Ontogenetic peculiarities of the effect of dantrolene and caffeine on the cardiac, respiratory and motor performance of intact and poisoned by physostigmine of rats

Cover Page
Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract


Activities of the somatomotor (MA), cardiovascular and respiratory systems were investigated in conditions of activation and blockade of ryanodine receptors (RyR) impaired cholinergic regulation in rat pups aged 3, 16 and 30 days. It was found that blockage of RyR by dantrolene has a negative chronotropic effect, the severity of which decreases with age, reduces the respiratory rate in rats on P3 and practically does not change in older animals. The amplitude of EMG and the power of motor bursts decreases in rats on P3-P16 and increases on P30. The duration of MA in the activity- rest cycle remains unchanged at P3 and decreases at P16-P30, which indicates a different change in the pattern of MA in rats of different ages after the blockade of RyR. Caffeine-induced activation of RyR is accompanied by an increase in heart rate and respiratory rate in rats on P30 and does not cause significant changes in these parameters on P3-P16. There has been an increase in all MA indices, especially in P3. Certain age-related regularities were revealed in the conditions of acetylcholinesterase inhibition by physostigmine, carried out against the background of RyR inhibition or activation. Maximum sensitivity to such effects was found in rats on P3. It was shown that in early postnatal ontogenesis of rats the sensitivity of RyR, including RyR2, to dantrolene is higher than in adult animals. Changes in RyR activity level do not prevent the development of pathological forms of heart rhythm that developing in rats after the physostigmine injection.


Full Text

Restricted Access

About the authors

Sergey V. Kuznetsov

Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences

Author for correspondence.
Email: ksv@iephb.ru

Russian Federation, Saint Petersburg

Dr Biol Sci (Physiology), Chief Researcher, Head of laboratory of Ontogenetic Development of Animals Nervous Activity

Nataliya N. Kuznetsova

Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences; Institute of Experimental Medicine

Email: nat.kuz@mail.ru.ru

Russian Federation, Saint Petersburg

PhD (Physiology), Senior Researcher, Laboratory of Ontogenetic Development of Animals Nervous Activity; Senior Researcher, S.V. Anichkov Dept. of Neuropharmacology

