Токсикология наноструктур углерода. Часть I. Сферические наночастицы (фуллерены и наноонионы)
- Авторы: Литасова Е.В.1, Ильин В.В.1, Мызников Л.В.1, Пиотровский Л.Б.1
-
Учреждения:
- Институт экспериментальной медицины
- Выпуск: Том 20, № 1 (2022)
- Страницы: 5-15
- Раздел: Научные обзоры
- Статья получена: 26.05.2022
- Статья одобрена: 26.05.2022
- Статья опубликована: 27.05.2022
- URL: https://journals.eco-vector.com/RCF/article/view/108249
- DOI: https://doi.org/10.17816/RCF2015-15
- ID: 108249
Цитировать
Полный текст



Аннотация
Обзор литературы посвящен обобщению публикаций по токсичности углеродных наноструктур, которые в последнее время все чаще используют в биологических и фармакологических исследованиях, в медицинской химии с перспективой применения в медицине. Анализ литературных данных показывает, что, несмотря на огромное количество работ, нет однозначных выводов о токсикологических характеристиках различных типов углеродных наноматериалов. Использование наноструктур углерода в медицине может быть поставлено под сомнение из-за потенциально неблагоприятных последствий для здоровья организма при их применении. Для выяснения безвредности необходима разработка более эффективных тестов на животных, с учетом особенностей каждого типа наноматериалов.
Ключевые слова
Полный текст

Об авторах
Елена Викторовна Литасова
Институт экспериментальной медицины
Автор, ответственный за переписку.
Email: llitasova@mail.ru
ORCID iD: 0000-0002-0999-8212
SPIN-код: 5568-8939
канд. биол. наук, ведущий научный сотрудник
Россия, Санкт-ПетербургВиктор Владимирович Ильин
Институт экспериментальной медицины
Email: llitasova@mail.ru
ORCID iD: 0000-0002-1012-7561
SPIN-код: 5559-8089
канд. хим. наук, научный сотрудник
Россия, Санкт-ПетербургЛеонид Витальевич Мызников
Институт экспериментальной медицины
Email: myznikov_lv@mail.ru
ORCID iD: 0000-0002-0863-3027
Scopus Author ID: 391134
д-р хим. наук, научный сотрудник
Россия, Санкт-ПетербургЛевон Борисович Пиотровский
Институт экспериментальной медицины
Email: levon-piotrovsky@yandex.ru
ORCID iD: 0000-0001-8679-1365
SPIN-код: 2927-6178
д-р биол. наук, руководитель лаборатории
Россия, Санкт-ПетербургСписок литературы
- Shibuya M., Kato M., Ozawa M., et al. Detection of buckminsterfullerene in usual soot and commercial charcoals // Full Sci Technol. 1999. Vol. 7, No. 2. P. 181–193. doi: 10.1080/10641229909350278
- Bang J.J., Guerrero P.A., Lopez D.A., et al. Carbon nanotubes and other fullerene nanocrystals in domestic propane and natural gas combustion streams // J Nanosci Nanotechnol. 2004. Vol. 4, No. 7. P. 716–718. doi: 10.1166/jnn.2004.095
- Murr L.E., Soto K.F. A TEM study of soot, carbon nanotubes, and related fullerene nanopolyhedra in common fuel-gas combustion sources // Mater Characteriz. 2005. Vol. 55, No. 1. P. 50–65. doi: 10.1016/j.matchar.2005.02.008
- Soto K.F., Carrasco A., Powell T.G., et al. Comparative in vitro cytotoxicity assessment of some manufactured nanoparticulate materials characterized by transmission electron microscopy // J Nanopart Res. 2005. Vol. 7. P. 145–169. doi: 10.1007/s11051-005-3473-1
- Sharoyko V.V., Ageev S.V. Podolsky N.E., et al. Biologically active water-soluble fullerene adducts: Das Glasperlenspiel (by H. Hesse)? // J Mol Liq. 2021. Vol. 323. P. 114990.
- Kazemzadeh H., Mozafari M. Fullerene-based delivery systems // Drug Discov Today. 2019. Vol. 24, No. 3. P. 898–905. doi: 10.1016/j.drudis.2019.01.013
- Raphey V.R., Henna T.K., Nivitha K.P., et al. Advanced biomedical applications of carbon nanotube // Mater Sci Eng C Mater Biol Appl. 2019. Vol. 100. P. 616–630. doi: 10.1016/j.msec.2019.03.043
- Negri V., Pacheco-Torres J., Calle D., et al. Carbon nanotubes in biomedicine // Top Curr Chem (Cham). 2020. Vol. 378, No. 1. P. 15. doi: 10.1007/s41061-019-0278-8
- Karousis N., Suarez-Martinez I., Ewels C.P., et al. Structure, properties, functionalization, and applications of carbon nanohorns // Chem Rev. 2016. Vol. 116, No. 8. P. 4850–4883. doi: 10.1021/acs.chemrev.5b00611
- Bobrowska D.M., Olejnik P., Echegoyen L., et al. Onion-like carbon nanostructures: an overview of bio-applications // Curr Med Chem. 2019. Vol. 26, No. 38. P. 6896–6914. doi: 10.2174/0929867325666181101105535
- Xiaoli F., Qiyue C., Weihong G., et al. Toxicology data of graphene-family nanomaterials: an update // Arch Toxicol. 2020. Vol. 94. P. 1915–1939. doi: 10.1007/s00204-020-02717-2
- Iravani S., Varma R.S. Green synthesis, biomedical and biotechnological applications of carbon and grapheme quantum dots. A review // Environ Chem Lett. 2020. P. 1–25. doi: 10.1007/s10311-020-00984-0
- Reina G., Zhao L., Bianco A., et al. Chemical functionalization of nanodiamonds: opportunities and challenges ahead // Angew Chem Int Ed Engl. 2019. Vol. 58, No. 50. P. 17918–17929. doi: 10.1002/anie.201905997
- Dolmatov V.Yu., Ozerin A.N., Kulakova I.I., et al. Detonation nanodiamonds: new aspects in the theory and practice of synthesis, properties and applications // Russ Chem Rev. 2020. Vol. 89, No. 12. P. 1428–1462. doi: 10.1070/RCR4924
- Xia T., Li N., Nel A.E. Potential health impact of nanoparticles // Annu Rev Public Health. 2009. Vol. 30. P. 137–150. doi: 10.1146/annurev.publhealth.031308.100155
- Kalenczuk R.J., Borowiak-Palen E., Pichler T., et al. Studies on the preparation and characterisation of carbon nanostructures // Solid State Phenomena. 2004. Vol. 99–100. P. 269–272. doi: 10.4028/ href='www.scientific.net/ssp.99-100.269' target='_blank'>www.scientific.net/ssp.99-100.269
- Szabo A., Perri C., Csato A., et al. Nagy Synthesis methods of carbon nanotubes and related materials. Materials. 2010. Vol. 3, No. 5. P. 3092–3140. doi: 10.3390/ma3053092
- Kroto H.W., Heath S., O’Brien S.C., et al. C60: Buckminsterfullerene // Nature. 1985. Vol. 318. P. 162–163. doi: 10.1038/318162a0
- Cataldo F., Da Ros T., eds. Medicinal Chemistry and Pharmacological Potential of Fullerenes and Carbon Nanotubes. Springer; 2008. P. 139–155. doi: 10.1007/978-1-4020-6845-4
- Sijbesma R., Srdanov G., Wudl F., et al. Synthesis of a fullerene derivative for the inhibition of HIV enzymes // J Am Chem Soc. 1993. Vol. 115, No. 15. P. 6510–6512. doi: 10.1021/ja00068a006
- Friedman S.H., DeCamp D.L., Sijbesma R.P., et al. Inhibition of the HIV-1 protease by fullerene derivatives: model binding studies and experimental verification // J Am Chem Soc. 1993. Vol. 115, No. 15. P. 6506–6509. doi: 10.1021/ja00068a005
- Powell W.H., Cozzi F., Moss G.P., et al. Nomenclature for the C60-Ih and C70-D5h(6) fullerenes (IUPAC Recommendations 2002) // Pure Appl Chem. 2002. Vol. 74, No. 4. P. 629–695. doi: 10.1351/pac200274040629
- Lalwani G., Sitharaman B. Multifunctional fullerene and metallofullerene based nanobiomaterials // Nano LIFE. 2013. Vol. 3, No. 3. P. 1342003. doi: 10.1142/S1793984413420038
- Scrivens W.A., Tour J.M., Creek K., et al. Synthesis of 14C-labeled C60, its suspension in water and its uptake by human keratinocytes // J Am Chem Soc. 1994. Vol. 116, No. 10. P. 4517–4518. doi: 10.1021/ja00089a067
- Chiron J.P., Lamandé J., Moussa F., et al. Effect du fullerène C60 “micronisé” sur la croissance microbienne in vitro // Ann Pharm Fr. 2000. Vol. 58. P. 170–175.
- Baierl T., Drosselmeyer E., Seidel A., et al. Comparison of immunological effects of fullerene C60 and raw soot from fullerene production on alveolar macrophages and macrophage like cells in vitro // Exp Toxicol Pathol. 1996. Vol. 48, No. 6. P. 508–511. doi: 10.1016/S0940-2993(96)80068-6
- Moussa F., Trivin F., Ceolin R., et al. Early effects of C60 administration in Swiss mice: a preliminary account for in vivo C60 toxicity // Full Sci Technol. 1996. Vol. 4, No. 1. P. 21–29. doi: 10.1080/10641229608001534
- Mori T., Takada H. Preclinical studies on safety of fullerene upon acute oral administration and evaluation for no mutagenesis // Toxicology. 2006. Vol. 225, No. 1. P. 48–54. doi: 10.1016/j.tox.2006.05.001
- Moussa F., Pressac M., Chretien P., et al. C60 fullerene toxicity: preliminary account of an in vivo study. Proceedings of the Abstracts of Joint International Meeting the Electrochemical Society and the International Society of Electrochemistry; 1997 Aug 31 – Sept 5; Paris // The Electrochemical Society Interface. 1997. Vol. 97, No. 2. P. 1589. doi: 10.1080/10641229608001534
- Nelson M.A., Frederick E.D., Bowden G.T., et al. Effects of acute and subchronic exposure of topically applied fullerene extracts on the mouse skin // Toxicol Indust Health. 1993. Vol. 9, No. 4. P. 623–630. doi: 10.1177/074823379300900405
- Moriguchi T., Yano K., Hokari S., et al. Effect of repeated application of С60 combined with UVA radiation onto hairless mouse back skin // Full Sci Technol. 1999. Vol. 7, No. 2. P. 195–209. doi: 10.1080/10641229909350279
- Deguchi S., Alargova R.G., Tsujii K. Stable dispersions of fullerenes, C60 and C70, in water. Preparation and characteristics // Langmuir. 2001. Vol. 17. P. 6013–6017. doi: 10.1021/la010651o
- Oberdörster E. Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in brain of juvenile largemouth bass // Environ Health Perspect. 2004. Vol. 112, No. 10. P. 1058–1062. doi: 10.1289/ehp.7021
- Fortner I.D., Lyon D.Y., Sayes C.M., et al. C60 in water: nanocrystal formation and microbial response // Environ Sci Technol. 2005. Vol. 39, No. 11. P. 4307–4316. doi: 10.1021/es048099n
- Henry T.B., Menn F., Fleming J.T., et al. Attributing effects of aqueous C60 nano-aggregates to tetrahydrofuran decomposition products in larval zebrafish by assessment of gene expression // Environ Health Perspect. 2007. Vol. 115, No. 7. P. 1059–1065. doi: 10.1289/ehp.9757
- Oberdörster E., Zhu S., Blickley T.M., et al. Ecotoxicology of carbon-based engineered nanoparticles: effects of fullerene (C60) on aquatic organisms // Carbon. 2006. Vol. 44, No. 6. P. 1112–1120. doi: 10.1016/j.carbon.2005.11.008
- Andrievsky G., Klochkov V., Derevyanchenko L. Is C60 fullerene molecule toxic? // Fullerenes Nanotubes Carbon Nanostruct. 2005. Vol. 3, No. 4. P. 363–376. doi: 10.1080/15363830500237267
- Brant J.A., Labille J., Bottero J.Y., et al. Characterizing the impact of preparation method on fullerene cluster structure and chemistry // Langmuir. 2006. Vol. 22, No. 8. P. 3878–3885. doi: 10.1021/la053293o
- Tsuchiya T., Yamakoshi Y.N., Miyata N. A novel promoting action of fullerene C60 on the chondrogenesis in rat embryonic limd bud cell culture system // Biochem Biophys Res Commun. 1995. Vol. 206, No. 3. P. 885–894. doi: 10.1006/bbrc.1995.1126
- Snyder R.W., Fennell T.R., Wingard C.J., et al. Distribution and biomarker of carbon-14 labeled fullerene C60 ([14C(U)]C60) in pregnant and lactating rats and their offspring after maternal intravenous exposure // J Appl Toxicol. 2015. Vol. 35, No. 12. P. 1438–1451. doi: 10.1002/jat.3177
- Piotrovsky L.B., Eropkin M.Yu., Eropkina E.M. Biological effects in cell cultures of fullerene C60: dependence on aggregation state. In: Medicinal Chemistry and Pharmacological Potential of Fullerenes and Carbon Nanotubes. Cataldo F., Da Ros T., eds. Springer, 2008. P. 139–155. doi: 10.1007/978-1-4020-6845-4
- Piotrovsky L.B., Dumpis M.A., Litasova E.V., et al. Dependence of Biological effects of fullerene C60 in vitro from the type of preparations // Fullerenes Nanotubes Carbon Nanostructures. 2010. Vol. 19, No. 1–2. P. 147–153. doi: 10.1080/1536383X.2010.490141
- Tsuchiya T., Oguri I., Yamakoshi Y.N. Novel harmful effects of [60]fullerene on mouse embryos in vitro and in vivo // FEBS Letters. 1996. Vol. 393, No. 1. P. 139–145. doi: 10.1016/0014-5793(96)00812-5
- Sakai A., Yamakoshi Y.N., Miyata N. The effects of fullerenes on the initiation and promotion stages of BALB/3T3 cell transformation // Full Sci Technol. 1995. Vol. 3, No. 4. P. 377–388. doi: 10.1080/153638X950854
- Dumpis M., Iljin V., Litasova E., et al. The acute and sub-acute toxicity of С60/PVP complex in vivo // Adv Nano Research. 2016. Vol. 4, No. 3. P. 167–179. doi: 10.12989/anr.2016.4.3.167
- Xiao L., Takada H., Maeda K., et al. Antioxidant effects of water-soluble fullerene derivatives against ultraviolet ray or peroxylipid through their action of scavenging the reactive oxygen species in human skin keratinocytes // Biomed Pharmacother. 2005. Vol. 59, No. 7. P. 351–358. doi: 10.1016/j.biopha.2005.02.004
- Nelson M.A., Frederick E.D., Bowden G.T., et al. Effects of acute and subchronic exposure of topically applied fullerene extracts on the mouse skin // Toxicol Industr Health. 1993. Vol. 9, No. 4. P. 623–630. doi: 10.1177/074823379300900405
- Ashtami J., Anju S., Mohanan P.V. Conformity of dextran-coated fullerene C70 with L929 fibroblast cells // Colloids Surf B Biointerfaces. 2019. Vol. 184. P. 110530. doi: 10.1016/j.colsurfb.2019.110530
- Horie M., Nishio K., Kato H., et al. In vitro evaluation of cellular influences induced by stable fullerene C70 medium dispersion: induction of cellular oxidative stress // Chemosphere. 2013. Vol. 93, No. 6. P. 1182–1188. doi: 10.1016/j.chemosphere.2013.06.067
- Seda B.C., Ke P.C., Mount A., et al. Toxicity of aqueous C70-gallic acid suspension in Daphnia magna // Environ Toxicol Chem. 2012. Vol. 31, No. 1. P. 215–220. doi: 10.1002/etc.727
- Rajagopalan P., Wudl F., Schinazi R.F., et al. Pharmacokinetics of a water-soluble fullerene in rats // Antimicrob Agents Chemother. 1996. Vol. 40, No. 10. P. 2262–2265. doi: 10.1128/AAC.40.10.2262
- Schinazi R.F., Sijbesma R., Srdanov G., et al. Synthesis and virucidal activity of a water-soluble, configurationally stable, derivatized C60 fullerene // Antimicrob Agents Chemother. 1993. Vol. 37, No. 8. P. 1707–1710. doi: 10.1128/aac.37.8.1707
- Yamago S., Tokuyama H., Nakamura E., et al. In vivo biological behavior of a water-miscible fullerene: 14C labeling, absorption, distribution, excretion and acute toxicity // Chem Biol. 1995. Vol. 2, No. 6. P. 385–389. doi: 10.1016/1074-5521(95)90219-8
- Ming Z., Feng S., Yilihamu A., et al. Toxicity of pristine and chemically functionalized fullerenes to white rot fungus Phanerochaete chrysosporium // Nanomaterials. 2018. Vol. 8, No. 2. P. 120. doi: 10.3390/nano8020120
- Yamawaki H., Iwai N. Cytotoxicity of water soluble fullerene in vascular endothelial cells // Am J Physiol Cell Physiol. 2006. Vol. 290, No. 6. P. C1495–C1502. doi: 10.1152/ajpcell.00481.2005
- Ueng T.H., Kang J.J., Wang H.W., et al. Suppression of microsomal cytochrome P450-dependent monooxygenases and mitochondrial oxidative phosphorylation by fullerenol, a polyhydroxylated fullerene C60 // Toxicol Lett. 1997. Vol. 93, No. 1. P. 29–37. doi: 10.1016/s0378-4274(97)00071-4
- Injac R., Prijatelj M., Strukelj B. Fullerenol nanoparticles: toxicity and antioxidant activity // Methods Mol Biol. 2013. Vol. 1028. P. 75–100. doi: 10.1007/978-1-62703-475-3_5
- Grebowski J., Kazmierska P., Krokosz A. Fullerenols as a new therapeutic approach in nanomedicine // Biomed Res Int. 2013. Vol. 2013. P. 751913. doi: 10.1155/2013/751913
- Gu W., Chen K., Zhao X., et al. Highly dispersed fullerenols hamper osteoclast ruffled border formation by perturbing Ca2+ bundles // Small. 2018. Vol. 14, No. 48. P. e1802549. doi: 10.1002/smll.201802549
- Dugan L.L., Turetsky D.M., Du C., et al. Carboxyfullerenes as neuroprotective agents // Proc Natl Acad Sci USA. 1997. Vol. 94, No. 17. P. 9434–9439. doi: 10.1073/pnas.94.17.9434
- Jensen A.W., Wilson S.R., Schuster D.I. Biological applications of fullerenes // Bioorg Med Chem. 1996. Vol. 4, No. 6. P. 767–779. doi: 10.1016/0968-0896(96)00081-8
- Iijima S. Direct observation of the tetrahedral bonding in graphitized carbon black by high resolution electron microscopy // J Cryst Growth. 1980. Vol. 50, No. 3. P. 675–683. doi: 10.1016/0022-0248(80)90013-5
- Ugarte D. Curling and closure of graphitic networks under electron-beam irradiation // Nature. 1992. Vol. 359, No. 6397. P. 707–709. doi: 10.1038/359707a0
- Ugarte D. Onion-like graphitic particles // Carbon. 1995. Vol. 33, No. 7. P. 989–993. doi: 10.1002/chin.199550232
- Kuznetsov V.L., Chuvilin A.L., Butenko Y.V., et al. Onion-like carbon from ultra-disperse diamond // Chem Phys Lett. 1994. Vol. 222, No. 4. P. 343–348. doi: 10.1016/0009-2614(94)87072-1
- Tomita S., Sakurai T., Ohta H., et al. Structure and electronic properties of carbon onions // J Chem Phys. 2001. Vol. 114. P. 7477–7482. doi: 10.1063/1.1360197
- Han F.D, Yao B., Bai Y.J. Preparation of carbon nano-onions and their application as anode materials for rechargeable lithium-ion batteries // J Phys Chem. 2011. Vol. 115. P. 8923–8927. doi: 10.1021/jp2007599
- Li Y., Kroger M., Liu W.K. Shape effect in cellular uptake of pegylated nanoparticles: Comparison between sphere, rod, cube and disk // Nanoscale. 2015. Vol. 7, No. 40. P. 16631–16646. doi: 10.1039/C5NR02970H
- Giordani S., Camisasca A., Maffeis V. Carbon nano-onions: a valuable class of carbon nanomaterials in biomedicine // Curr Med Chem. 2019. Vol. 26, No. 38. P. 6915–6929. doi: 10.2174/0929867326666181126113957
- Bartelmess J., Giordani S. Carbon nano-onions (multi-layer fullerenes): chemistry and applications // Beilstein J Nanotechnol. 2014. Vol. 5. P. 1980–1998. doi: 10.3762/bjnano.5.207
- Jang J., Kim Y., Hwang J., et al. Biological responses of onion-shaped carbon nanoparticles // Nanomaterials. 2019. Vol. 9, No. 7. P. 1016. doi: 10.3390/nano9071016
- Bartelmess J., De Luca E., Signorelli A., et al. Boron dipyrromethene (bodipy) functionalized carbon nano-onions for high resolution cellular imaging // Nanoscale. 2014. Vol. 6, No. 22. P. 13761–13769. doi: 10.1039/C4NR04533E
- Lettieri S., Camisasca A., d’Amora M., et al. Far-red fluorescent carbon nano-onions as a biocompatible platform for cellular imaging // RSC Adv. 2017. Vol. 7. P. 45676–45681. doi: 10.1039/C7RA09442F
- Frasconi M., Maffais V., Bartelmess J., et al. Highly surface functionalized carbon nano-onions for bright light bioimaging // Methods Appl Fluoresc. 2015. Vol. 3, No. 4. P. 044005. doi: 10.1088/2050-6120/3/4/044005
- Frasconi M., Marotta R., Markey L., et al. Multi-functionalized carbon nano-onions as imaging probes for cancer cells // Chem A Eur J. 2015. Vol. 21, No. 52. P. 19071–19080. doi: 10.1002/chem.201503166
- Bartelmess J., Frasconi M., Balakrishnan P.B., et al. Non-covalent functionalization of carbon nano-onions with pyrene-BODIPY dyads for biological imaging // RSC Adv. 2015. Vol. 5. P. 50253–50258. doi: 10.1039/C5RA07683H
- Giordani S., Bartelmess J., Frasconi M., et al. NIR fluorescence labelled carbon nano-onions: Synthesis, analysis and cellular imaging // J Mater Chem B. 2014. Vol. 2, No. 42. P. 7459–7463. doi: 10.1039/C4TB01087F
- Marchesano V., Ambrosone A., Bartelmess J., et al. Impact of carbon nano-onions on hydra vulgaris as a model organism for nanoecotoxicology // Nanomaterials. 2015. Vol. 5, No. 3. P. 1331–1350. doi: 10.3390/nano5031331
- D’Amora M., Rodio M., Bartelmess J., et al. Biocompatibility and biodistribution of functionalized carbon nano-onions (f-CNOs) in a vertebrate model // Sci Rep. 2016. Vol. 6. P. 33923. doi: 10.1038/srep33923
- Ding L., Stilwell J., Zhang T., et al. Molecular characterization of the cytotoxic mechanism of multiwall carbon nanotubes and nano-onions on human skin fibroblast // Nano Lett. 2005. Vol. 5, No. 12. P. 2448–2464. doi: 10.1021/nl051748o
- Yang M., Flavin K., Kopf I., et al. Functionalization of carbon nanoparticles modulates inflammatory cell recruitment and NLRP3 inflammasome activation // Small. 2013. Vol. 9, No. 24. P. 4194–4206. doi: 10.1002/smll.201300481
