D.P. A review of regenerative medicine and tissue engineering with a focus on wound healing and anti-aging. Front Surg. 2025 Jun 5;12:1504563. doi: 10.3389/fsurg.2025.1504563.
- Lee S.J. Personalized Reconstruction with Three-dimensional Printed Urological Tissue Constructs. Eur Urol Focus. 2024 Mar;10(2):259-262. doi: 10.1016/j.euf.2024.01.006.
- Lee S.J., Jeong W., Atala A. 3D Bioprinting for Engineered Tissue Constructs and Patient-Specific Models: Current Progress and Prospects in Clinical Applications. Adv Mater. 2024 Dec;36(49):e2408032. doi: 10.1002/adma.202408032.
- Liu S., Cheng L., Liu Y., Zhang H., Song Y., Park J.H., Dashnyam K., Lee J.H., Khalak F.A., Riester O., Shi Z., Ostrovidov S., Kaji H., Deigner H.P., Pedraz J.L., Knowles J.C., Hu Q., Kim H.W., Ramalingam M. 3D Bioprinting tissue analogs: Current development and translational implications. J Tissue Eng. 2023 Jul 13;14:20417314231187113. doi: 10.1177/20417314231187113.
- Han S., Cruz S.H., Park S., Shin S.R. Nano-biomaterials and advanced fabrication techniques for engineering skeletal muscle tissue constructs in regenerative medicine. Nano Converg. 2023 Oct 21;10(1):48. doi: 10.1186/s40580-023-00398-y.
- Khan A., Kumari P., Kumari N., Shaikh U., Ekhator C., Halappa Nagaraj R., Yadav V., Khan A.W., Lazarevic S., Bharati B., Lakshmipriya Vetrivendan G., Mulmi A., Mohamed H., Ullah A., Kadel B., Bellegarde S.B., Rehman A. Biomimetic Approaches in Cardiac Tissue Engineering: Replicating the Native Heart Microenvironment. Cureus. 2023 Aug 13;15(8):e43431. doi: 10.7759/cureus.43431.
- Wang S., Zhao S., Yu J., Gu Z., Zhang Y. Advances in Translational 3D Printing for Cartilage, Bone, and Osteochondral Tissue Engineering. Small. 2022 Sep;18(36):e2201869. doi: 10.1002/smll.202201869.
- Photobiomodulation of cellular metabolism in 3D cultures / P. Yu. Bikmulina, N. V. Kosheleva, A. I. Shpichka [et al.] // Actual Biotechnology. – 2020. – No. 3(34). – P. 351-354. (In Russ.).
- Allen J.B., Ludtka C., James B.D. Sex as a Biological Variable in Tissue Engineering and Regenerative Medicine. Annu Rev Biomed Eng. 2023 Jun 8;25:311–331. doi: 10.1146/annurev-bioeng-092222-030857.
- Ukaz Prezidenta RF ot 07.07.2011 N 899 "Ob utverzhdenii prioritetnyh napravlenij razvitija nauki, tehnologij i tehniki v Rossijskoj Federacii i perechnja kriticheskih tehnologij Rossijskoj Federacii" / [Jelektronnyj resurs] // Sajt Prezidenta Rossii : [sajt]. — URL: http://www.kremlin.ru/acts/bank/33514. (In Russ.).
- Pronina E. A. Modern directions and prospects for the development of regenerative medicine / E. A. Pronina, E. B. Popykhova, T. V. Stepanova, A. N. Ivanov // Modern problems of science and education. – 2019. – No. 3. – P. 197. (In Russ.).
- Zhang H., Cheng J., Ao Q. Preparation of Alginate-Based Biomaterials and Their Applications in Biomedicine. Mar Drugs. 2021 May 10;19(5):264. doi: 10.3390/md19050264.
- Sorushanova A., Delgado L.M., Wu Z., Shologu N., Kshirsagar A., Raghunath R., Mullen A.M., Bayon Y., Pandit A., Raghunath M., Zeugolis D.I. The Collagen Suprafamily: From Biosynthesis to Advanced Biomaterial Development. Adv Mater. 2019 Jan;31(1):e1801651. doi: 10.1002/adma.201801651.
- Zhang Y., Wang J. Current status and prospects of gelatin and its derivatives in oncological applications: Review. Int J Biol Macromol. 2024 Aug;274(Pt 1):133590. doi: 10.1016/j.ijbiomac.2024.133590.
- Perelygin V. V. Chitin and Its Derivative Chitosan: Distribution in Nature, Applications, and Technology Research (A Review) / V. V. Perelygin, M. V. Zharikov, I. V. Zmitrovich, T. A. Nekrasova // International Journal of Medicinal Mushrooms. – 2024. – Vol. 26, No. 10. – P. 69-81. – doi: 10.1615/intjmedmushrooms.2024055012.
- Zhu M., Wang K., Mei J., Li C., Zhang J., Zheng W., An D., Xiao N., Zhao Q., Kong D., Wang L. Fabrication of highly interconnected porous silk fibroin scaffolds for potential use as vascular grafts. Acta Biomater. 2014 May;10(5):2014-23. doi: 10.1016/j.actbio.2014.01.022.
- Zhang Q., Li M., Hu W., Wang X., Hu J. Spidroin-Based Biomaterials in Tissue Engineering: General Approaches and Potential Stem Cell Therapies. Stem Cells Int. 2021 Dec 20;2021:7141550. doi: 10.1155/2021/7141550.
- Salih, A.R.S., Farooqi, H.M.U., Amin, H. and others. Hyaluronic acid: a comprehensive review of a multifunctional biopolymer. Futur J Pharm Sci 10, 63 (2024).https://doi.org/10.1186/s43094-024-00636-y.
- Sevastyanov, V. I. Technologies of tissue engineering and regenerative medicine / V. I. Sevastyanov // Bulletin of Transplantology and Artificial Organs. – 2014. - Vol. 16, No. 3. – P. 93-108. – doi: 10.15825/1995-1191-2014-3-93-108. (In Russ.).
- Biotechnological cell-free non-immunogenic product preserves the main regenerative structural components of the human umbilical cord / D. V. Tovpeko, A. A. Kondratenko, L. I. Kalyuzhnaya [et al.] // Biotechnology. – 2023. – Vol. 39, No. 1. – Pp. 49-59. – doi: 10.56304/S0234275823010118. (In Russ.).
- Bobrova M.M. Razrabotka i issledovanie skaffoldov na osnove decelljuljarizovannoj tkani pecheni dlja bioinzhenernyh konstrukcij: avtoreferat dis. ... kandidata biologicheskih nauk: 14.01.24 / Bobrova Marija Mihajlovna; — Moskva, 2019. (In Russ.).
- Macchiarini P., Jungebluth P., Go T., Asnaghi M.A., Rees L.E., Cogan T.A., Dodson A., Martorell J., Bellini S., Parnigotto P.P., Dickinson S.C., Hollander A.P., Mantero S., Conconi M.T., Birchall M.A. Clinical transplantation of a tissue-engineered airway. Lancet. 2008 Dec 13;372(9655):2023-30. doi: 10.1016/S0140-6736(08)61598-6. Epub 2008 Nov 18. Retraction in: Lancet. 2023 Oct 28;402(10412):1510. doi: 10.1016/S0140-6736(23)02341-3. Erratum in: Lancet. 2009 Feb 7;373(9662):462. Erratum in: Lancet. 2019 Jul 20;394(10194):218. doi: 10.1016/S0140-6736(19)31562-4.
- Mota F.B., Maciel Braga L.A., Cabral B.P., Conte Filho K.G. (2022) Future of Bioprinted Tissues аnd Organs: A Two-Wave Global Survey. Foresight and STI Governance, 16(1), 6–20. doi: 10.17323/2500-2597.2022.1.6.20.
- Roche K.D., Gentile C. Transplantation of a 3D bioprinted patch in a mouse model of myocardial infarction. J Vis Exp. 2020 Sep 26; (163). doi: 10.3791/61675.
- Nenad Bursac, Ph.D. Biomedical Engineering Professor of Biomedical Engineering / [Jelektronnyj resurs] // Duke Biomedical Engineering : [sajt]. — URL: https://bme.duke.edu/people/nenad-bursac.
- Matthews Nina, Pandolfo Berto, Moses Daniel, Gentile Carmine, "Taking it to heart: 3D bioprinting a patient-specific cardiac patch for the treatment of heart failure." Bioengineering. 2022, Vol. 9, No. 3 p. 93. DOI.org/10.3390/bioengineering9030093.
- Osnovy personalizirovannoj biomediciny i biofarmacii: uchebnik / A.I. Tjukavin, N.A. Arseniev, T.D. Vlasov [i dr.]; pod red. A.I. Tjukavina, S.V. Suchkova. — Moskva: INFRA-M, 2025. — 460 s.: il. — (Vysshee obrazovanie). — doi: 10.12737/2198519. (In Russ.).
- Evaluation of a tissue-engineered vascular IMPLANT based on a biodegradable matrix and mesenchymal stromal cells in a chronic in vivo experiment / G. I. Popov, V. N. Vavilov, P. V. Popryadukhin [et al.] // Tsitology. – 2022. – Vol. 64, No. 6. – P. 591-599. – doi: 10.31857/S0041377122060098. (In Russ.).
- Personalized tissue-engineered veins – long term safety, functionality and cellular transcriptome analysis in large animals. Biomater Sci. 2023 May 30;11(11):3860-3877. 10.1039/d2bm02011d' target='_blank'>https://doi: 10.1039/d2bm02011d.
- Kudryavtseva V., Stankevich K., Kozelskaya A., Kibler E., Zhukov Y., Malashicheva A., Golovkin A., Mishanin A. et al. Magnetron plasma mediated immobilization of hyaluronic acid for the development of functional double-sided biodegradable vascular graft . Applied Surface Science – 2020. – Vol. 529, doi: 10.1016/j.apsusc.2020.147196.
- Tissue Engineering and Regenerative Medicine Section Volume 9 – 2021 | https://doi.org/10.3389/fbioe.2021.662418.
Supplementary files