References

  1. Кузнецов С.В., Кузнецова Н.Н. Изменение показателей гемодинамики в раннем постнатальном онтогенезе крыс после инъекции ингибитора холинэстеразы эзерина и при премедикации М- и Н-холинолитиками // Российский физиологический журнал им. И.М. Сеченова. – 2018. – Т. 104. – № 9. – С. 1075–1085. [Kuznetsov SV, Kuznetsova NN. The change of hemodynamic indexes in early postnatal ontogenesis of rats after injection of the inhibitor of ezerin cholinesterase and in premedication of M- and N-cholinolithics. Rossiyskiy fiziologicheskiy zhurnal im. I.M. Sechenova. 2018;104(9):1075-1085. (In Russ.)]. https://doi.org/10.7868/S086981391809006Х.
  2. Кузнецов С.В., Кузнецова Н.Н., Гайдукова П.А. Влияние блокады медленных кальциевых каналов L-типа на показатели сердечной, дыхательной и моторной деятельности у интактных и подвергшихся интоксикации эзерином новорожденных крысят // Обзоры по клинической фармакологии и лекарственной терапии. – 2019. – Т. 17. – № 3. – С. 39–49. [Kuznetsov SV, Kuznetsova NN, Gaydukova PA. Influence of L-type slow calcium channels blockers on cardiac, respiratory and motor activity at the intact and poisoned by physostigmine (eserine) of rats during the early ontogeny. Reviews on Clinical Pharmacology and Drug Therapy. 2019;17(3):39-49. (In Russ.)]. https://doi.org/10.7816/RCF17339-49.
  3. Arutyunyan RS, Kuznetsov SV. [Effect of neurogenic inactivity on posttetanic responses of rat fast muscle. (In Russ.)]. Zh Evol Biokhim Fiziol. 2010;46(1):66-73. https://doi.org/10.1134/S0022093010010093.
  4. Ateş S, Kaygisiz Z. Positive inotropic, negative chronotropic, and coronary vasoconstrictor effects of acetylcholine in isolated rat hearts: role of muscarinic receptors, prostaglandins, protein kinase C, influx of extracellular Ca2+, intracellular Ca2+ release, and endothelium. Jpn J Physiol. 1998;48(6):483-491. https://doi.org/ 10.2170/jjphysiol.48.483.
  5. Brooks RR, Carpenter JF, Jones SM, Gregory CM. Effects of dantrolene sodium in rodent models of cardiac arrhythmia. Eur J Pharmacol. 1989;164(3):521-530. https://doi.org/10.1016/0014-2999(89)90260-4.
  6. Buyukokuroglu ME, Taysi S, Buyukavci M, et al. Dantrolene: in doxorubicin toxicity. Asian J Chem. 2007;19(5): 4035-4042.
  7. Coronado R, Morrissette J, Sukhareva M, Vaughan DM. Structure and function of ryanodine receptors. Am J Physiol. 1994;6(1):485-504. https://doi.org/ 10.1152/ajpcell.1994.266.6.C1485.
  8. Escobar AL, Ribeiro-Costa R, Villalba-Galea C, et al. Developmental changes of intracellular Ca2+ transients in beating rat hearts. Am J Physiol Heart Circ Physiol. 2004;286(3):H971-H978. https://doi.org/10.1152/ajpheart.00308.2003.
  9. Hartmann N, Pabel S, Herting J, et al. Antiarrhythmic effects of dantrolene in human diseased cardiomyocytes. Heart Rhythm. 2017;14(3):412-419. https://doi.org/10.1016/j.hrthm.2016.09.014.
  10. Herlenius E, Aden U, Tang LQ, Lagercrantz H. Perinatal respiratory control and its modulation by adenosine and caffeine in the rat. Pediatr Res. 2002;51(1):4-12. https://doi.org/10.1203/00006450-200201000-00004.
  11. Kapelko VI, Lakomkin VL, Studneva IM, Pisarenko OI. Effects of prolonged caffeine consumption on cardiac contractile function in rats. J Cardiovasc Pharmacol. 2000;36(5):669-75. https://doi.org/10.1097/00005344-200011000-00017.
  12. Khuzakhmetova VF, Samigullin DV, Nurullin LF, et al. Characteristics of the transmission of excitation in rat neuromuscular synapses at different periods of postnatal development. Neuroscience Behavioral Physiology. 2014;44(8):960-966. https://doi.org/10.1007/s11055-014-0010-7.
  13. Kobayashi S, Yano M, Suetomi T, et al. Dantrolene, a therapeutic agent for malignant hyperthermia, markedly improves the function of failing cardiomyocytes by stabilizing interdomain interactions within the ryanodine receptor. J Amer Coll Cardiol. 2009;53(21):1993-2005. https://doi.org/10.1016/j.jacc.2009.01.065.
  14. Krause T, Gerbershagen MU, Fiege M, et al. Dantrolene — A review of its pharmacology, therapeutic use and new developments. Anaesthesia. 2004;59(4):364-373. https://doi.org/10.1111/j.1365-2044.2004.03658.x.
  15. Kuznetsov SV. Paradoxical cardiac rhythm in rat pups as a possible analog of the sick sinus syndrome. J Evol Biochem Physiol. 2002;38(4):455-467. https://doi.org/10.1023/A:1021110121665.
  16. Kuznetsov SV, Goncharov NV, Glashkina LM. Change of parameters of functioning of the cardiovascular and respiratory systems in rats of different ages under effects of low doses of the cholinesterase inhibitor phosphacol. J Evol Biochem Physiol. 2005;41(2):201-210. https://doi.org/10.1007/s10893-005-0055-x.
  17. Kushnir A, Marks AR. The ryanodine receptor in cardiac physiology and disease. Adv Pharmacol. 2010;59:1-30. https://doi.org/ 10.1016/S1054-3589(10)59001-X.
  18. Lamb GD, Cellini MA, Stephenson DG. Different Ca2+ releasing action of caffeine and depolarization in skeletal muscle fibres of the rat. J Physiol. 2001;531(3):715-728. https://doi.org/10.1111/j.1469-7793.2001.0715h.x.
  19. Maxwell JT, Domeier TL, Blatter LA. Dantrolene prevents arrhythmogenic Ca2+ release in heart failure. Amer J Physiol Heart Circ Physiol. 2012;302(4):H953-H963. https://doi.org/10.1152/ajpheart.00936.2011.
  20. Miller’s Anesthesia. 7th ed. Ed. by R.D. Miller. Philadelphia: Churchill Livingstone; 2009.
  21. Nakamura-Maruyama E, Miyamoto O, Okabe N, et al. Ryanodine receptors contribute to the induction of ischemic tolerance. Brain Res Bull. 2016;122:45-53. https://doi.org/10.1016/j.brainresbull.2016.02.018.
  22. Orliaguet G, Langeron O, Coirault C, et al. Effects of dantrolene on rat diaphragm muscle during postnatal maturation. Anesthesiology. 2001;94(3):468-474. https://doi.org/10.1097/00000542-200103000-00018.
  23. Pérez CG, Copello JA, Li Y, et al. Ryanodine receptor function in newborn rat heart. Am J Physiol Heart Circ Physiol. 2005;288(5):H2527-H2540. https://doi.org/10.1152/ajpheart.00188.2004.
  24. Satoh M, Ishide N, Shinozaki T, et al. Effect of dantrolene sodium on calcium-overloaded heart. Jpn Circ J. 1997;61(10):855-863. https://doi.org/10.1253/jcj.61.855.
  25. Sizonov VА, Dmitrieva LE. heart rhythm disturbances caused by injection of cholinesterase inhibitor physostigmine to rats during the early ontogeny. Bull Exp Biol Med. 2018;165(1): 44-47. https://doi.org/10.1007/s10517-018-4095-9.
  26. Shemarova IV, Kuznetsov SV, Demina IN, Nesterov VP. [Role of acetylcholine in the Ca2+-dependent regulation of functional activity of myocardium of frog rana temporaria. (In Russ.)]. Zh Evol Biokhim Fiziol. 2008;44(6):591-602. https://doi.org/10.1134/S0022093008060070.
  27. Tanaka H, Sekine T, Nishimaru K, Shigenobu K. Role of sarcoplasmic reticulum in myocardial contraction of neonatal and adult mice. Comp Biochem Physiol A Mol Integr Physiol. 1998;120(3):431-438. https://doi.org/10.1016/s1095-6433(98)10043-0.
  28. Thireau J, Pasquié JL, Martel E, et al. New drugs vs. old concepts: a fresh look at antiarrhythmics. Pharmacol Ther. 2011;132(2):125-145. https://doi.org/10.1016/j.pharmthera.2011.03.003.
  29. Vornanen M. Contribution of sarcolemmal calcium current to total cellular calcium in postnatally developing rat heart. Cardiovasc Res. 1996;32(2):400-410. https://doi.org/10.1016/0008-6363(96)00083-1.
  30. Znao F, Chen SR, Louis CF, Fruen BR. Dantrolene inhibition of ryanodine receptor Ca2+ release channels: molecular mechanism and isoform selectivity. J Biol Chem. 2001;276(17):13810-13816. https://doi.org/10.1074/jbc.M006104200.

Statistics

Views

Abstract - 85

PDF (Russian) - 0

Cited-By


Article Metrics

Metrics Loading ...

PlumX

Dimensions


Copyright (c) 2020 Kuznetsov S.V., Kuznetsova N.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies