Laser synthesis of nanomaterials to create a new family of electrochemical microbiosensors

Cover Page


Cite item

Full Text

Abstract

A brief review of modern methods for creating materials for enzymeless microbiosensors intended for express analysis of the content of components of biological fluids, including human blood, has been made. New directions of the synthesis of such materials have been described: laser ablation (PLD) and laser-induced deposition (LCLD). The comparison of laser methods for the synthesis of materials of non-enzymatic microbiosensors with the known methods for creating nanostructured materials has been carried out. Using bimetallic LCLD microtracks as an example, the mechanism of enhancing the electrochemical response of the sensor to the content of glucose and hydrogen peroxide in complex organic and biological mixtures has been shown. It is associated with the creation of nano- and microstructured materials with a highly developed surface, on which there are extended boundaries of the interphase contact zones. This creates numerous activated acid-base centers. They facilitate the transfer of charge from the oxidizing agent to the reducing agent in the solution in contact with the sensor surface. A comparison of the sensory properties of microcomposite bimetallic deposits synthesized by the laser method and their analogs synthesized by traditional methods has been carried out. The advantages of laser methods for the synthesis of microcomposite sensor-active materials are discussed: the miniature size of the sensors, the possibility of using inexpensive metals instead of precious ones, the environmental friendliness of the methods, and the absence of the need to pre-activate the surface

About the authors

Svetlana V. Kochemirovskaya

Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia

Email: svetlanav.fokina@gmail.com
SPIN-code: 7131-6773

Ph.D. in Chemistry, assistant of the Department of applied chemistry

Russian Federation, 195251, Россия, Санкт-Петербург, ул. Политехническая, д. 29

Maxim O. Novomlinsky

Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia

Email: ooc41hmo@mail.ru

магистрант

Russian Federation, 195251, Россия, Санкт-Петербург, ул. Политехническая, д. 29

Alena A. Fogel

“Nonlocal Plasma Technologies”, LTD, St. Petersburg, Russia

Email: alena.fogel22@gmail.com

PhD (Technical Sciences), Research Engineer

Russian Federation

Vladimir A. Kochemirovsky

Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia

Author for correspondence.
Email: vako4@yandex.ru
SPIN-code: 3034-8519

PhD (Chemistry), Associate Professor

Russian Federation, 195251, Россия, Санкт-Петербург, ул. Политехническая, д. 29

References

  1. Ivanov-Shits, A.K. and Murin, I.V., Ionika tverdogo tela (Ionics of the Solid State), St. Petersburg: SPb. Univ, vol. 2, 999 p. (2010).
  2. Brown N.J., García-Trencо A., Weiner J., White E.R., Allinson M., Chen Y., Wells P.P., Gibson E.K., Hellgardt K., Shaffer M.S., Williams C.K. From organometallic zinc and copper complexes to highly active colloidal catalysts for the conversion of CO2 to methanol.// ACS Catalysis, Vol. 5(5), P. 2895-2902 (2015)/
  3. Sun X., Du F., Synthesis under mild conditions and high catalytic property of bimetal Ni–Cu/SiO2 hollow spheres.// RSC Advances, issue 124, p. 102436 (2015).
  4. Clark L.C. Jr., Lyons C. Electrode systems for continuous monitoring in cardiovascular surgery.// Annals of the New York Academy of Sciences. V.102, p.29-45. (1962).
  5. Updike S.J, Hicks G.P. The enzyme electrode.// Nature, V.214, 986–988.( 1967).
  6. Warsinke A. Biosensors for food analysis.// In: Scheller FW, Schubert F, Fedrowitz J, editors. Frontiers in biosensorics II. Practical applications.Basel: Birkhauser Verlag; p. 121–39 (1997).
  7. Pfeiffer D. Commercial biosensors for medical application.// In: Scheller FW, Schubert F, Fedrowitz J, editors. Frontiers in biosensorics II. Practical applications. Basel: Birkhauser Verlag; p. 149–60.( 1997).
  8. Mizutani F, Yamanaka T, Tanabe Y, Tsuda K. An enzyme electrode for L-lactate with chemically amplified electrode.// Analytica Chimical Acta, V. 177, p.153–166. (1985).
  9. Bardeletti G, Sechaud F, Coulet PR. A reliable L-lactate electrode with a new membrane for enzyme immobilization for amperometric assay of lactate.// Analytica Chimical Acta, V. 187, p.47–54. (1986).
  10. Matsumoto K, Seijo H, Karube I, Suzuki S. Amperometric determinationof choline with use of immobilized choline oxidase.// Biotechnology and Bioengineering, V.22, p.1071–1086, (1980).
  11. Miyamoto S, Murakami T, Saiti A, Kimura J. Development of an amperometric alcohol sensor based on immobilized alcohol-dehydrogenase and entrapped NAD+. //Biosensors and Bioelectronics, V.6, p.563–567. (1991).
  12. Blaedel WJ, Engstrom RC. Reagentless enzyme electrode for ethanol, lactate, and malate.// Analytical Chemistry,V.52, p.1691–1697. (1980).
  13. Bartlett PN, Whitaker RG. Strategies for the development of amperometric enzyme electrodes.// Biosensors, V.88, issue 3, p.359–379. (1987).
  14. Jaraba P, Agui L, Yanez-Sedeno P, Pingarron JM. NADH amperometric sensor based on poly(3-methylthiophene)-coated cylindrical carbon fiber microelectrodes: application to the enzymatic determination of L-lactate.// Electrochimica Acta;V.43, p.3555–3565. (1998).
  15. Albery WJ, Bartlett PN, Cass AEG. Amperometric enzyme electrodes.// Philosophical Transactions of the Royal Society, London, V.316, p.107–119, (1987).
  16. J.M. Abad, M. Gass, A. Bleloch, D.J. Schiffrin, J. Direct electron transfer to a metalloenzime redox center coordinated to a monolayer-protected cluster. //Journal of the American Chemical Society. V.131, p. 10229-10236. (2009).
  17. S. Barton, J. Gallaway, P. Atanassov. Enzymatic Biofuel Cells for Implantable and Microscale Devices.// Chemical Reviews. V. 104, issue 10, p. 4867-4886. (2004).
  18. M. Cooney, V. Svoboda, C. Lau, G. Martin, S. Minteer, Enzyme catalysed biofuel cells.// Energy and Environmental Scitnce, V.1, p.320-337,.(2008)
  19. F. Davis, S. Higson, Biofuel Cells--Recent Advances and Applications.//Biosensors and Bioelectronics, V, 22(7) , p, 1224-1235, (2007).
  20. J,Wang. Electrochemical glucose biosensors,// Chemical Reviews, V,108, issue2, p 57-67, (2008).
  21. A,A, Saei, P. Najafi-Marandi, A.Abhari, Electrochemical biosensors for glucose based on metal nanoparticles.// TrAC Trends in Analytical Chemistry. V.42, p. 216-227. (2013)
  22. Chen W, Cai S., Ren Q.-Q. Chen W, Cai S., Ren Q.-Q. Recent Advances in Electrochemical Sensing for Hydrogen Peroxide.// Analyst, V. 137, p. 49-58, (2012).
  23. Zheng, M., Li, P., Yang, C., Zhu, H., Chen, Y., Tang, Y., Zhou, Y., Lu, T. Ferric ion immobilized on three-dimensional nanoporous gold films modified with self-assembled monolayers for electrochemical detection of hydrogen peroxide.// Analyst, V.137, p. 1182-1189, (2012).
  24. Q. Zhang, Q. Ren, Y. Miao, J. Yuan, ... L. Niu. One-step synthesis of graphene/polyallylamine–Au nanocomposites and their electrocatalysis toward oxygen reduction.//Talanta, V.89, p. 391-395, (2012).
  25. F. Kurniawan, V. Tsakova, V. M. Mirsky. Gold Nanoparticles in Nonenzymatic Electrochemical Detection of Sugars. //Electroanalysis, V.18, issue 19-20, p. 1937-1942, , (2006).
  26. C. Wendeln, A. Heile, H. F. Arlinghaus, and B. J. Ravoo. Carbohydrate Microarrays by Microcontact Printing.// Langmuir , V.26,issue 7, p. 4933–4940, (2010).
  27. R, Qiu, H. G. Cha, H. B. Noh, Yo. B. Shim, X. L. Zhang, R. Qiao, D. Zhang, Y. I. Kim, U. Pal, Y. S. Kang. // The Journal of Physical Chemistry C,V 113, issue 36,p. 15891–15896, ( 2009).
  28. Y.Zhanga, L.Sub, D.Manuzzi., H. Valdés. E. l. Monteros., W.Jia, D.Huo, C.Hou, Y.Lei.// Biosensors and Bioelectronics, V. 31, Issue 1, P. 426-432, (2012).
  29. X. Niu, M. Lan, H. Zhao, C. Chen. Highly Sensitive and Selective Nonenzymatic Detection of Glucose Using Three-Dimensional Porous Nickel Nanostructures.//Analytical Chemistry, V. 85, issue 7, p,3561-3569, (2013).
  30. K.-J. Chen, K. C. Pillai, J. Rick, C.-J. Pan, ... B.-J. Hwang. Bimetallic PtM (M = Pd, Ir) nanoparticle decorated multi-walled carbon nanotube enzyme-free, mediator-less amperometric sensor for H2O2// Biosensors and Bioelectronics., V.33, issue 1, p. 120-127, (2012).
  31. X. Niu, Y. Li, J. Tang, Y. Hu, M. Lan. Electrochemical sensing interfaces with tunable porosity for nonenzymatic glucose detection: A Cu foam case.// Biosensors and Bioelectronics, V.51, p. 22-28, (2014).
  32. C. Guo, Y. Wang, Y. Zhao, C. Xu. Non-enzymatic glucose sensor based on three dimensional nickel oxide for enhanced sensitivity.// Analytical Methods, V. 5, issue 7, 1644-1647, (2013).
  33. C.-W. Kung, C.-Y. Lin, Y.-H. Lai, R. Vittal, K.-C. Ho. Cobalt oxide acicular nanorods with high sensitivity for the non-enzymatic detection of glucose.// Biosensors and Bioelectronics, V.27, issue 1, p.125-131,(2011).
  34. In: Nanomaterials Design for Sensing Applications. //Ed. by: Olena V. Zenkina, Elsiever inc. 2019, 351 p.
  35. Bäuerle, Dieter W. Laser Processing and Chemistry. Berlin : Springer, 2011.
  36. Stafe M. Pulsed Laser Ablation of Solids. Berlin : Springer-Verlag, 2014.
  37. Zafiropulos V., Laser Ablation in Cleaning of Artworks. б.м. : Published by World Scientific Publishing Co. Pte. Ltd., 2002.
  38. Kuech T., [ред.]. Handbook of Crystal Growth Thin Films and Epitaxy: Basic Techniques. б.м. : Elsevier, 2014. Vol. 3.
  39. Harilal S.S., Miloshevsky G.V., Diwakar .PK., LaHaye N.L., Hassanein A. Influence of spot size on extreme ultraviolet efficiency of laser-produced Sn plasmas. Journal of Applied Physics. 2009, Vol. 95, p. 221501.
  40. Zeng X., Mao .X, Mao S.S., Wen S.B., Greif R., Russo R.E. Laser-induced shockwave propagation from ablation in a cavity. Applied physics letters. 2006 г., Vol. 88, 6, р. 061502.
  41. Wei W., Wua J., Li X., Jia Sh., Qi A. Study of nanosecond laser-produced plasmas in atmosphere by spatially resolved optical emission spectroscopy. Journal of Applied Physics 113304. 2013, Vol. 114, p. 113304 .
  42. Song K. H., Xu X. Explosive phase transformation in excimer laser ablation. Appl. Surf. Sci. 1998, Vols. 127–129, pp. 111–116.
  43. Zhang X., Chu S.S., Ho J.R., Grigoropoulos C.P. xcimer laser ablation of thin gold films on a quartz crystal microbalance at various argon background pressures. Appl. Phys. A. 1997, Vol. 64, pp. 545–552.
  44. Porneala C., Willis D.A. Observation of nanosecond laser-induced phase explosion in aluminum. Appl. Phys. Lett. 2006, Vol. 89, p. 211121.
  45. Yoo J.H., Jeong S.H., Mao X.L., Greif R., Russo R.E. Evidence for phase-explosion and generation of large particles during high power nanosecond laser ablation of silicon. Ibid. 2000, Vol. 76, pp. 783–785.
  46. Yoo J.H., Jeong S.H., Greif R., Russo R.E. Explosive change in crater properties during high power nanosecond laser ablation of silicon. J. Appl. Phys. 2000, Vol. 88, pp. 1638–1649.
  47. Tull B.R., Carey J.E., Sheehy M.A., Friend C., Mazur E. Formation of silicon nanoparticles and web-like aggregates by femtosecond laser ablation in a background gas. Appl. Phys. A. 2006 г., Vol. 83, pр. 341–346.
  48. Козлов Б.Н., Мамырин Б.А. Козлов Б.Н., Мамырин Б.А. Журн. техн. физики. 1999 г., Т. 69, стр. 81–84.
  49. Webb R.L., Dickinson J.T., Exarhos G.J. Characterization of particulates accompanying laser ablation of NaNO3. Appl. Spectrosc. 1997 г., Vol. 51, pр. 707–717.
  50. Heitz J., Dickinson J.T. Characterization of particulates accompanying laser ablation of pressed polytetrafluorethylene (PTFE) targets. Appl. Phys. A. 1999 г., Vol. 68, pр. 515–523.
  51. Mizuseki H., Jin Y., Kawazoe Y., Wille L.T. Cluster growth processes by direct simulation Monte Carlo method. Ibid. 2001 г., Vol. 73, pр. 731–735.
  52. Kuwata M., Luk’yanchuk B., Yabe T. Nanoclusters formation within the vapor plume, produced by ns-laser ablation: effects of the initial density and pressure distributions. Proc. SPIE. 2000, Vol. 4065, pp. 441–451.
  53. Callies G., Schittenhelm H., Berger P., Hügel H. Modeling of the expansion of laser evaporated matter in argon, helium and nitrogen and the condensation of clusters. Appl. Surf. Sci. 1998 г., Vol. 127-129, pр. 134–141.
  54. Kelly R., Miotello A. Does normal boiling exist due to laser-pulse or ion bombardment? J. Appl. Phys. 2000 г., Vol. 87, pр. 3177–3179.
  55. Bulgakova N.M., Bulgakov A.V. Pulsed laser ablation of solids: transition from normal vaporization to phase explosion. Appl. Phys. A. 2001, Vol. 73, pp. 199–208.
  56. Bulgakova N.M., Burakov I.M., Meshcheryakov Y.P., Stoian R., Rosenfeld A., Hertel I.V. Theoretical models and qualitative interpretations of fs laser material processing. J. Laser Micro/Nanoeng. 2007 г., Vol. 2, pр. 76–86.
  57. Brailovsky A.B., Gaponov S.V., Luchin V.I. Mechanisms of melt droplets and solidparticle ejection from a target surface by pulsed laser action. Appl. Phys. A. 1995 г., Vol. 61, pр. 81–86.
  58. Hare D.E., Franken J., Dlott D.D. Coherent Raman measurements of polymer thin-film pressure and temperature during picosecond laser ablation. J. Appl. Phys. 1995, Vol. 77, pp. 5950–5960.
  59. Vogel A., Venugopalan V. Mechanisms of pulsed laser ablation of biological tissues. Chem. Rev. 2003 г., Vol. 103, pр. 577–644.
  60. Zhigilei L.V., Garrison B.J. Mechanisms of laser ablation from molecular dynamics simulations: dependence on the initial temperature and pulse duration. Appl. Phys. A. 1999 г., Vol. 69, pр. 75–80.
  61. Zhigilei L.V., Kodali P.B.S., Garrison B.J. On the threshold behavior in the laser ablation of organic solids. 1997, Vol. 276, pp. 269–273.
  62. . V.A.Kochemirovsky, S.A.Fateev, L.S.Logunov, I.I.Tumkin, S.V.Safonov. Laser-induced copper deposition with weak reducing agent. //Int.J.Electrochem.Sci, 9, PP. 644 – 658. (2014).
  63. Ю.С. Тверьянович, В.А. Кочемировский, А.А. Маньшина, А.В. Поволоцкий, А.В. Поволоцкая, С.В. Сафонов, И.И. Тумкин, Лазерно-индуцированное осаждение золота и меди из растворов. ЛГУ им. А.С.Пушкина. СПб. ( 2010), 132 с.
  64. Kordás, J. Békési, R. Vajtai, L. Nánai, S. Leppävuori, A. Uusimäki, K. Bali, T.F. George, G. Galbács, F. Ignácz, P. Moilanen. Laser-assisted metal deposition from liquid-phase precursors on polymer / K. // Applied Surface Science.. Vol. 172. , P. 178-189( 2001).
  65. A. В. Smikhovskaia, S. V. Kochemirovskaya, M. O. Novomlinskii, A. A. Fogel´,
  66. D. V. Lebedev, V. A. Kochemirovsky, S. S. Ermakov, L. G. Menchikov. Laser-induced continuous generation of Ni nanoparticles for organic synthesis.// Russian Chemical Bulletin, International Edition, Vol. 68, No. 11, P. 2020-2027, (2019).
  67. Y.S. Tver'yanovich, A.G. Kuzmin, L.G. Menchikov, V.A. Kochemirovsky, S.V. Safonov, I.I. Tumkin, A.V. Povolotsky, A.A. Manshina Composition of the gas phase formed upon laser-induced copper deposition from solutions.// Mendeleev Communications. Vol. 21. , P. 34-35. (2011).
  68. Kordás, K., Leppävuori, S., Békési, J., (...), Vajtai, R., Szatmári, S. Nickel deposition on porous silicon utilizing lasers.// Applied Surface Science, 186(1-4), P. 232-236, (2002).
  69. Н. В. Карлов, Н. А. Кириченко, Б. С. Лукьянчук. Лазерная термохимия. М.: Наука , 296 с. (1992).
  70. V.A. Kochemirovsky, L.G. Menchikov, S.V. Safonov, M.D. Bal'makov, I.I. Tumkin, Yu.S. Tver'yanovich. Laser-induced chemical liquid phase deposition of metals: chemical reactions in solution and activation of dielectric surfaces // Russian Chemical Reviews, Vol. 80. – P. 869-882,(2011).
  71. Шалаускас, М.И. Металлизация пластмасс. М.: Знание, 64 с.( 1983).
  72. Петрова Т.П. Химические покрытия. // Сороссовский образовательный журнал. T 6, №11, c.57-62, ( 2000)
  73. Свиридов, В.В. Химическое осаждение металлов из водных растворов. Мн.: Университетское изд-во, 270 c., (1987).
  74. H. Yokoyama, S. Kishida, and K. Washio. Laser induced metal deposition from organometallic solution.// Appl. Phys. Lett. 44, 755 (1984);
  75. Маньшина A.A. Лазерно-индуцированный синтез металлических и гибридных
  76. металл/углеродных наноматериалов. Диссертация на соискание ученой степени
  77. доктора химических наук, Санкт-Петербург СПбГУ, 2016.
  78. Toghill K.E, Compton R.G. Electrochemical non-enzymatic glucose sensors: a perspective and an evaluation.// International Journal of Electrochemical Science, V.5, p.1246–1301, (2010).
  79. W. Liu, H. Zhang, B. Yang, Z. Li, L. Lei, X. Zhang, A non-enzymatic hydrogen peroxide sensor based on vertical NiO nanosheets supported on the graphite sheet.// Journal of Electroanalytical Chemistry, V, 749, issue 15, P. 62–67. (2015).
  80. Н.П. Лякишев, О.А. Банных, Л.Л. Рохлин и др., Диаграммы состояния двойных металлических систем(справочник),// М.Машиностроение, T1, 992 c. (1996)
  81. В.С. Биронт, Т.А. Орелкина, Т.Н. Дроздова, Л.А. Быконя, Л.С. Цурган, Материаловедение. Сибирский федеральный университет, 454 с., (2008)
  82. Smikhovskaia, A.V., Panov, M.S., Tumkin, I.I., (...), Ryazantsev, M.N., Kochemirovsky, V.A In situ laser-induced codeposition of copper and different metals for fabrication of microcomposite sensor-active materials.// Analytica Chimica Acta, V. 1044, p. 138-146, (2018).
  83. A. V. Smikhovskaia, M. O. Novomlinsky, A. A. Fogel, S. V. Kochemirovskaia, D. V. Lebedev & V. A. KochemirovskyLaser method of microscopic sensor synthesis for liquid and gas analysis using glucose and H2S as an example. Journal of Solid State Electrochemistry(2019) 23:3173–3185
  84. L.Y. Lin, B.B. Karakocak, S. Kavadiya, T. Soundappan, P. Biswas, A highly sensitive non-enzymatic glucose sensor based on Cu/Cu2O/CuO ternary composite hollow spheres prepared in a furnace aerosol reactor.// Sensors and Actuators, B, Chemistry, V.259, p.745-752, (2018).
  85. X. Wang, C. Ge, K. Chen, Y.X. Zhang, An ultrasensitive non-enzymatic glucose sensors based on controlled petal-like CuO nanostructure.// Electrochimica Acta, V. 259, p. 225-232 (2018).
  86. L. Wang, Y. Zheng, X. Lu, Z. Li, L. Sun, Y. Song, Dendritic copper-cobalt nanostructures/reduced graphene oxide-chitosan modified glassy carbon electrode for glucose sensing.// Sensors and Actuators, B. Chemistry. V. 195, p. 1-7, (2014).
  87. F. Xie, T. Liu, L. Xie, X. Sun, Y. Luo, Metallic nickel nitride nanosheet: an efficient catalyst electrode for sensitive and selective non-enzymatic glucose sensing. Sensors and Actuators, B, Chemistry, V. 255, p. 2794-2799, (2018).
  88. C. Xu, Y. Liu, F. Su, A. Liu, H. Qiu, Nanoporous PtAg and PtCu alloys with hollow ligaments for enhanced electrocatalysis and glucose biosensing.// Biosensors and Bioelectronics, V. 27, p. 160-166, (2011).
  89. X. Cao, N. Wang, S. Jia, Y. Shao, Detection of glucose based on bimetallic PtCu nanochains modified electrodes. Analytical Chemistry, V. 85, p. 5040-5046 (2013).
  90. A. Uzunoglu, A.D. Scherbarth, L.A. Stanciu, Bimetallic PdCu/SPCE nonenzymatic hydrogen peroxide sensors.// Sensors and Actuators, B, Chemistry. V 220, p. 968-976, (2015).
  91. Z. Wang, X. Cao, D. Liu, S. Hao, R. Kong, G. Du, A.M. Asiri, X. Sun, Copper nitride nanowires array: an efficient dual-functional catalyst electrode for sensitive and selective non-enzymatic glucose and hydrogen peroxide sensing. //Chemistry, A- Europian Journal, V. 23, p. 4986-4989, (2017).
  92. L. Kong, Z. Ren, N. Zheng, S. Du, J. Wu, J. Tang, Interconnected 1D Co3O4 nanowires on reduced graphene oxide for enzymeless H2O2 detection.// Nano Researc, V. 8, p. 469-480, (2015).
  93. F. Xie, X. Cao, F. Qu, A.M. Asiri, X. Sun, Cobalt nitride nanowire array as an efficient electrochemical sensor for glucose and H2O2 detection.// Sensor. Actuator. B Chem. 255 (2018) 1254-1261.
  94. X. Wang, C. Hu, H. Liu, G. Du, X. He, Y. Xi, Synthesis of CuO nanostructures and their application for nonenzymatic glucose sensing.// Sensors and Actuators, B, Chemical. V.144, p. 220–225 (2010).
  95. M. Vesali-Naseh, A.A. Khodadadi, Y. Mortazavi, A.A. Moosavi-Movahedi, K.
  96. Ostrikove. H2O/air plasma-functionalized carbon nanotubes decorated with MnO2 for glucose Sensing. // RSC Advances, V. 6, p.31807–31815, (2016).
  97. L. He, Q. Liu, S. Zhang, X. Zhang, C. Gong, H. Shu, G. Wang., H. Liu, S. Wen, B.Zhang, High sensitivity of TiO2 nanorod array electrode for photoelectrochemical glucose sensor and its photo fuel cell application.// Electrochemistry Communications. V. 94, p. 18–22, (2018).
  98. S. Ammara, S. Shamaila, N. Zafar, A. Bokhari, A. Sabah. Nonenzymatic glucose
  99. sensor with high performance electrodeposited nickel/copper/carbon nanotubes nanocomposite electrode.// Journal of Physics and Chemistry of Solids. V.120, p. 12–19,(2018).
  100. M.Yousef Elahi, H.Heli, S.Z.Bathaie. Electrocatalytic oxidation of glucose at Ni-curcumin modified glassy carbon electrode.// Journal of Solid State Electrochemistry, V.11, p. 273-282. (2007).
  101. Jafarian, M., Forouzandeh, F. Danaee, I.a, Gobal, F.b, Mahjani, M.G.a Electrocatalytic oxidation of glucose on Ni and NiCu alloy modified glassy carbon electrode.// Journal of Solid State Electrochemistry, V. 13, Issue 8, P. 1171-1179. ( 2009).
  102. Berkkan, A., Seçkin, A.I., Pekmez, K., Tamer, U. Amperometric enzyme electrode for glucose determination based on poly(pyrrole-2-aminobenzoic acid). //Journal of Solid State Electrochemistry, V. 14, Issue 6, P. 975-980. (2010).
  103. Han, X., Zhu, Y., Yang, X., Zhang, J., Li, C. Dendrimer-encapsulated Pt nanoparticles on mesoporous silica for glucose detection.// Journal of Solid State Electrochemistry. V. 15, issue 3, p. 511-517. (2011).
  104. Chen, D.-J., Lu, Y.-H., Wang, A.-J., Feng, J.-J., Huo, T.-T.a, Dong, W.-J. Facile synthesis of ultra-long Cu microdendrites for the electrochemical detection of glucose.// Journal of Solid State Electrochemistry, V. 16, Issue 4, P. 1313-1321. ( 2012).
  105. Mallesha, M., Manjunatha, R., Suresh, G.S., Melo, J.S., D'Souza, S.F., Venkatesha, T.V. Direct electrochemical non-enzymatic assay of glucose using functionalized graphene,// Journal of Solid State Electrochemistry, V. 16, Issue 8, P. 2675-2681. ( 2012).
  106. Narayanan, J.S., Anjalidevi, C., Dharuman, V. Nonenzymatic glucose sensing at ruthenium dioxide-poly(vinyl chloride)-Nafion composite electrode. //Journal of Solid State Electrochemistry, V. 17, Issue 4, P. 937-947 , ( 2013).
  107. Wolfart, F., Maciel, A., Nagata, N., Vidotti, M. Electrocatalytical properties presented by Cu/Ni alloy modified electrodes toward the oxidation of glucose.// Journal of Solid State Electrochemistry, V. 17, Issue 5, P. 1333-1338. ( 2013).
  108. Yi, W., Yang, D., Chen, H., Liu, P., Tan, J., Li, H. A highly sensitive nonenzymatic glucose sensor based on nickel oxide-carbon nanotube hybrid nanobelts.// Journal of Solid State Electrochemistry, V. 18, Issue 4, P. 899-908. ( 2014).
  109. El-Refaei, S.M., Saleh, M.M., Awad, M.I. Tolerance of glucose electrocatalytic oxidation on NiO x /MnO x /GC electrode to poisoning by halides.// Journal of Solid State Electrochemistry, V, 18, Issue 1, P. 5-12 .( 2014).
  110. Wang, L., Tang, Y., Wang, L., Zhu, H., Meng, X., Chen, Y., Sun, Y., Yang, X.J., Wan, P. Fast conversion of redox couple on Ni(OH)2/C nanocomposite electrode for high-performance nonenzymatic glucose sensor.// Journal of Solid State Electrochemistry, V. 19, Issue 3, P. 851-860, ( 2015).
  111. Soomro, R.A., Ibupoto, Z.H., Sirajuddina Abro M.I., Willander, M. Controlled synthesis and electrochemical application of skein-shaped NiO nanostructures.// Journal of Solid State Electrochemistry, V. 19, Issue 3, , Pages 913-922 , (2015).
  112. Medeiros, N.G., Ribas, V.C., Lavayen, V., Da Silva, J.A. Synthesis of flower-like cuo hierarchical nanostructures as an electrochemical platform for glucose sensing. //Journal of Solid State Electrochemistry, V. 20, Issue 9, P. 2419-2426. (2016).
  113. Yadav, H.M., Lee, J.-J. One-pot synthesis of copper nanoparticles on glass: applications for non-enzymatic glucose detection and catalytic reduction of 4-nitrophenol.// Journal of Solid State Electrochemistry,V. 23, Issue 2, , P. 503-512, ( 2019).
  114. D. Gordeychuk, V. Kochemirovsky, V. Sorokoumov, I. Tumkin, A. Kuzmin, I. Balova. Copper Particles Generated During in situ Laser-induced Synthesis Exhibit Catalytic Activity Towards Formation of Gas Phase//Journal of Laser Micro/Nanoengineering,V. 12, No. 2, p. 57-61, (2017).
  115. Gordeychuk, D.I., Sorokoumov, V.N., Mikhaylov, V.N., (...), Kochemirovsky, V.A., Balova, I.A. Copper-based nanocatalysts produced via laser-induced ex situ generation for homo- and cross-coupling reactions.// Chemical Engineering Science, 227,115940, 2020.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Kochemirovskaya S.V., Novomlinsky M.O., Fogel A.A., Kochemirovsky V.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 76969 от 11.10.2019. 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies