Изменения внутриклеточных потенциалов и ионных токов нейронов моллюсков и активности Cl--каналов под влиянием некоторых тормозных аминокислот и новых литийсодержащих соединений на их основе

Обложка
  • Авторы: Шабанов П.Д.1, Вислобоков А.И.2, Шилов Г.Н.3, Булай ПМ4, Луговский АП4
  • Учреждения:
    1. ФГБНУ «Институт экспериментальной медицины»
    2. ГБОУ ВПО «Санкт-Петербургский государственный медицинский университет имени акад. И. П. Павлова» МЗ РФ
    3. ГУО «Белорусская медицинская академия последипломного образования» МЗ Республики Беларусь
    4. Белорусский государственный университет, НИИ ПФП им. А. Н. Севченко при БГУ
  • Выпуск: Том 13, № 3 (2015)
  • Страницы: 39-47
  • Раздел: Статьи
  • Статья получена: 27.02.2016
  • Статья опубликована: 15.09.2015
  • URL: https://journals.eco-vector.com/RCF/article/view/1389
  • DOI: https://doi.org/10.17816/RCF13339-47
  • ID: 1389


Цитировать

Полный текст

Аннотация

В микроэлектродных исследованиях и в методике фиксации потенциала показано, что новые соединения, производные тормозных аминокислот ГАМК, глицина и β-аланина, содержащие в составе молекул литий (литийсодержащие соединения - ЛСС), в концентрациях 0,1, 1 и 5 мМ при внеклеточном применении изменяли потенциал покоя (ПП) и электрическую активность идентифицируемых нейронов педальных ганглиев моллюска Planorbarius corneus и трансмембранные натриевые, кальциевые и калиевые ионные токи. В большинстве нейронов они вызывали сходную дозозависимую и обратимую деполяризацию нейронов на 2-10 мВ, сопровождающуюся увеличением частоты потенциала действия (ПД), увеличением их длительности и снижением суммарных ионных токов (dV/dt). По повышению степени развивающейся деполяризации и снижению амплитуд ПД ЛСС можно расположить в ряд по убыванию активности соединение 3 > соединение 2 > соединение 1. Соединение 3 на идентифицированном нейроне ППед1, в отличие от других соединений, вызывало гиперполяризацию на 2-10 мВ и прекращение импульсной активности. Амплитуда натриевых и кальциевых ионных токов снижалась примерно в одинаковой степени от всех ЛСС, при их концентрации 5 мМ снижение было на 7-15 %. Выходящие калиевые ионные токи под влиянием ЛСС слабо дозозависимо и обратимо примерно в одинаковой степени увеличивались по амплитуде на 3-7 % без изменения их кинетики. Таким образом, снижение амплитуд ионных токов обусловлено как деполяризацией нейронов, так и прямым действием ЛСС на ионные каналы. Следовательно, новые литийсодержащие соединения обладают выраженной мембранотропной активностью и способны модулировать функциональное состояние клеток. При исследовании активности хлорных каналов методом «пэтч-кламп» в режиме «от целой клетки» на культуре клеток глиомы крысы линии C6 in vitro показано, что ГАМК, глицин и β-аланин и их литиевые производные (ЛСС) в концентрациях 10 мкмоль/л изменяли активность хлорных каналов, то есть сдвигали равновесный мембранный потенциал клеток глиомы от диапазона -90 до -70 мВ к диапазону -55... -60 мВ. По выраженности изменения степени трансмембранного потенциала тормозные аминокислоты можно расположить в ряд по убыванию активности: глицин > ГАМК > β-аланин, а исследуемые соединения в ряд: соединение 1 > соединение 3 > соединение 2. Таким образом, самым эффективным соединением, активирующим Cl--канал, оказался глицин и его литиевая соль - соединение 1. Сделан вывод, что глицин может являться коагонистом ГАМК-рецепторов, а его литиевая соль проявлять выраженную мембранотропную активность.

Полный текст

Изучению многостороннего влияния фармакологических средств на биологические объекты посвящены десятки тысяч публикаций. Исследование действия известных и вновь синтезированных соединений на клеточно-молекулярном уровне представляет наибольший интерес, поскольку при этом вскрываются или уточняются механизмы молекулярного действия и места связывания в клетке [2-8]. Аминокислоты являются не только метаболитами и составным компонентом белков, но и как физиологически активные вещества выполняют в организме и многочисленные регуляторные функции, главным образом нейромедиаторные. Известны многочисленные производные аминокислот с выраженными фармакологическими свойствами. Поиск новых лекарственных средств среди производных аминокислот продолжается. Для ГАМК показано многообразие физиологических и биохимических функций, имеются данные о нарушении ее образования при некоторых психопатологических и неврологических расстройствах [9-13]. Модификация молекулы ГАМК введением фенильного радикала привела к созданию препарата фенибута, который легко преодолевает гематоэнцефалический барьер и оказывает выраженное тормозное транквилизирующее действие. Со временем удалось установить, что в тканях мозга ГАМК утрачивает аминогруппу, которая замещается гидроксилом, образуется гамма-оксимасляная кислота (ГОМК). Ее натриевая соль - оксибутират натрия - широко используется в качестве наркозного средства. Создание ГАМК-подобных препаратов и изучение их эффектов позволило говорить о существовании двух основных функций ГАМК - медиаторной и метаболической. С медиаторной функцией связано участие ГАМК в регуляции уровня бодрствования, двигательной активности, сосудистого тонуса, поддержании высокого судорожного порога и отчасти улучшении памяти и мышления. Метаболическая функция - это прежде всего обеспечение мозга энергией, устойчивость к кислородному голоданию и другим вредным воздействиям. Другая тормозная аминокислота - глицин (α-аминоуксусная кислота). Будучи тормозным медиатором, глицин «работает» на спинальном уровне, препятствуя распространению импульса, пришедшего по чувствительным задним корешкам спинного мозга. Природные антагонисты глицина - столбнячный токсин и алкалоид стрихнин, блокируя глициновые рецепторы, вызывают тоническое сокращение мышц всего тела, которое принимает типичную при отравлении стрихнином или столбняке позу опистотонуса: выгибание с опорой на затылок и пятки. В современной медицине стрихнин используется редко. А вот глицин завоевывает все большую популярность. Он не только усиливает действие противосудорожных средств, но и ускоряет засыпание, обладает антиоксидантным, противострессорным, транквилизирующим и ноотропоподобным действием, блокируя гиперактивность гипофизарно-адреналовой системы. Он не оказывает миорелаксантного действия, ослабляет эффект алкоголя, не вызывает зависимости, повышает скорость реакций, усиливает умственную работоспособность. Показаниями к применению глицина считаются стрессовые состояния, психоэмоциональное напряжение, повышенная возбудимость, эмоциональная лабильность, неврозы, вегетососудистая дистония, последствия черепно-мозговой травмы, энцефалопатии, в том числе алкогольные, нарушения сна. Таким образом, производные тормозных аминокислот могут оказаться перспективными в лечении и профилактике многих психоневрологических заболеваний [7, 8, 11-14]. В настоящее исследование включено изучение мембранотропных эффектов литийсодержащих соединений, синтезированных на основе тормозных аминокислот - ГАМК, глицина, β-аланина, структурные формулы которых представлены на рисунке 1. В связи с тем что сравнительных сведений об изменениях электрофизиологических параметров функционального состояния нейронов (потенциал покоя, потенциал действия, различных типов ионных токов) под влиянием новых литийсодержащих соединений в литературе нет, представляется актуальным изучение их мембранотропных свойств, влияние на электрическую активность нейронов и их трансмембранные ионные токи. Методика исследования Микроэлектродные исследования выполнены на наиболее крупных идентифицируемых (100-200 мкм) нейронах педальных ганглиев изолированной ЦНС моллюска катушки роговой (Planorbarius corneus). Нейроны в ганглиях данного моллюска пигментированы и хорошо видны под бинокулярной лупой (рис. 2). Из тела моллюска вырезали кольцо ганглиев и помещали в камеру объемом около 0,5 см3 с физиологическим раствором (в мМ/л): NaCl - 50; KCl - 2; CaCl2 - 4; MgCl2 - 1,5; трис-ОН - 10; рН - 7,5. Для регистрации электрофизиологических характеристик нейронов использовали стеклянные МЭ, заполненные 2,5 М KCl, с сопротивлением 10-20 мОм [2, 3]. Измерения ионных токов при фиксации потенциала и регистрации трансмембранных ионных токов проведены на изолированных неидентифицированных нейронах с диаметром около 100 мкм как катушки, так и прудовика (Lymnaea stagnalis) [2, 3]. Состояние хлорных каналов изучали в опытах in vitro с помощью метода «пэтч-кламп» [1] на клетках глиомы крысы линии C6. Регистрировали равновесный мембранный потенциал клеток глиомы крысы в покое и при активации (открывании) хлорных каналов. В последнем случае равновесный мембранный потенциал сдвигается от -90 до -60 мВ и даже -55 мВ. Литийсодержащие соединения (ЛСС) растворяли в физиологическом растворе до концентрации 5 мМ, далее разбавляли до 1 и 0,1 мМ и изучали их при внеклеточном приложении. В первой части работы оценивали (качественно) динамику изменений потенциала покоя (ПП), импульсной активности (ИА), параметров потенциалов действия (ПД) и суммарных ионных токов (по первой производной ПД - dV/dt). Во второй части - регистрировали изменения амплитуд калиевых ионных токов и характер изменений их кинетики активации и инактивации (качественно). Биопотенциалы регистрировали с помощью аналогоцифрового преобразователя фирмы L-Card L-791 (Россия). Для построения и наложения на один кадр кривых ионных токов использовали программу Excel. Результаты исследования Исходные величины ПП для разных нейронов катушки варьировали от -45 до -60 мВ, нейроны генерировали ПД амплитудой от 50 до 90 мВ с «овершутом». Некоторые из них были молчащими или с различным характером импульсной активности (ИА): регулярной или нерегулярной, одиночной или пачечной. Большинство результатов получено на импульсноактивных нейронах педальных ганглиев. В первой серии экспериментов на изолированной ЦНС катушки показано, что под влиянием ЛСС в диапазоне концентраций от 0,1 до 5 мМ в целом происходили зависимые от концентрации де- и гиперполяризационные изменения ПП с соответствующими изменениями ИА, параметров ПД и скоростей развития ПД (dV/dt, отражающих суммарные входящие и выходящие ионные токи). Эффекты стабилизировались в течение 1-3 мин от начала действия ЛСС, они были обратимы в течение 2-10 мин. На фоне незначительных изменений ПП перестройка ИА была разнообразной, что зависело от типа нейронов, величины ПП (уровня функционального состояния), характера фоновой ИА и концентраций ЛСС. Таким образом, хотя исходные параметры электрической активности различных нейронов и их реакции на ЛСС были вариабельными, но их характерные тенденции повторялись. Так, на одном и том же нейроне левого педального ганглия (ЛПед1) с нерегулярной пачечной активностью последовательно были зарегистрированы эффекты на три ЛСС в трех концентрациях (рис. 3). Видно, что реакции на различные соединения были сходными (рис. 3 А, Б и В): дозозависимыми, обратимыми, с небольшой деполяризацией (от 1-2 до 6-7 мВ), со снижением амплитуд ПД. При этом соединения по повышению степени развивающейся деполяризации и снижению амплитуд ПД можно расположить в ряд по убыванию активности: соединение 3 > соединение 2 > соединение 1, то есть наиболее активным оказалось соединение 3. Далее, на другом рисунке (рис. 6) и на ускоренной развертке во времени, показано, что наряду с дозозависимой деполяризацией при возрастающих концентрациях соединений увеличивается длительность спонтанных ПД и сокращаются скорости их развития (dV/dt), отражающие суммарные входящие (натрий-кальциевые) и выходящие (калиевые) ионные токи. На этом же нейроне было показано, что его реакции на три соединения в концентрации 1 мМ (рис. 4 А, 1-3) по степени выраженности повторяли тот же ряд (соединение 3 > соединение 2 > соединение 1). Существенно более сильная реакция соединения 3 (вплоть до обратимого подавления ИА), по сравнению с другими, была зарегистрирована на нейроне левого педального ганглия (ЛПед3) в их одинаковой концентрации 5 мМ (рис. 4 Б, 2, 4, 6). Это указывает на неодинаковую чувствительность различных нейронов ЦНС катушки к соединению 3. Принципиально отличный эффект соединения 3 наблюдался на нейроне правого педального ганглия (ППед1): реакция нейрона на него была в виде дозозависимой и обратимой гиперполяризации на 2-3 до 10 мВ и прекращения ИА (нейрон одного животного - рисунки 5 А, 2 и 9; такой же нейрон другого животного - Б, 2 и 4). По сравнению с гиперполяризующим эффектом соединения 3 соединения 1 и 2 на этом нейроне вызывали деполяризацию (рисунок 5, фрагменты 4, 6, 7 и 8; рисунок 5, Б, 6 и 8). Выше упоминалось, что на фоне деполяризации нейронов под влиянием ЛСС наблюдается снижение амплитуд ПД, увеличение частоты ПД, их длительности и уменьшения скоростей развития ПД (суммарных ионных токов). Характерный пример такой реакции представлен на развернутых во времени кривых ИА, ПД и dV/dt (рис. 6, А-Г, 1 и 2), представленных выше на рисунке 3 для эффектов соединения 1, видно и восстановление параметров электрической активности после отмывания соединения (рис. 6, Д, 1 и 2). Далее, на изолированных нейронах катушки и прудовика в условиях фиксации мембранного потенциала было показано, что под влиянием ЛСС в концентрациях 0,1-5 мМ изменения ионных токов (на примере медленных выходящих калиевых токов) слабо дозозависимы, незначительны и почти одинаковые для всех трех исследованных соединений (рис. 7). Так, соединение 2 незначительно (5-7 %) увеличивало (активировало) токи (рис. 7 А и Б). Примерно сходным образом в концентрации 5 мМ соединение 1 (см. рис. 7 В) и соединение 3 (рис. 7 В) увеличивали эти токи, а изменения сохранялись и после отмывания ЛСС. Кинетика активации и инактивации калиевых токов существенно не изменялась. Все изменения ионных токов под влиянием ЛСС наступали в течение 1 мин, но их восстановление при отмывании было замедленным. Неспецифические токи утечки мембраны нейронов под влиянием ЛСС существенно не изменялись. Изменения входящих ионных токов были столь же несущественными, но под влиянием ЛСС они снижались: амплитуда натриевых токов уменьшалась слабо дозозависимо и примерно одинаково для всех трех соединений и при концентрации 5 мМ на 8-10 % (рис. 8 А - пример для соединения 1). Амплитуда кальциевых токов при действии ЛСС снижалась чуть более, чем натриевых токов и при концентрации 5 мМ на 10-15 % (рис. 8, Б-Г). Эффекты развивались и устранялись при отмывании ЛСС быстро (1-3 мин). При анализе данных, полученных в опытах in vitro с помощью метода «пэтч-кламп», было показано, что равновесный мембранный потенциал клеток глиомы крысы линии C6 на вторые сутки с момента культивирования лежит в диапазоне от -90 до -70 мВ. При активации (открывании) хлорных каналов мембранный потенциал сдвигается к равновесному потенциалу хлорных каналов, который составляет -55… -60 мВ. Из представленных данных видно (рис. 9, 10), что как ГАМК, так и глицин в концентрации 10 мкмоль/л достоверно изменяют трансмембранный потенциал, то есть активируют (открывают) хлорный канал, причем эффект глицина оказался даже более выраженным, чем у ГАМК, тогда как другой известный агонист глициновых рецепторов β-аланин не влиял на активность хлорных каналов. Подобную же направленность эффектов продемонстрировали и литиевые соли вышеозначенных тормозных аминокислот (в связи со схожестью результатов данные не представлены). Полученные данные свидетельствуют о том, что глицин, так же как и ГАМК, может влиять на активность хлорных каналов, т. е. функциональное состояние ГАМК-бензодиазепинового рецепторного комплекса. Обсуждение полученных результатов Полученные данные о сравнительных изменениях электрофизиологических параметров нейронов под влиянием ЛСС убедительно свидетельствуют об их существенно выраженной мембранотропной активности, возможной и, по-видимому, достаточно широкой терапевтической активности анксиолитической и противосудорожной направленности. Сходная дозозависимая и обратимая деполяризация под влиянием соединений 1, 2 и 3 на большинстве нейронов и усиление (повышение возбудимости и активация) электрической активности могут указывать на их активирующий эффект. Соединение 3 при этом оказалось более активным и, кроме того, на идентифицированном ППед1 нейроне - с противоположным - гиперполяризующим («успокаивающим») эффектом (со снижением возбудимости, урежением и прекращением импульсной активности). Таким образом, с удлинением молекул ЛСС их эффекты усиливаются. Деполяризация клеточных мембран может быть связана с подавлением электрогенной части в работе натрий-калиевого насоса и с изменениями пассивной проницаемости клеточных мембран к ионам натрия, кальция или калия при действии ЛСС, хотя неспецифические токи утечки мембраны изменялись незначительно [2-4]. Гиперполяризацию клеток при действии соединения 3 или после его действия можно объяснить усилением вклада в величину ПП электрогенной составляющей натрий-калиевого насоса, снижением пассивной проницаемости к ионам натрия и кальция или повышением ее к ионам калия [1-3]. Не исключается участие в этих процессах ионов хлора или каких-либо клеточных (мембранных) рецепторов. Кроме того, не исключается липидотропное действие ЛСС на мембраны, приводящее к увеличению их текучести - так называемое «разжижающее» действие. Это приводит к изменению их жидко-кристаллического состояния, возрастает подвижность молекул липидов и белков в ее липидном бислое. Известно, что изменения фазового состояния мембраны оказывают существенное влияние на процессы мембранного транспорта, на системы трансмембранной передачи информации, на активность мембраносвязанных ферментов [3, 5]. Могут изменяться нейромедиаторные процессы, функционирование ферментов и ионных каналов. Изменения суммарных ионных токов, параметров ПД и ИА нейронов под влиянием ЛСС обусловлены как соответствующими изменениями ПП, так и незначительным прямым влиянием на потенциалоуправляемые ионные каналы [2-6]. Поскольку ведущими в клеточных эффектах ЛСС являются изменения ПП, то для выяснения молекулярных механизмов их действия нами выполнены дополнительные эксперименты по изучению возможного участия в этом мембранных рецепторов (и в первую очередь основного тормозного ГАМК-рецептора). В наших прежних работах анализировались в основном натриевые, калиевые и кальциевые трансмембранные токи. В данной работе представлено влияние литийсодержащих соединений на хлорные каналы в исследовании с помощью метода «пэтч-кламп» на клетках глиомы крысы линии C6. В частности, в этих исследованиях было показано, что равновесный мембранный потенциал клеток глиомы крысы линии C6 на вторые сутки с момента культивирования лежит в диапазоне от -90 до -70 мВ. При активации (открывании) хлорных каналов мембранный потенциал сдвигается к равновесному потенциалу хлорных каналов, который составляет -55… -60 мВ. Тормозные нейромедиаторы ГАМК и глицин в концентрации 10 мкмоль/л достоверно меняли трансмембранный потенциал, способствуя активации (открыванию) хлорных каналов. При этом эффект глицина оказался более выраженным, чем у ГАМК, в то время как другой известный агонист глициновых рецепторов β-аланин вовсе не влиял на активность хлорных каналов. Подобную же направленность эффектов продемонстрировали и литиевые соли вышеозначенных тормозных аминокислот (соединения 1, 2 и 3). В целом их действие было однотипным в сравнении с эффектами глицина и ГАМК. Полученные данные свидетельствуют, что глицин, так же как и ГАМК, может влиять на активность хлорных каналов, то есть на функциональное состояние трансмембранного комплекса ГАМКА-рецептор/Cl--канал. Заключение Таким образом, можно сделать основной вывод, что ЛСС через изменения ПП модулируют электрическую активность и ионные токи нейронов моллюсков, а также влияют на активность хлорных каналов нейронов крыс. ЛСС оказывают как активирующее действие на электрическую активность нейронов моллюсков, так и угнетающее выраженное гиперполяризующее («тормозное») действие на отдельные нейроны (соединение 3). Молекулярные механизмы разнонаправленных клеточных эффектов ГАМК и глицина, с одной стороны, и ЛСС - с другой, с большой степенью вероятности можно объяснить вовлечением в их действие не только трансмембранного комплекса ГАМКА-рецептор/Cl--канал, но и других молекулярных мишеней, например NMDA-рецепторов, с блокадой которых может быть связано противосудорожное действие тормозных медиаторов и полученных на их основе литийсодержащих соединений.
×

Об авторах

Петр Дмитриевич Шабанов

ФГБНУ «Институт экспериментальной медицины»

Email: pdshabanov@mail.ru
д. м. н., профессор

Анатолий Иванович Вислобоков

ГБОУ ВПО «Санкт-Петербургский государственный медицинский университет имени акад. И. П. Павлова» МЗ РФ

Email: vislobokov@yandex.ru

Георгий Нолианович Шилов

ГУО «Белорусская медицинская академия последипломного образования» МЗ Республики Беларусь

Email: george_shilau@mail.ru
к. м. н., научный сотрудник

П М Булай

Белорусский государственный университет, НИИ ПФП им. А. Н. Севченко при БГУ

ассистент кафедры биофизики

А П Луговский

Белорусский государственный университет, НИИ ПФП им. А. Н. Севченко при БГУ

ассистент кафедры биофизики

Список литературы

  1. Букинич А. А., Шабанов П. Д. Функциональное значение димерных (гетеромерных) рецепторов в ЦНС позвоночных. Обз. по клин. фармакол. и лек. терапии. 2015; 13 (1): 25-31.
  2. Вислобоков А. И., Игнатов Ю. Д., Галенко-Ярошевский П. А., Шабанов П. Д. Мембранотропное действие фармакологических средств. СПб.-Краснодар: Просвещение-Юг, 2010. - 528 с.
  3. Вислобоков А. И., Борисова В. А., Прошева В. И., Шабанов П. Д. Фармакология ионных каналов. Серия: Цитофармакология (Т. 1), СПб.: Информ-Навигатор, 2012. - 528 с.
  4. Камкин А. Г., Киселева И. С. Физиология и молекулярная биология мембран клеток: учеб. пособие. М.: ИЦ Академия, 2008. - 592 с.
  5. Катцунг Б. Г. Базисная и клиническая фармакология. М.: Бином, 2000; 406-28.
  6. Сергеев П. В., Шимановский Н. Л. Рецепторы физиологически активных веществ. М.: Медицина,1987; 213-29.
  7. Шилов Г. Н., Бубель О. Н., Пушкарчук А. Л. Перспективы обоснования назначения глицина в комплексной противосудорожной терапии на основе некоторых новых представлений о структуре ГАМК-бензодиаепиновых рецепторов. Человек и лекарство. Тез. докл. ХI Рос. нац. конгр. М., 2004; 61.
  8. Яхно Н. Н., Штульман Д. Р. Болезни нервной системы. М., 2003; 208-44.
  9. Brody T. M. et al. Human pharmacology, molecular to clinical. 3rd ed. New York: Mosby Year Book Inc., 1998; 1001.
  10. Camerino D. C., Tricarico D., Desaphy J. F. Ion channel pharmacology. Neurotherapeutics. 2007; 4 (2): 184-98.
  11. Goodman & Gilman’s. The pharmacological basis of therapeutics. 9th ed. New York: McGraw Hill. 2004; 461-86.
  12. Narahashi T. Neuroreceptors and ion channels as the basis for drug action: past, present, and future. J. Pharmacol. Exp. Ther. 2000; 294 (1): 1-26.
  13. Shilov G. N. Cyclic GABA conformer and Glycine as natural endogen agonists of GABA-benzodiazepine-receptor complex. 31st Int. Epilepsy Congr. Istanbul, Turkey, 2015.
  14. Smith C. U. M. Elements of molecular neurobiology. 2nd ed. London: J. Wiley, 1996. - 552 p.

© Шабанов П.Д., Вислобоков А.И., Шилов Г.Н., Булай П.М., Луговский А.П., 2015

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 65565 от 04.05.2016 г.


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах