Experimental approaches to modeling delirium in zebrafish (Danio rerio)

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Delirium is an acute psychiatric syndrome characterized by impaired attention, perception and orientation in space. Albeit known for millennia, the mechanisms and risk factors of delirium remain poorly understood. Experimental animal models, especially rodents, become widely used to understand these pathogenetic aspects. However, a new model organism — zebrafish (Danio rerio) also has promise in this field. Discussed here, recent behavioral tests and protocols for zebrafish enable assessing their behavioral and cognitive function, and its experimental modulation by deliriant drugs and other factors.

Full Text

Restricted Access

About the authors

Gleb O. Maslov

Sirius University of Science and Technology; Ural Federal University

Email: maslovog6@gmail.com

Research Associate

Russian Federation, Sochi; Yekaterinburg

Tatyana O. Kolesnikova

Sirius University of Science and Technology

Email: philimontani@yandex.ru
ORCID iD: 0000-0002-5561-8583
SPIN-code: 8558-7887

Research Associate

Russian Federation, Sochi

Konstantin N. Zabegalov

Sirius University of Science and Technology

Email: hatokiri@mail.ru
ORCID iD: 0000-0002-9748-0324
SPIN-code: 5993-6315

Research Associate

Russian Federation, Sochi

Allan V. Kalueff

Sirius University of Science and Technology; Ural Federal University; Saint Petersburg State University; A.M. Granov Russian Research Center for Radiology and Surgical Technologies; Almazov National Medical Research Centre; Novosibirsk State University; Research Institute of Neuroscience and Medicine; Moscow Institute of Physics and Technology

Author for correspondence.
Email: avkalueff@gmail.com
ORCID iD: 0000-0002-7525-1950
SPIN-code: 4134-0515

Dr. Sci. (Biol.), Professor

Russian Federation, Sochi; Yekaterinburg; Saint Petersburg; Saint Petersburg; Saint Petersburg; Novosibirsk; Novosibirsk; Moscow

References

  1. Sachdev PS, Blacker D, Blazer DG, et al. Classifying neurocognitive disorders: the DSM-5 approach. Nat Rev Neurol. 2014;10(11): 634–642. doi: 10.1038/nrneurol.2014.181
  2. Inouye SK, Westendorp RG, Saczynski JS. Delirium in elderly people. Lancet. 2014;383(9920):911–922. doi: 10.1016/S0140-6736(13)60688-1
  3. van den Boogaard M, Slooter AJC. Delirium in critically ill patients: current knowledge and future perspectives. BJA Educ. 2019;19(12):398–404. doi: 10.1016/j.bjae.2019.09.004
  4. European Delirium Associations, American Delirium Society. The DSM-5 criteria, level of arousal and delirium diagnosis: inclusiveness is safer. BMC Med. 2014;12:141. doi: 10.1186/s12916-014-0141-2
  5. Maldonado JR. Neuropathogenesis of delirium: review of current etiologic theories and common pathways. Am J Geriatr Psychiatry. 2013;21(12):1190–1222. doi: 10.1016/j.jagp.2013.09.005
  6. Pereverzev AP, Ostroumova OD, Isaev RI, et al. Drug-induced delirium in elderly and senile patients. S.S. Korsakov Journal of Neurology and Psychiatry. 2019;119(7):120–127. (In Russ.). doi: 10.17116/jnevro2019119071120
  7. Setters B, Solberg LM. Delirium. Prim Care. 2017;44(3):541–559. doi: 10.1016/j.pop.2017.04.010
  8. Adamis D, Treloar A, Martin FC, Macdonald AJ. A brief review of the history of delirium as a mental disorder. Hist Psychiatry. 2007;18(72 Pt 4):459–469. doi: 10.1177/0957154X07076467
  9. Trzepacz PT, Leavitt M, Ciongoli K. An animal model for delirium. Psychosomatics. 1992;33(4):404–415. doi: 10.1016/S0033-3182(92)71945-8
  10. Velagapudi R, Subramaniyan S, Xiong C, et al. Orthopedic surgery triggers attention deficits in a delirium-like mouse model. Front Immunol. 2019;10:2675. doi: 10.3389/fimmu.2019.02675
  11. Viana J, Wildman N, Hannon E, et al. Clozapine-induced transcriptional changes in the zebrafish brain. NPJ Schizophr. 2020;6:3. doi: 10.1038/s41537-019-0092-x
  12. Wang G, Zhang G, Li Z, et al. Abnormal behavior of zebrafish mutant in dopamine transporter is rescued by clozapine. iScience. 2019;17:325–333. doi: 10.1016/j.isci.2019.06.039
  13. Bruni G, Rennekamp AJ, Velenich A, et al. Zebrafish behavioral profiling identifies multitarget antipsychotic-like compounds. Nat Chem Biol. 2016;12(7):559–566. doi: 10.1038/nchembio.2097
  14. Giacomini NJ, Rose B, Kobayashi K, Guo S. Antipsychotics produce locomotor impairment in larval zebrafish. Neurotoxicol Teratol. 2006;28(2):245–250. doi: 10.1016/j.ntt.2006.01.013
  15. Sivalingam M, Ogawa S, Parhar IS. Habenula kisspeptin retrieves morphine impaired fear memory in zebrafish. Sci Rep. 2020;10:19569. doi: 10.1038/s41598-020-76287-9
  16. Volgin AD, Yakovlev OA, Demin KA, et al. Acute behavioral effects of deliriant hallucinogens atropine and scopolamine in adult zebrafish. Behav Brain Res. 2019;359:274–280. doi: 10.1016/j.bbr.2018.10.033
  17. Chen F, Chen S, Liu S, et al. Effects of lorazepam and WAY-200070 in larval zebrafish light/dark choice test. Neuropharmacology. 2015;95:226–233. doi: 10.1016/j.neuropharm.2015.03.022
  18. da Silva Chaves SN, Felicio GR, Costa BPD, et al. Behavioral and biochemical effects of ethanol withdrawal in zebrafish. Pharmacol Biochem Behav. 2018;169:48–58. doi: 10.1016/j.pbb.2018.04.006
  19. Krook JT, Duperreault E, Newton D, et al. Repeated ethanol exposure increases anxiety-like behaviour in zebrafish during withdrawal. PeerJ. 2019;7: e6551. doi: 10.7717/peerj.6551
  20. Khor B-S, Amar Jamil MF, Adenan MI, Shu-Chien AC. Mitragynine attenuates withdrawal syndrome in morphine-withdrawn zebrafish. PLoS One. 2011;6(12): e28340. doi: 10.1371/journal.pone.0028340
  21. Cachat J, Canavello P, Elegante M, et al. Modeling withdrawal syndrome in zebrafish. Behav Brain Res. 2010;208(2):371–376. doi: 10.1016/j.bbr.2009.12.004
  22. Kim Y-H, Lee Y, Kim D, et al. Scopolamine-induced learning impairment reversed by physostigmine in zebrafish. Neurosci Res. 2010;67(2):156–161. doi: 10.1016/j.neures.2010.03.003
  23. Franscescon F, Muller TE, Bertoncello KT, Rosemberg DB. Neuroprotective role of taurine on MK-801-induced memory impairment and hyperlocomotion in zebrafish. Neurochem Int. 2020;135:104710. doi: 10.1016/j.neuint.2020.104710
  24. Zakhary SM, Ayubcha D, Ansari F, et al. A behavioral and molecular analysis of ketamine in zebrafish. Synapse. 2011;65(2):160–167. doi: 10.1002/syn.20830
  25. Flaherty JH, Yue J, Rudolph JL. Dissecting delirium: phenotypes, consequences, screening, diagnosis, prevention, treatment, and program implementation. Clin Geriatr Med. 2017;33(3):393–413. doi: 10.1016/j.cger.2017.03.004
  26. Gaertner J, Eychmueller S, Leyhe T, et al. Benzodiazepines and/or neuroleptics for the treatment of delirium in palliative care? — a critical appraisal of recent randomized controlled trials. Ann Palliat Med. 2019;8(4):504–515. doi: 10.21037/apm.2019.03.06
  27. Inouye SK. Delirium in older persons. N Engl J Med. 2006;354:1157–1165. doi: 10.1056/NEJMra052321
  28. van der Mast RC. Pathophysiology of delirium. J Geriatr Psychiatry Neurol. 1998;11(3):138–145. doi: 10.1177/089198879801100304
  29. Trzepacz PT. The neuropathogenesis of delirium. A need to focus our research. Psychosomatics. 1994;35(4):374–391. doi: 10.1016/S0033-3182(94)71759-X
  30. Maldonado JR. Delirium in the acute care setting: characteristics, diagnosis and treatment. Crit Care Clin. 2008;24(4):657–722. doi: 10.1016/j.ccc.2008.05.008

Copyright (c) 2022 Maslov G.O., Kolesnikova T.O., Zabegalov K.N., Kalueff A.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 65565 от 04.05.2016 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies