Токсикология наноструктур углерода. Часть I. Сферические наночастицы (фуллерены и наноонионы)

Обложка


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Обзор литературы посвящен обобщению публикаций по токсичности углеродных наноструктур, которые в последнее время все чаще используют в биологических и фармакологических исследованиях, в медицинской химии с перспективой применения в медицине. Анализ литературных данных показывает, что, несмотря на огромное количество работ, нет однозначных выводов о токсикологических характеристиках различных типов углеродных наноматериалов. Использование наноструктур углерода в медицине может быть поставлено под сомнение из-за потенциально неблагоприятных последствий для здоровья организма при их применении. Для выяснения безвредности необходима разработка более эффективных тестов на животных, с учетом особенностей каждого типа наноматериалов.

Полный текст

Доступ закрыт

Об авторах

Елена Викторовна Литасова

Институт экспериментальной медицины

Автор, ответственный за переписку.
Email: llitasova@mail.ru
ORCID iD: 0000-0002-0999-8212
SPIN-код: 5568-8939

канд. биол. наук, ведущий научный сотрудник

Россия, Санкт-Петербург

Виктор Владимирович Ильин

Институт экспериментальной медицины

Email: llitasova@mail.ru
ORCID iD: 0000-0002-1012-7561
SPIN-код: 5559-8089

канд. хим. наук, научный сотрудник

Россия, Санкт-Петербург

Леонид Витальевич Мызников

Институт экспериментальной медицины

Email: myznikov_lv@mail.ru
ORCID iD: 0000-0002-0863-3027
Scopus Author ID: 391134

д-р хим. наук, научный сотрудник

Россия, Санкт-Петербург

Левон Борисович Пиотровский

Институт экспериментальной медицины

Email: levon-piotrovsky@yandex.ru
ORCID iD: 0000-0001-8679-1365
SPIN-код: 2927-6178

д-р биол. наук, руководитель лаборатории

Россия, Санкт-Петербург

Список литературы

  1. Shibuya M., Kato M., Ozawa M., et al. Detection of buckminsterfullerene in usual soot and commercial charcoals // Full Sci Technol. 1999. Vol. 7, No. 2. P. 181–193. doi: 10.1080/10641229909350278
  2. Bang J.J., Guerrero P.A., Lopez D.A., et al. Carbon nanotubes and other fullerene nanocrystals in domestic propane and natural gas combustion streams // J Nanosci Nanotechnol. 2004. Vol. 4, No. 7. P. 716–718. doi: 10.1166/jnn.2004.095
  3. Murr L.E., Soto K.F. A TEM study of soot, carbon nanotubes, and related fullerene nanopolyhedra in common fuel-gas combustion sources // Mater Characteriz. 2005. Vol. 55, No. 1. P. 50–65. doi: 10.1016/j.matchar.2005.02.008
  4. Soto K.F., Carrasco A., Powell T.G., et al. Comparative in vitro cytotoxicity assessment of some manufactured nanoparticulate materials characterized by transmission electron microscopy // J Nanopart Res. 2005. Vol. 7. P. 145–169. doi: 10.1007/s11051-005-3473-1
  5. Sharoyko V.V., Ageev S.V. Podolsky N.E., et al. Biologically active water-soluble fullerene adducts: Das Glasperlenspiel (by H. Hesse)? // J Mol Liq. 2021. Vol. 323. P. 114990.
  6. Kazemzadeh H., Mozafari M. Fullerene-based delivery systems // Drug Discov Today. 2019. Vol. 24, No. 3. P. 898–905. doi: 10.1016/j.drudis.2019.01.013
  7. Raphey V.R., Henna T.K., Nivitha K.P., et al. Advanced biomedical applications of carbon nanotube // Mater Sci Eng C Mater Biol Appl. 2019. Vol. 100. P. 616–630. doi: 10.1016/j.msec.2019.03.043
  8. Negri V., Pacheco-Torres J., Calle D., et al. Carbon nanotubes in biomedicine // Top Curr Chem (Cham). 2020. Vol. 378, No. 1. P. 15. doi: 10.1007/s41061-019-0278-8
  9. Karousis N., Suarez-Martinez I., Ewels C.P., et al. Structure, properties, functionalization, and applications of carbon nanohorns // Chem Rev. 2016. Vol. 116, No. 8. P. 4850–4883. doi: 10.1021/acs.chemrev.5b00611
  10. Bobrowska D.M., Olejnik P., Echegoyen L., et al. Onion-like carbon nanostructures: an overview of bio-applications // Curr Med Chem. 2019. Vol. 26, No. 38. P. 6896–6914. doi: 10.2174/0929867325666181101105535
  11. Xiaoli F., Qiyue C., Weihong G., et al. Toxicology data of graphene-family nanomaterials: an update // Arch Toxicol. 2020. Vol. 94. P. 1915–1939. doi: 10.1007/s00204-020-02717-2
  12. Iravani S., Varma R.S. Green synthesis, biomedical and biotechnological applications of carbon and grapheme quantum dots. A review // Environ Chem Lett. 2020. P. 1–25. doi: 10.1007/s10311-020-00984-0
  13. Reina G., Zhao L., Bianco A., et al. Chemical functionalization of nanodiamonds: opportunities and challenges ahead // Angew Chem Int Ed Engl. 2019. Vol. 58, No. 50. P. 17918–17929. doi: 10.1002/anie.201905997
  14. Dolmatov V.Yu., Ozerin A.N., Kulakova I.I., et al. Detonation nanodiamonds: new aspects in the theory and practice of synthesis, properties and applications // Russ Chem Rev. 2020. Vol. 89, No. 12. P. 1428–1462. doi: 10.1070/RCR4924
  15. Xia T., Li N., Nel A.E. Potential health impact of nanoparticles // Annu Rev Public Health. 2009. Vol. 30. P. 137–150. doi: 10.1146/annurev.publhealth.031308.100155
  16. Kalenczuk R.J., Borowiak-Palen E., Pichler T., et al. Studies on the preparation and characterisation of carbon nanostructures // Solid State Phenomena. 2004. Vol. 99–100. P. 269–272. doi: 10.4028/ href='www.scientific.net/ssp.99-100.269' target='_blank'>www.scientific.net/ssp.99-100.269
  17. Szabo A., Perri C., Csato A., et al. Nagy Synthesis methods of carbon nanotubes and related materials. Materials. 2010. Vol. 3, No. 5. P. 3092–3140. doi: 10.3390/ma3053092
  18. Kroto H.W., Heath S., O’Brien S.C., et al. C60: Buckminsterfullerene // Nature. 1985. Vol. 318. P. 162–163. doi: 10.1038/318162a0
  19. Cataldo F., Da Ros T., eds. Medicinal Chemistry and Pharmacological Potential of Fullerenes and Carbon Nanotubes. Springer; 2008. P. 139–155. doi: 10.1007/978-1-4020-6845-4
  20. Sijbesma R., Srdanov G., Wudl F., et al. Synthesis of a fullerene derivative for the inhibition of HIV enzymes // J Am Chem Soc. 1993. Vol. 115, No. 15. P. 6510–6512. doi: 10.1021/ja00068a006
  21. Friedman S.H., DeCamp D.L., Sijbesma R.P., et al. Inhibition of the HIV-1 protease by fullerene derivatives: model binding studies and experimental verification // J Am Chem Soc. 1993. Vol. 115, No. 15. P. 6506–6509. doi: 10.1021/ja00068a005
  22. Powell W.H., Cozzi F., Moss G.P., et al. Nomenclature for the C60-Ih and C70-D5h(6) fullerenes (IUPAC Recommendations 2002) // Pure Appl Chem. 2002. Vol. 74, No. 4. P. 629–695. doi: 10.1351/pac200274040629
  23. Lalwani G., Sitharaman B. Multifunctional fullerene and metallofullerene based nanobiomaterials // Nano LIFE. 2013. Vol. 3, No. 3. P. 1342003. doi: 10.1142/S1793984413420038
  24. Scrivens W.A., Tour J.M., Creek K., et al. Synthesis of 14C-labeled C60, its suspension in water and its uptake by human keratinocytes // J Am Chem Soc. 1994. Vol. 116, No. 10. P. 4517–4518. doi: 10.1021/ja00089a067
  25. Chiron J.P., Lamandé J., Moussa F., et al. Effect du fullerène C60 “micronisé” sur la croissance microbienne in vitro // Ann Pharm Fr. 2000. Vol. 58. P. 170–175.
  26. Baierl T., Drosselmeyer E., Seidel A., et al. Comparison of immunological effects of fullerene C60 and raw soot from fullerene production on alveolar macrophages and macrophage like cells in vitro // Exp Toxicol Pathol. 1996. Vol. 48, No. 6. P. 508–511. doi: 10.1016/S0940-2993(96)80068-6
  27. Moussa F., Trivin F., Ceolin R., et al. Early effects of C60 administration in Swiss mice: a preliminary account for in vivo C60 toxicity // Full Sci Technol. 1996. Vol. 4, No. 1. P. 21–29. doi: 10.1080/10641229608001534
  28. Mori T., Takada H. Preclinical studies on safety of fullerene upon acute oral administration and evaluation for no mutagenesis // Toxicology. 2006. Vol. 225, No. 1. P. 48–54. doi: 10.1016/j.tox.2006.05.001
  29. Moussa F., Pressac M., Chretien P., et al. C60 fullerene toxicity: preliminary account of an in vivo study. Proceedings of the Abstracts of Joint International Meeting the Electrochemical Society and the International Society of Electrochemistry; 1997 Aug 31 – Sept 5; Paris // The Electrochemical Society Interface. 1997. Vol. 97, No. 2. P. 1589. doi: 10.1080/10641229608001534
  30. Nelson M.A., Frederick E.D., Bowden G.T., et al. Effects of acute and subchronic exposure of topically applied fullerene extracts on the mouse skin // Toxicol Indust Health. 1993. Vol. 9, No. 4. P. 623–630. doi: 10.1177/074823379300900405
  31. Moriguchi T., Yano K., Hokari S., et al. Effect of repeated application of С60 combined with UVA radiation onto hairless mouse back skin // Full Sci Technol. 1999. Vol. 7, No. 2. P. 195–209. doi: 10.1080/10641229909350279
  32. Deguchi S., Alargova R.G., Tsujii K. Stable dispersions of fullerenes, C60 and C70, in water. Preparation and characteristics // Langmuir. 2001. Vol. 17. P. 6013–6017. doi: 10.1021/la010651o
  33. Oberdörster E. Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in brain of juvenile largemouth bass // Environ Health Perspect. 2004. Vol. 112, No. 10. P. 1058–1062. doi: 10.1289/ehp.7021
  34. Fortner I.D., Lyon D.Y., Sayes C.M., et al. C60 in water: nanocrystal formation and microbial response // Environ Sci Technol. 2005. Vol. 39, No. 11. P. 4307–4316. doi: 10.1021/es048099n
  35. Henry T.B., Menn F., Fleming J.T., et al. Attributing effects of aqueous C60 nano-aggregates to tetrahydrofuran decomposition products in larval zebrafish by assessment of gene expression // Environ Health Perspect. 2007. Vol. 115, No. 7. P. 1059–1065. doi: 10.1289/ehp.9757
  36. Oberdörster E., Zhu S., Blickley T.M., et al. Ecotoxicology of carbon-based engineered nanoparticles: effects of fullerene (C60) on aquatic organisms // Carbon. 2006. Vol. 44, No. 6. P. 1112–1120. doi: 10.1016/j.carbon.2005.11.008
  37. Andrievsky G., Klochkov V., Derevyanchenko L. Is C60 fullerene molecule toxic? // Fullerenes Nanotubes Carbon Nanostruct. 2005. Vol. 3, No. 4. P. 363–376. doi: 10.1080/15363830500237267
  38. Brant J.A., Labille J., Bottero J.Y., et al. Characterizing the impact of preparation method on fullerene cluster structure and chemistry // Langmuir. 2006. Vol. 22, No. 8. P. 3878–3885. doi: 10.1021/la053293o
  39. Tsuchiya T., Yamakoshi Y.N., Miyata N. A novel promoting action of fullerene C60 on the chondrogenesis in rat embryonic limd bud cell culture system // Biochem Biophys Res Commun. 1995. Vol. 206, No. 3. P. 885–894. doi: 10.1006/bbrc.1995.1126
  40. Snyder R.W., Fennell T.R., Wingard C.J., et al. Distribution and biomarker of carbon-14 labeled fullerene C60 ([14C(U)]C60) in pregnant and lactating rats and their offspring after maternal intravenous exposure // J Appl Toxicol. 2015. Vol. 35, No. 12. P. 1438–1451. doi: 10.1002/jat.3177
  41. Piotrovsky L.B., Eropkin M.Yu., Eropkina E.M. Biological effects in cell cultures of fullerene C60: dependence on aggregation state. In: Medicinal Chemistry and Pharmacological Potential of Fullerenes and Carbon Nanotubes. Cataldo F., Da Ros T., eds. Springer, 2008. P. 139–155. doi: 10.1007/978-1-4020-6845-4
  42. Piotrovsky L.B., Dumpis M.A., Litasova E.V., et al. Dependence of Biological effects of fullerene C60 in vitro from the type of preparations // Fullerenes Nanotubes Carbon Nanostructures. 2010. Vol. 19, No. 1–2. P. 147–153. doi: 10.1080/1536383X.2010.490141
  43. Tsuchiya T., Oguri I., Yamakoshi Y.N. Novel harmful effects of [60]fullerene on mouse embryos in vitro and in vivo // FEBS Letters. 1996. Vol. 393, No. 1. P. 139–145. doi: 10.1016/0014-5793(96)00812-5
  44. Sakai A., Yamakoshi Y.N., Miyata N. The effects of fullerenes on the initiation and promotion stages of BALB/3T3 cell transformation // Full Sci Technol. 1995. Vol. 3, No. 4. P. 377–388. doi: 10.1080/153638X950854
  45. Dumpis M., Iljin V., Litasova E., et al. The acute and sub-acute toxicity of С60/PVP complex in vivo // Adv Nano Research. 2016. Vol. 4, No. 3. P. 167–179. doi: 10.12989/anr.2016.4.3.167
  46. Xiao L., Takada H., Maeda K., et al. Antioxidant effects of water-soluble fullerene derivatives against ultraviolet ray or peroxylipid through their action of scavenging the reactive oxygen species in human skin keratinocytes // Biomed Pharmacother. 2005. Vol. 59, No. 7. P. 351–358. doi: 10.1016/j.biopha.2005.02.004
  47. Nelson M.A., Frederick E.D., Bowden G.T., et al. Effects of acute and subchronic exposure of topically applied fullerene extracts on the mouse skin // Toxicol Industr Health. 1993. Vol. 9, No. 4. P. 623–630. doi: 10.1177/074823379300900405
  48. Ashtami J., Anju S., Mohanan P.V. Conformity of dextran-coated fullerene C70 with L929 fibroblast cells // Colloids Surf B Biointerfaces. 2019. Vol. 184. P. 110530. doi: 10.1016/j.colsurfb.2019.110530
  49. Horie M., Nishio K., Kato H., et al. In vitro evaluation of cellular influences induced by stable fullerene C70 medium dispersion: induction of cellular oxidative stress // Chemosphere. 2013. Vol. 93, No. 6. P. 1182–1188. doi: 10.1016/j.chemosphere.2013.06.067
  50. Seda B.C., Ke P.C., Mount A., et al. Toxicity of aqueous C70-gallic acid suspension in Daphnia magna // Environ Toxicol Chem. 2012. Vol. 31, No. 1. P. 215–220. doi: 10.1002/etc.727
  51. Rajagopalan P., Wudl F., Schinazi R.F., et al. Pharmacokinetics of a water-soluble fullerene in rats // Antimicrob Agents Chemother. 1996. Vol. 40, No. 10. P. 2262–2265. doi: 10.1128/AAC.40.10.2262
  52. Schinazi R.F., Sijbesma R., Srdanov G., et al. Synthesis and virucidal activity of a water-soluble, configurationally stable, derivatized C60 fullerene // Antimicrob Agents Chemother. 1993. Vol. 37, No. 8. P. 1707–1710. doi: 10.1128/aac.37.8.1707
  53. Yamago S., Tokuyama H., Nakamura E., et al. In vivo biological behavior of a water-miscible fullerene: 14C labeling, absorption, distribution, excretion and acute toxicity // Chem Biol. 1995. Vol. 2, No. 6. P. 385–389. doi: 10.1016/1074-5521(95)90219-8
  54. Ming Z., Feng S., Yilihamu A., et al. Toxicity of pristine and chemically functionalized fullerenes to white rot fungus Phanerochaete chrysosporium // Nanomaterials. 2018. Vol. 8, No. 2. P. 120. doi: 10.3390/nano8020120
  55. Yamawaki H., Iwai N. Cytotoxicity of water soluble fullerene in vascular endothelial cells // Am J Physiol Cell Physiol. 2006. Vol. 290, No. 6. P. C1495–C1502. doi: 10.1152/ajpcell.00481.2005
  56. Ueng T.H., Kang J.J., Wang H.W., et al. Suppression of microsomal cytochrome P450-dependent monooxygenases and mitochondrial oxidative phosphorylation by fullerenol, a polyhydroxylated fullerene C60 // Toxicol Lett. 1997. Vol. 93, No. 1. P. 29–37. doi: 10.1016/s0378-4274(97)00071-4
  57. Injac R., Prijatelj M., Strukelj B. Fullerenol nanoparticles: toxicity and antioxidant activity // Methods Mol Biol. 2013. Vol. 1028. P. 75–100. doi: 10.1007/978-1-62703-475-3_5
  58. Grebowski J., Kazmierska P., Krokosz A. Fullerenols as a new therapeutic approach in nanomedicine // Biomed Res Int. 2013. Vol. 2013. P. 751913. doi: 10.1155/2013/751913
  59. Gu W., Chen K., Zhao X., et al. Highly dispersed fullerenols hamper osteoclast ruffled border formation by perturbing Ca2+ bundles // Small. 2018. Vol. 14, No. 48. P. e1802549. doi: 10.1002/smll.201802549
  60. Dugan L.L., Turetsky D.M., Du C., et al. Carboxyfullerenes as neuroprotective agents // Proc Natl Acad Sci USA. 1997. Vol. 94, No. 17. P. 9434–9439. doi: 10.1073/pnas.94.17.9434
  61. Jensen A.W., Wilson S.R., Schuster D.I. Biological applications of fullerenes // Bioorg Med Chem. 1996. Vol. 4, No. 6. P. 767–779. doi: 10.1016/0968-0896(96)00081-8
  62. Iijima S. Direct observation of the tetrahedral bonding in graphitized carbon black by high resolution electron microscopy // J Cryst Growth. 1980. Vol. 50, No. 3. P. 675–683. doi: 10.1016/0022-0248(80)90013-5
  63. Ugarte D. Curling and closure of graphitic networks under electron-beam irradiation // Nature. 1992. Vol. 359, No. 6397. P. 707–709. doi: 10.1038/359707a0
  64. Ugarte D. Onion-like graphitic particles // Carbon. 1995. Vol. 33, No. 7. P. 989–993. doi: 10.1002/chin.199550232
  65. Kuznetsov V.L., Chuvilin A.L., Butenko Y.V., et al. Onion-like carbon from ultra-disperse diamond // Chem Phys Lett. 1994. Vol. 222, No. 4. P. 343–348. doi: 10.1016/0009-2614(94)87072-1
  66. Tomita S., Sakurai T., Ohta H., et al. Structure and electronic properties of carbon onions // J Chem Phys. 2001. Vol. 114. P. 7477–7482. doi: 10.1063/1.1360197
  67. Han F.D, Yao B., Bai Y.J. Preparation of carbon nano-onions and their application as anode materials for rechargeable lithium-ion batteries // J Phys Chem. 2011. Vol. 115. P. 8923–8927. doi: 10.1021/jp2007599
  68. Li Y., Kroger M., Liu W.K. Shape effect in cellular uptake of pegylated nanoparticles: Comparison between sphere, rod, cube and disk // Nanoscale. 2015. Vol. 7, No. 40. P. 16631–16646. doi: 10.1039/C5NR02970H
  69. Giordani S., Camisasca A., Maffeis V. Carbon nano-onions: a valuable class of carbon nanomaterials in biomedicine // Curr Med Chem. 2019. Vol. 26, No. 38. P. 6915–6929. doi: 10.2174/0929867326666181126113957
  70. Bartelmess J., Giordani S. Carbon nano-onions (multi-layer fullerenes): chemistry and applications // Beilstein J Nanotechnol. 2014. Vol. 5. P. 1980–1998. doi: 10.3762/bjnano.5.207
  71. Jang J., Kim Y., Hwang J., et al. Biological responses of onion-shaped carbon nanoparticles // Nanomaterials. 2019. Vol. 9, No. 7. P. 1016. doi: 10.3390/nano9071016
  72. Bartelmess J., De Luca E., Signorelli A., et al. Boron dipyrromethene (bodipy) functionalized carbon nano-onions for high resolution cellular imaging // Nanoscale. 2014. Vol. 6, No. 22. P. 13761–13769. doi: 10.1039/C4NR04533E
  73. Lettieri S., Camisasca A., d’Amora M., et al. Far-red fluorescent carbon nano-onions as a biocompatible platform for cellular imaging // RSC Adv. 2017. Vol. 7. P. 45676–45681. doi: 10.1039/C7RA09442F
  74. Frasconi M., Maffais V., Bartelmess J., et al. Highly surface functionalized carbon nano-onions for bright light bioimaging // Methods Appl Fluoresc. 2015. Vol. 3, No. 4. P. 044005. doi: 10.1088/2050-6120/3/4/044005
  75. Frasconi M., Marotta R., Markey L., et al. Multi-functionalized carbon nano-onions as imaging probes for cancer cells // Chem A Eur J. 2015. Vol. 21, No. 52. P. 19071–19080. doi: 10.1002/chem.201503166
  76. Bartelmess J., Frasconi M., Balakrishnan P.B., et al. Non-covalent functionalization of carbon nano-onions with pyrene-BODIPY dyads for biological imaging // RSC Adv. 2015. Vol. 5. P. 50253–50258. doi: 10.1039/C5RA07683H
  77. Giordani S., Bartelmess J., Frasconi M., et al. NIR fluorescence labelled carbon nano-onions: Synthesis, analysis and cellular imaging // J Mater Chem B. 2014. Vol. 2, No. 42. P. 7459–7463. doi: 10.1039/C4TB01087F
  78. Marchesano V., Ambrosone A., Bartelmess J., et al. Impact of carbon nano-onions on hydra vulgaris as a model organism for nanoecotoxicology // Nanomaterials. 2015. Vol. 5, No. 3. P. 1331–1350. doi: 10.3390/nano5031331
  79. D’Amora M., Rodio M., Bartelmess J., et al. Biocompatibility and biodistribution of functionalized carbon nano-onions (f-CNOs) in a vertebrate model // Sci Rep. 2016. Vol. 6. P. 33923. doi: 10.1038/srep33923
  80. Ding L., Stilwell J., Zhang T., et al. Molecular characterization of the cytotoxic mechanism of multiwall carbon nanotubes and nano-onions on human skin fibroblast // Nano Lett. 2005. Vol. 5, No. 12. P. 2448–2464. doi: 10.1021/nl051748o
  81. Yang M., Flavin K., Kopf I., et al. Functionalization of carbon nanoparticles modulates inflammatory cell recruitment and NLRP3 inflammasome activation // Small. 2013. Vol. 9, No. 24. P. 4194–4206. doi: 10.1002/smll.201300481

© Литасова Е.В., Ильин В.В., Мызников Л.В., Пиотровский Л.Б., 2022

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 65565 от 04.05.2016 г.