Antihypoxic properties of condensed benzimidazole derivatives with antioxidant activity

Cover Page


Cite item

Full Text

Abstract

Hypoxia plays an important role in the vital activity of the organism and practically accompanies any pathology. Hypoxia and tissue ischemia in the early stages are accompanied by the activation of lipid peroxidation. Derivatives of 9-dialkylaminoethyl imidazobenzimidazole with a 3,4-dioxyphenyl substitute showed high antioxidant activity. Therefore, they have been studied for antihypoxic activity in experimental models of hypobaric, histotoxic and hemic hypoxia, as well as in animals pre-typed for resistance to hypoxia, and it was shown that new condensed benzimidazole derivatives with antioxidant activity showed a wide range of antihypoxic activity. The most pronounced protective antihypoxic properties were demonstrated by compound RU-185.

Full Text

ВВЕДЕНИЕ

Гипоксические состояния играют важную роль в жизнедеятельности организма, а также сопутствуют практически любой патологии. Специфическую группу этих состояний составляют ишемии мозга, сердца, легких, печени, почек, плода. Выделяют также рабочую гипоксию при предельных физических нагрузках и перегрузках. Гипоксические состояния проявляются при инфекционных заболеваниях, травмах, шоках, кровопотерях, клинической смерти. Решение проблемы старения, стрессовых нагрузок, работоспособности человека в конечном счете связано с устранением гипоксических состояний и их последствий, со снижением чувствительности организма к этим состояниям [1, 2].

Основными звеньями в механизме гипоксических повреждений являются нарушения энергетики клетки, связанные с поломкой НАД-зависимых процессов в дыхательной цепи, подавлением сопрягающей функции дыхательной цепи в области цитохромов, а также процессы, связанные с инициацией перекисного окисления липидов (ПОЛ) и нарушением проницаемости мембран, что ведет за собой развитие различных морфологических изменений [3, 4]. Клинические проявления, сопутствующие гипоксическим нарушениям, зависят от степени гипоксии. Типичный пример гипоксических нарушений — высотная болезнь. Наблюдается общая слабость, чувство жара, изменения зрения (появление черной или серой пелены), шум в ушах, тошнота, головокружение. Резко снижается умственная и физическая работоспособность, развиваются нарушения оперантной деятельности. Постгипоксический период также может сопровождаться нарушениями оперантной деятельности, кратковременной амнезией, головокружением.

Уставлено, что гипоксия и ишемия тканей уже на ранних сроках сопровождается активацией ПОЛ [1, 4]. Существует несколько механизмов инициации ПОЛ в условиях гипоксии и ишемии органов. Как известно, одно из важнейших условий протекания ПОЛ — образование активных форм О2. К ним относят супероксидный анион-радикал (О2), гидроксильный радикал (ОН), синглетный кислород (1O2), а также перекись водорода (Н2О2), которая, сама не являясь свободным радикалом, активно их продуцирует [5]. Скорость образования активных форм О2 в дыхательной цепи митохондрий зависит от степени сопряженности и резко возрастает при блокаде дыхательной цепи, наблюдаемой при гипоксии [6]. Причина избыточного образования свободных радикалов при гипоксии — блокада конечного звена дыхательной цепи в митохондриях, утечка электронов по пути следования к цитохромоксидазе, что приводит к одноэлектронному восстановлению кислорода с образованием его активных форм [7].

Антиоксидантные свойства конденсированных производных бензимидазола были изучены ранее [8, 9] на модели аскорбат-зависимого ПОЛ. Было показано, что наибольшую антиоксидантную активность проявляли производные 9-диалкиламиноэтил-имидазобензимидазола (ИМБИ) с 3,4-диоксифенильным заменителем, которые в два раза превосходили препарат сравнения дибунол. Соединения с 4- и 3-оксифенильными заместителями или 2,4- и 2,5-диоксифенильными заместителями, как правило, уступали по активности 3,4-диоксифенил-ИМБИ [8]. В результате было выявлено производное 2-(3,4-дигидроксифенил)-9-диэтиламиноэтилимидазо [1,2-а] бензимидазола дигидробромида (РУ-185) как антиоксидантное соединение с широким спектром антирадикальных и мембранопротекторных свойств [10, 11].

Цель работы — изучение противогипоксических свойств новых химических веществ из ряда конденсированных бензимидазолов, проявляющих антиоксидантную активность.

МАТЕРИАЛЫ И МЕТОДЫ

Объектом исследования были соединения из ряда конденсированных бензимидазолов с антиоксидантной активностью, синтезированные в НИИ физической и органической химии Южного федерального университета.

Моделирование острой гипобарической гипоксии (ОГБГ) проводили на неинбредных мышах в проточной барокамере при температуре 20–22 °C [12]. Эффективность антигипоксических свойств оценивали по коэффициенту защиты (Кз), вычисляемому по изменению времени жизни (Тж) опытных животных на «высоте» относительно Тж контрольных.

Острая гистотоксическая гипоксия (ОГТГ) моделировалась на неинбредных мышах цианидом калия в дозе 9 мг/кг (летальная доза, ЛД100) [13] однократно внутрибрюшинно. Расчеты эффективности действия препаратов производились по выживаемости (Вж, %).

Острая гемическая гипоксии (ОГеГ) воспроизводилась нитритом натрия NaNO2 внутрибрюшинно в дозе 220 мг/кг (ЛД100) [14]. Эффективность антигипоксического действия веществ оценивали по изменению Тж мышей в минутах относительно контроля.

ОГБГ моделировалась также на животных с разной фенотипической и генотипической устойчивостью к гипоксии, для чего за 2 недели до ОГБГ экспериментальных животных типизировали на высоко- (ВУ) и низкоустойчивых (НУ) по методу [15]. Tж на «высоте» регистрировалось с момента ее достижения до появления признаков терминальной стадии, после чего животных «опускали». Через 15 дней определялась антигипоксическая активность веществ. В каждой группе рассчитывался коэффициент защиты Кз.

Статистическую обработку данных проводили с использованием пакета программ Statistica 6.0 (StatSoft, США) и Microsoft Excel 2016 (США). Проводился расчет базовых статистических показателей, характеризующих вариационные ряды (среднее арифметическое значение M, стандартная ошибка средней арифметической m). Выживаемость животных оценивалась с применением непараметрического двухстороннего точного метода Фишера, критерия Стьюдента (t) с поправкой Бонферони (p ≤ 0,05) для сравнения трех и более экспериментальных групп, критерия Даннета (q´) — при сравнении нескольких групп с контрольной.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ

Активность веществ при острой гипобарической гипоксии. Было установлено, что все вещества проявили противогипоксическую активность (табл. 1). При этом гутимин достоверно увеличивал продолжительность жизни мышей в широком диапазоне доз, наиболее высокий коэффициент защиты отмечался у антигипоксанта (2,50) в субмаксимальной исследованной дозе 20 мг/кг. При увеличении дозы гутимина до 50 мг эффект сохранялся на прежнем уровне. Пробукол при трехкратном введении демонстрировал наибольший эффект (2,91) в максимальной исследованной дозе 50 мг/кг, даже несколько превосходя гутимин. Этомерзол достоверно повышал выживаемость животных только в максимальной дозе, и коэффициент защиты составлял лишь 1,28. Соединения РУ-185, РУ-85 и РУ-87 продемонстрировали выраженный защитный эффект с максимальным коэффициентом защиты 2,04 у РУ-185.

 

Таблица 1. Влияние изучаемых веществ на время жизни животных при острой гипобарической гипоксии (M ± m)♣

Группа животных

Доза, мг/кг

Тж, с (M ± m)

Кз

Контроль

60,0 ± 3,1

РУ-185

3,0

122,5 ± 5,1*

2,04

5,0

82,5 ± 3,2*

1,38

10,0

71,2 ± 3,8

1,19

Контроль

60,4 ± 5,0

РУ-85

5

62,5 ± 9,0

1,03

10

94,2 ± 12,1*

1,55

20

94,2 ± 10,2*

1,55

Контроль

54,0 ± 8,1

РУ-87

5

76,6 ± 13,3

1,41

10

81,4 ± 12,6

1,5

20

72,8 ± 6,0

1,34

Контроль

46,6 ± 2,4

Гутимин

10,0

60,0 ± 1,8*

1,29

20,0

116,6 ± 4,2*

2,50

50,0

113,3 ± 3,9*

2,43

Контроль

78,7 ± 3,4

Этомерзол

5,0

82,9 ± 3,8

1,05

10,0

82,9 ± 4,6

1,05

20,0

93,7 ± 5,1

1,19

50,0

101,0 ± 5,4*

1,28

Контроль

81,2 ± 10,2

Пробукол

20,0

177,3 ± 22,4*

2,18

50,0

235,9 ± 36,9*

2,91

Примечание. ♣ число мышей в каждой группе — 10; * различия значимы (q´) по сравнению с контролем (р ≤ 0,05); + препарат вводился трехкратно профилактически. Кз — коэффициент защиты, Тж — время жизни.

 

Действие веществ при острой гистотоксической гипоксии. В основе тканевой гипоксии лежит нарушение процессов утилизации кислорода тканями, например, вследствие блокады трехвалентного железа цитохромоксидаз цианидами. Предотвратить развитие необратимых изменений в дыхательной системе можно либо путем разрушения комплекса «фермент — цианид», либо путем защиты активных центров фермента, либо за счет шунтов внутри дыхательной цепи.

Результаты исследований (табл. 2) показали, что на модели гистотоксической гипоксии препарат сравнения гутимин проявил умеренную активность и в максимальной дозе 50 мг/кг увеличивал выживаемость мышей только на 20 %. Другой препарат сравнения — этомерзол — на данной модели оказался высоко активен, повышая выживаемость животных до 80 % в максимальной исследованной дозе. Исследуемое соединение РУ-185 начинало действовать уже в дозе 0,5 мг/кг, и при увеличении дозы до 5 мг/кг защитный эффект составил 100 %. Такая высокая активность РУ-185а на модели тканевой гипоксии может оказаться чрезвычайно полезной, в частности при заболеваниях, сопровождающихся локальной дезорганизацией или блокадой дыхательной цепи.

 

Таблица 2. Влияние изучаемых веществ на выживаемость животных при острой гистотоксической гипоксии (M ± m)♣

Группа животных

Доза, мг/кг

Количество выживших

Вж, %

Контроль

0,0

0

РУ-185

0,5

4

40,0*

1,0

8

80,0**

5,0

10

100,0**

Контроль

0,0

0

Гутимин

10,0

0

0,0

20,0

3

30,0

50,0

2

20,0

Контроль

0,0

0

Этомерзол

5,0

2

20,0

10,0

4

40,0*

20,0

4

40,0*

50,0

8

80,0**

Примечание. ♣  число мышей в каждой группе — 10. Вж — выживаемость мышей. * различия значимы (метод Фишера) по сравнению с контрольной группой (р ≤ 0,01); ** различия значимы (метод Фишера) по сравнению с контрольной группой (р ≤ 0,001).

Окончание табл. 2

 

Активность веществ при острой гемической гипоксии. Гемическая гипоксия, как известно, возникает при уменьшении кислородной емкости крови в результате анемии, или нарушении способности гемоглобина связывать, транспортировать и отдавать кислород. При исследовании действия веществ в условиях гемической гипоксии (табл. 3), было установлено, что исследуемые вещества проявили защитное действие. При этом РУ-185 в дозе 1 и 5 мг/кг увеличивал продолжительность жизни мышей в 1,4 и 1,6 раза соответственно.

 

Таблица 3. Влияние эноксифола на время жизни животных при острой гемической гипоксии (M ± m)♣

Группа животных

Доза, мг/кг

Тж, мин (M ± m)

Кз

Контроль

0,0

26,8 ± 2,4

РУ-185

1,0

37,0 ± 1,2*

1,38

5,0

43,8 ± 3,2*

1,63

10,0

26,7 ± 4,0

1,00

50,0

28,3 ± 4,2

1,06

Примечание. ♣ число мышей в каждой группе — 10; * различия значимы (q´) по сравнению с контролем (р ≤ 0,05). Кз — коэффициент защиты, Тж — время жизни.

 

Таким образом, изученные антиоксидантные вещества проявили высокую противогипоксическую активность на трех моделях острой гипоксии, сравнимую с активностью эталонного препарата гутимина. РУ-185 превосходил по противогипоксической активности вещества и препараты сравнения, действуя при этом в значительно меньших дозах. Следует отметить широкий спектр противогипоксической активности новых соединений на моделях гипоксии различного генеза, что позволяет говорить об универсальности их противогипоксического действия.

Полученные на трех моделях острой гипоксии данные скрининга позволили выбрать для дальнейшего углубленного изучения противогипоксической, а также противоишемической активности дозу антиоксидантного вещества РУ-185–5 мг/кг.

Изучение эффективности препарата у крыс с различной устойчивостью к ОГБГ. Было установлено (табл. 4), что эталонный препарат гутимин проявил высокую противогипоксическую активность у низкорезистентных крыс с коэффициентом защиты 4,08 (p < 0,05), превосходя по эффекту у данной категории животных все остальные изучаемые вещества. Однако у ВУ крыс защитный эффект гутимина оказался относительно умеренным, и Кз составлял 1,57 (p < 0,05). Еще один эталонный антигипоксант этомерзол по действию в группе НУ животных уступал гутимину (Кз = 2,35), тогда как в группе ВУ крыс его активность была несколько выше, чем у гутимина (Кз = 1,83). Антигипоксант мексидол и актопротектор бемитил проявили относительно низкую активность, причем мексидол оказывал защитный эффект только в группе НУ крыс. Выбранные для исследования жирорастворимые антиоксиданты дибунол и пробукол, назначаемые трехдневным профилактическим курсом, уступали препарату сравнения гутимину по действию на НУ животных, в то время, как в группе ВУ крыс их эффект был сравним с гутимином. Так дибунол увеличивал продолжительность жизни НУ в 1,74 раза (p < 0,05) и ВУ крыс — в 1,41 раза. Пробукол увеличивал продолжительность жизни у обеих групп животных в среднем в 1,2 раза.

 

Таблица 4. Влияние изучаемых соединений на продолжительность жизни низкоустойчивых и высокоустойчивых крыс при острой гипобарической гипоксии (M ± m)♣

Группа животных

Дозы, мг/кг

Тж НУ крыс (с)

Кз у НУ крыс

Тж ВУ крыс (с)

Кз у ВУ крыс

Контроль

0,0

70,0 ± 19,0

31,2 ± 3,9

РУ-185

5,0

162,0 ± 24,9*

2,31

137,5 ± 12,7*

4,41

Контроль

0,0

180,8 ± 5,6

77,5 ± 26,6

Гутимин

50,0

738,3 ± 135,7*

4,08

121,6 ± 21,47*

1,57

Контроль

0,0

107,0 ± 24,0

69,0 ± 28,4

Этомерзол

50,0

251,1 ± 7,8*

2,35

126,5 ± 23,0

1,83

Контроль

0,0

126,0 ± 22,1

94,12 ± 8,5

Мексидол

40,0

212,5 ± 31,6

1,69

89,0 ± 17,1

0,95

Контроль

0,0

62,0 ± 3,2

34,8 ± 6,4

Бемитил

25,0

65,8 ± 12,3

1,06

43,8 ± 4,1

1,26

Контроль

0,0

58,0 ± 14,0

37,5 ± 9,0

Дибунол**

50,0

101,1 ± 17,7*

1,74

52,8 ± 9,0

1,41

Контроль

0,0

181,7 ± 6,2

104,3 ± 26,78

Пробукол**

20,0

226,0 ± 16,6

1,24

125,7 ± 22,5*

1,21

Примечание. ВУ — высокоустойчивые крысы, НУ — низкоустойчивые к гипоксии крысы, Кз — коэффициент защиты, Тж — время жизни. ♣  число крыс в каждой группе — 7; * различия достоверны (t) по сравнению с контрольной группой (р ≤ 0,05); ** вещества исследовались при трехкратном введении.

 

Новое водорастворимое антиоксидантное вещество РУ-185, содержащий в структуре диоксифенильный радикал, уступая гутимину по эффекту на НУ крыс, более чем в 2 раза превосходил его в группе ВУ животных (Кз = 4,41).

Необходимо отметить, что антиоксидантное вещество РУ-185 значительно увеличивало продолжительность жизни крыс как с низкой, так и с высокой устойчивостью к гипоксии, что особенно важно вследствие практического отсутствия в настоящее время антигипоксических средств с таким спектром действия.

ЗАКЛЮЧЕНИЕ

Новые конденсированные производные бензимидазола с антиоксидантной активностью проявили широкий спектр противогипоксической активности. Наиболее выраженные защитные противогипоксические свойства продемонстрировало соединение РУ-185.

×

About the authors

Alexander A. Spasov

Volgograd State Medical University

Author for correspondence.
Email: aspasov@mail.ru

Academician of the Russian Academy of Sciences, PhD, Professor. Head of the Department of Pharmacology and Bioinformatics

Russian Federation, Volgograd

Vadim A. Kosolapov

Volgograd State Medical University

Email: vad-ak@mail.ru

PhD, Professor of the Department of Pharmacology and Bioinformatics

Russian Federation, Volgograd

Vera A. Anisimova

Research Institute for Physical and Organic Chemistry, Southern Federal University

Email: anis39@mail.ru

PhD, Senior Researcher, Research Institute of Physical and Organic Chemistry

Russian Federation, Rostov-on-Don

Olga N. Zhukovskaya

Research Institute for Physical and Organic Chemistry, Southern Federal University

Email: zhukowskaia.ol@yandex.ru

PhD, Senior Researcher, Research Institute of Physical and Organic Chemistry

Russian Federation, Rostov-on-Don

References

  1. Зарубина И.В., Шабанов П.Д. Молекулярная фармакология антигипоксантов. – СПб.: Н-Л, 2004. – 368 с. [Zarubina IV, Shabanov PD. Molekulyarnaya farmakologiya antigipoksantov. Saint Petersburg: N-L; 2004. 368 p. (In Russ.)]
  2. Оковитый С.В., Шуленин С.Н., Смирнов А.В. Клиническая фармакология антигипоксантов и антиоксидантов. – СПб.: ФАРМиндекс, 2005. – 72 с. [Okovityy SV, Shulenin SN, Smirnov AV. Klinicheskaya farmakologiya antigipoksantov i antioksidantov. Saint Petersburg: FARMindeks; 2005. 72 p. (In Russ.)]
  3. Зайчик А.Ш., Гурилов Л.П. Патофизиология. Том 2. Основы патохимии. – СПб.: ЭЛБИ, 2000. – 687с. [Zaychik AS, Gurilov LP. Patofiziologiya. Tom 2. Osnovy patokhimii. Saint Petersburg: ELBI; 2000. 687 p. (In Russ.)]
  4. Чеснокова Н.П. Типовые патологические процессы: Учебное пособие. – Саратов: Издательство Саратовского государственного медицинского университета, 2004. [Chesnokova NP. Tipovye patologicheskie protsessy: Uchebnoe posobie. Saratov: Izdatel’stvo Saratovskogo gosudarstvennogo meditsinskogo universiteta; 2004. (In Russ.)]
  5. Radi R. Oxygen radicals, nitric oxide, and peroxynitrite: Redox pathways in molecular medicine. Proc Natl Acad Sci USA. 2018;115(23):5839-5848. https://doi.org/10.1073/pnas.1804932115.
  6. Биленко М.В. Ишемические и реперфузионные повреждения органов. – М.: Медицина, 1989. – 368 с. [Bilenko MV. Ishemicheskie i reperfuzionnye povrezhdeniya organov. Moscow: Meditsina; 1989. 368 p. (In Russ.)]
  7. Gorlach A, Dimova EY, Petry A, et al. Reactive oxygen species, nutrition, hypoxia and diseases: Problems solved? Redox Biol. 2015;6:372-385. https://doi.org/10.1016/j.redox.2015.08.016.
  8. Anisimova VA, Spasov AA, Kosolapov VA, et al. Synthesis and biological activity of 9-dialkylaminoethyl-2-oxy(dioxy)-phenylimidazo[1,2-a]benzimidazoles. Pharm Chem J. 2006;40(10):521-9. https://doi.org/10.1007/s11094-006-0185-5.
  9. Zhukovskaya ON, Anisimova VA, Spasov AA, et al. 1-Substituted 2-Benzylaminobenzimidazoles with Phenyl Methoxyls: Synthesis, Computer Prediction, and Pharmacological Activity. Pharm Chem J. 2016;49(11):735-742. https://doi.org/10.1007/s11094-016-1362-9.
  10. Косолапов В.А., Спасов А.А., Анисимова В.А. Изучение антирадикальной активности новых соединений методами хемилюминесценции // Биомедицинская химия. – 2005. – Т. 51. – № 3. – С. 287–294. [Kosolapov VA, Spasov AA, Anisimova VA. Study of antiradicalactivity of new compounds by chemiluminescence. Biomed Khim. 2005;51(3):287-294. (In Russ.)]
  11. Патент РФ № 2391979/ 12.05.2008. Бюл. № 17. Анисимова В.А., Косолапов В.А., Минкин В.И., и др. Дигидробромид 9-(3,4-дигидроксифенил)-9-диэтиламииноэтилимидазо[1,2-а]бензимидазола и фармацевтическая композиция на его основе. [Patent RUS No 2391979/ 12.05.2008. Byul. No 17. Anisimova VA, Kosolapov VA, Minkin VI, et al. Digidrobromid 9-(3,4-digidroksifenil)-9-dietilamiinoetilimidazo[1,2-a]benzimidazola i farmatsevticheskaya kompozitsiya na ego osnove. (In Russ.)]
  12. Лукьянова Л.Д. Методические рекомендации к экспериментальному изучению препаратов, предназначенных для клинического изучения в качестве антигипоксических средств. – М., 1990. – 18 с. [Luk’yanova LD. Metodicheskie rekomendatsii k eksperimental’nomu izucheniyu preparatov, prednaznachennykh dlya klinicheskogo izucheniya v kachestve antigipoksicheskikh sredstv. Moscow; 1990. 18 p. (In Russ.)]
  13. Кораблев М.В., Лукиенко П.И. Противогипоксические средства. – Минск: Беларусь, 1976. – 127 с. [Korablev MV, Lukienko PI. Protivogipoksicheskie sredstva. Minsk: Belarus’; 1976. 127 p. (In Russ.)]
  14. Рощина Л.Ф., Островская Р.У. Влияние пирацетама на устойчивость организма к гипоксии // Фармакология и токсикология. – 1981. – Т. 44. – № 2. – С. 210–212. [Roshchina LF, Ostrovskaya RU. Vliyanie piratsetama na ustoychivost’ organizma k gipoksii. Farmakol Toksikol.1981;44(2):210-212. (In Russ.)]
  15. Крапивин С.В., Шаповалов С.В., Романова В.Е., и др. Изучение влияния периодической адаптации к гипоксии на состояние ЦНС крыс с различной резистентностью к кислородной недостаточности // Журнал высшей нервной деятельности им. И.П. Павлова. – 1992. – Т. 42. – № 1. – С. 164–168. [Krapivin SV, Shapovalov SV, Romanova VE, et al. Izuchenie vliyaniya periodicheskoy adaptatsii k gipoksii na sostoyanie TsNS krys s razlichnoy rezistentnost’yu k kislorodnoy nedostatochnosti. Zh Vyssh Nerv Deiat im IP Pavlova. 1992;42(1):164-168. (In Russ.)]

Copyright (c) 2019 Spasov A.A., Kosolapov V.A., Anisimova V.A., Zhukovskaya O.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 65565 от 04.05.2016 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies