Role of oxidative stress in the pathogenesis of autism spectrum disorders

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The literature review reflects the contemporary information on the role of oxidative stress in the pathogenesis of autism spectrum disorders. We present data on the importance of genetic predisposition, environmental factors, and epigenetic influences on the development of oxidative stress, which, during critical periods of early brain development, may influence the induction and progression of the disease. The role of mitochondrial dysfunction, immunological disorders, increased permeability of the blood-brain barrier, hypoperfusion of the brain causing or aggravating the redox imbalance in patients with autism spectrum disorders is shown. Analysis of the literature data indicates that the increased content of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutathione, ceruloplasmin and transferrin in the blood and brain of patients with autism spectrum disorders reflects the activation of compensatory mechanisms. Increased levels of malondialdehyde, xanthine oxidase, nitric oxide in various biological media indicate insufficiency of antioxidant protection system. Taking into account the role of oxidative stress in the pathogenesis of autism spectrum disorders, therapy including antioxidant drugs is indicated for correction of metabolic disorders.

Full Text

Restricted Access

About the authors

Svetlana G. Belokoskova

Institute of Experimental Medicine

Email: belokoskova.sg@iemspb.ru
ORCID iD: 0000-0002-0552-4810
SPIN-code: 4317-6620
Scopus Author ID: 6507716078

Dr. Sci. (Med), senior research associate, Pavlov Department of Physiology

Russian Federation, Saint Petersburg

Sergey G. Tsikunov

Institute of Experimental Medicine

Author for correspondence.
Email: secikunov@yandex.ru
ORCID iD: 0000-0002-7097-1940
SPIN-code: 7771-1940
Scopus Author ID: 6506948997

Dr. Sci. (Med.), professor, head of the Laboratory of Psychophysiology of Emotions

Russian Federation, Saint Petersburg

References

  1. Arushanyan EB, Naumov SS. Oxidative stress as a problem of psychopharmacology. Reviews on Clinical Pharmacology and Drug Therapy. 2020;18(4):297–311. (In Russ.) doi: 10.17816/RCF184297-311
  2. Belokoskova SG, Malsagova EM, Tsikunov SG. Dynamics of age-related structural and functional changes in the brain of patients with autism spectrum disorders. Medical academic journal. 2019;19(3):21–26. (In Russ.) doi: 10.17816/MAJ19321-26
  3. Belokoskova SG, Tsikunov SG. Antioxidant and prooxidant systems in patients with ischemic insult. Reviews on Clinical Pharmacology and Drug Therapy. 2021;19(3):281–290. (In Russ.) doi: 10.17816/RCF193281-290
  4. Boldyrev AA, Kulebyakin KY, Arzumanyan ES, Berezov TT. Novel mechanism of regulation of brain plasticity. Neurochemical Journal. 2011;28(4):340–344. (In Russ.)
  5. Maltseva NV, Volchegorskii IA, Shemyakov SE. Age changes of morphometric characteristics of neurons, microglia cells and antioxidant protection enzymes activity in human cortex at the initial stages of postnatal ontogenesis. Morphological newsletter. 2016;24(1):112–115. (In Russ.) doi: 10.20340/mv-mn.2016.24(1):112-115
  6. Novikov VE, Levchenkova OS, Ivantsova EN, Vorobieva VV. Mitochondrial dysfunctions and antihypoxants. Reviews on Clinical Pharmacology and Drug Therapy. 2019;17(4):31–42. (In Russ.) doi: 10.17816/RCF17431-42
  7. Porokhovnik LN, Pasekov VP, Yegolina NA, et al. Oxidative stress, RRNA genes, and antioxidant enzymes in pathogenesis of schizophrenia and autism: modeling and clinical advices. Journal of general biology. 2013;74(5):340–353. (In Russ.)
  8. Rossiiskoe obshchestvo psikhiatrov. Rasstroistva autisticheskogo spektra v detskom vozraste: diagnostika, terapiya, profilaktika, reabilitatsiya. Klinicheskie rekomendatsii. Moscow, 2020. 125 p. (In Russ.)
  9. Simashkova NV, Makushkin EV, editors. Rasstroistva autisticheskogo spektra: diagnostika, lechenie, nablyudenie. Klinicheskie rekomendatsii (protokol lecheniya). Moscow, 2015. 50 p. (In Russ.)
  10. Afrazeh M, Saedisar S, Khakzad MR, Hojati M. Measurement of serum superoxide dismutase and its relevance to disease intensity autistic children. Maedica (Buchar). 2015;10(4):315–318.
  11. Akhondzadeh S, Fallah J, Mohammadi MR, et al. Double-blind placebo-controlled trial of pentoxifylline added to risperidone: effects on aberrant behavior in children with autism. Prog Neuropsychopharmacol Biol Psychiatry. 2010;34(1):32–36. doi: 10.1016/j.pnpbp.2009.09.012
  12. Al-Ayadhi LY, Mostafa GA. A lack of association between elevated serum levels of S100B protein and autoimmunity in autistic children. J Neuroinflammation. 2012;9:54. doi: 10.1186/1742-2094-9-54
  13. Al-Gadani Y, El-Ansary A, Attas O, Al-Ayadhi L. Metabolic biomarkers related to oxidative stress and antioxidant status in Saudi autistic children. Clin Biochem. 2009;42(10–11):1032–1040. doi: 10.1016/j.clinbiochem.2009.03.011
  14. Allen CL, Bayraktutan U. Oxidative stress and its role in the pathogenesis of ischaemic stroke. Int J Stroke. 2009;4(6):461–470. doi: 10.1111/j.1747-4949.2009.00387.x
  15. Al-Yafee YA, Al-Ayadhi LY, Haq SH, El-Ansary AK. Novel metabolic biomarkers related to sulfur-dependent detoxification pathways in autistic patients of Saudi Arabia. BMC Neurol. 2011;11:139. doi: 10.1186/1471-2377-11-139
  16. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. American Psychiatric Association, 2013. doi: 10.1176/appi. books.9780890425596
  17. Aoyama K, Nakaki T. Impaired glutathione synthesis in neurodegeneration. Int J Mol Sci. 2013;14(10):21021–21044. doi: 10.3390/ijms141021021
  18. Armogida M, Nisticò R, Mercuri NB. Therapeutic potential of targeting hydrogen peroxide metabolism in the treatment of brain ischemia. Br J Pharmacol. 2012;166(4):1211–1224. doi: 10.1111/j.1476-5381.2012.01912.x
  19. Asadabadi M, Mohammadi M-R, Ghanizadeh A, et al. Celecoxib as adjunctive treatment to risperidone in children with autistic disorder: a randomized, double-blind, placebo-controlled trial. Psychopharmacology (Berl). 2013;225(1):51–59. doi: 10.1007/s00213-012-2796-8
  20. Asanuma M, Miyazaki I, Diaz-Corrales FJ, et al. Neuroprotective effects of zonisamide target astrocyte. Ann Neurol. 2010;67(2):239–249. doi: 10.1002/ana.21885
  21. Bai J, Cederbaum AI. Mitochondrial catalase and oxidative injury. Biol Signals Recept. 2001;10(3–4):189–199. doi: 10.1159/000046887
  22. Bauman ML. Medical comorbidities in autism: challenges to diagnosis and treatment. Neurotherapeutics. 2010;7(3):320–327. doi: 10.1016/j.nurt.2010.06.001
  23. Berk M, Ng F, Dean O, et al. Glutathione: a novel treatment target in psychiatry. Trends Pharmacol Sci. 2008;29(7):346–351. doi: 10.1016/j.tips.2008.05.001
  24. Bertoglio K, James JS, Deprey L, et al. Pilot study of the effect of methyl B12 treatment on behavioral and biomarker measures in children with autism. J Altern Complement Med. 2010;16(5):555–560. doi: 10.1089/acm.2009.0177
  25. Bjørklund G, Kern JK, Urbina MA, et al. Cerebral hypoperfusion in autism spectrum disorder. Acta Neurobiol Exp (Wars). 2018;78(1):21–29. doi: 10.21307/ane-2018-005
  26. Bjørklund G, Meguid NA, El-Ansary A, et al. Diagnostic and severity-tracking biomarkers for autism spectrum disorder. J Mol Neurosci. 2018;66(4):492–511. doi: 10.1007/s12031-018-1192-1
  27. Bjørklund G, Tinkov AA, Hosnedlová B, et al. The role of glutathione redox imbalance in autism spectrum disorder: A review. Free Radic Biol Med. 2020;160:149–162. doi: 10.1016/j.freeradbiomed.2020.07.017
  28. Bolotta A, Battistelli M, Falcieri E, et al. Oxidative stress in autistic children alters erythrocyte shape in the absence of quantitative protein alterations and of loss of membrane phospholipid asymmetry. Oxid Med Cell Longev. 2018;2018:6430601. doi: 10.1155/2018/6430601
  29. Bordet T, Berna P, Abitbol J-L, Pruss RM. Olesoxime (TRO19622): A novel mitochondrial-targeted neuroprotective compound. Pharmaceuticals (Basel). 2010;3(2):345–368. doi: 10.3390/ph3020345
  30. Chauhan A, Audhya T, Chauhan V. Brain region-specific glutathione redox imbalance in autism. Neurochem Res. 2012;37(8): 1681–1689. doi: 10.1007/s11064-012-0775-4
  31. Chauhan A, Chauhan V, Brown WT, Cohen I. Oxidative stress in autism: increased lipid peroxidation and reduced serum levels of ceruloplasmin and transferrin — the antioxidant proteins. Life Sci. 2004;75(21):2539–2549. doi: 10.1016/j.lfs.2004.04.038
  32. Chauhan A, Gu F, Essa MM, et al. Brain region-specific deficit in mitochondrial electron transport chain complexes in children with autism. J Neurochem. 2011;117(2):209–220. doi: 10.1111/j.1471-4159.2011.07189.x
  33. Chauhan A, Chauhan V. Oxidative stress in autism. Pathophysiology. 2006;13(3):171–181. doi: 10.1016/j.pathophys.2006.05.007
  34. Connolly AM, Chez MG, Pestronk A, et al. Serum autoantibodies to brain in Landau–Kleffner variant, autism, and other neurologic disorders. J Pediatr. 1999;134(5):607–613. doi: 10.1016/s0022-3476(99)70248-9
  35. Courchesne E, Pramparo T, Gazestani VH, et al. The ASD Living Biology: from cell proliferation to clinical phenotype. Mol Psychiatry. 2019;24(1):88–107. doi: 10.1038/s41380-018-0056-y
  36. Cyr AR, Domann FE. The redox basis of epigenetic modifications: from mechanisms to functional consequences. Antioxid Redox Signal. 2011;15(2):551–589. doi: 10.1089/ars.2010.3492
  37. Damodaran LPM, Arumugam G. Urinary oxidative stress markers in children with autism. Redox Rep. 2011;16(5):216–222. doi: 10.1179/1351000211Y.0000000012
  38. Deth R, Muratore C, Benzecry J, et al. How environmental and genetic factors combine to cause autism: a redox/methylation hypothesis. Neurotoxicology. 2008;29(1):190–201. doi: 10.1016/j.neuro.2007.09.010
  39. Dodd S, Dean O, Copolov DL, et al. N-acetylcysteine for antioxidant therapy: Pharmacology and clinical utility. Expert Opin Biol Ther. 2008;8(12):1955–1962. doi: 10.1517/14728220802517901
  40. Esnafoglu E, Nur Ayyıldız S, Cırrık S, et al. Evaluation of serum Neuron-specific enolase, S100B, myelin basic protein and glial fibrilliary acidic protein as brain specific proteins in children with autism spectrum disorder. Int J Dev Neurosci. 2017;61(1):86–91. doi: 10.1016/j.ijdevneu.2017.06.011
  41. Essa MM, Qoronfleh MW, editors. Personalized food intervention and therapy for autism spectrum disorder management. In: Schousboe A, editor. Advances in Neurobiology. Vol. 24. Springer Cham, 2020. doi: 10.1007/978-3-030-30402-7
  42. Essa MM, Guillemin GJ, Waly MI, et al. Increased markers of oxidative stress in autistic children of the Sultanate of Oman. Biol Trace Elem Res. 2012;147(1–3):25–27. doi: 10.1007/s12011-011-9280-x
  43. Fatemi SH, Aldinger KA, Ashwood P, et al. Consensus paper: pathological role of the cerebellum in autism. Cerebellum. 2012;11(3):777–807. doi: 10.1007/s12311-012-0355-9
  44. Feil R. Environmental and nutritional effects on the epigenetic regulation of genes. Mutat Res. 2006;600(1–2):46–57. doi: 10.1016/j.mrfmmm.2006.05.029
  45. Fiorentino M, Sapone A, Senger S, et al. Blood-brain barrier and intestinal epithelial barrier alterations in autism spectrum disorders. Mol Autism. 2016;7:49. doi: 10.1186/s13229-016-0110-z
  46. Förstermann U, Sessa WC. Nitric oxide synthases: regulation and function. Eur Heart J. 2012;33(7):829–837. doi: 10.1093/eurheartj/ehr304
  47. Franco R, Panayiotidis MI, Cidlowski JA. Glutathione depletion is necessary for apoptosis in lymphoid cells independent of reactive oxygen species formation. J Biol Chem. 2007;282(42):30452–30465. doi: 10.1074/jbc.M703091200
  48. Froehlich-Santino W, Londono Tobon A, Cleveland S, et al. Prenatal and perinatal risk factors in a twin study of autism spectrum disorders. J Psychiatr Res. 2014;54:100–108. doi: 10.1016/j.jpsychires.2014.03.019
  49. Frustaci A, Neri M, Cesario A, et al. Oxidative stress-related biomarkers in autism: systematic review and meta-analyses. Free Radic Biol Med. 2012;52(10):2128–2141. doi: 10.1016/j.freeradbiomed.2012.03.011
  50. Frye RE, Delatorre R, Taylor H, et al. Redox metabolism abnormalities in autistic children associated with mitochondrial disease. Transl Psychiatry. 2013;3(6): e273. doi: 10.1038/tp.2013.51
  51. Gantner BN, LaFond KM, Bonini MG. Nitric oxide in cellular adaptation and disease. Redox Biol. 2020;34:101550. doi: 10.1016/j.redox.2020.101550
  52. Gardener H, Spiegelman D, Buka SL. Perinatal and neonatal risk factors for autism: a comprehensive meta-analysis. Pediatrics. 2011;128(2):344–355. doi: 10.1542/peds.2010-1036
  53. Gebicka L, Krych-Madej J. The role of catalases in the prevention/promotion of oxidative stress. J Inorg Biochem. 2019;197:110699. doi: 10.1016/j.jinorgbio.2019.110699
  54. Ghaleiha A, Rasa SM, Nikoo M, et al. A pilot double-blind placebo-controlled trial of pioglitazone as adjunctive treatment to risperidone: Effects on aberrant behavior in children with autism. Psychiatry Res. 2015;229(1–2):181–187. doi: 10.1016/j.psychres.2015.07.043
  55. Ghanizadeh A. A novel hypothesized clinical implication of zonisamide for autism. Ann Neurol. 2011;69(2):426–426. doi: 10.1002/ana.22153
  56. Ghanizadeh A. Methionine sulfoximine may improve inflammation in autism, a novel hypothesized treatment for autism. Arch Med Res. 2010;41(8):651–652. doi: 10.1016/j.arcmed.2010.10.012
  57. Ghanizadeh A, Akhondzadeh S, Hormozi M, et al. Glutathione-related factors and oxidative stress in autism: A review. Curr Med Chem. 2012;19(23):4000–4005. doi: 10.2174/092986712802002572
  58. Goh S, Dong Z, Zhang Y, et al. Mitochondrial dysfunction as a neurobiological subtype of autism spectrum disorder: evidence from brain imaging. JAMA Psychiatry. 2014;71(6):665–671. doi: 10.1001/jamapsychiatry.2014.179
  59. Gu F, Chauhan V, Kaur K, et al. Alterations in mitochondrial DNA copy number and the activities of electron transport chain complexes and pyruvate dehydrogenase in the frontal cortex from subjects with autism. Transl Psychiatry. 2013;3(9): e299. doi: 10.1038/tp.2013.68
  60. Hafizi S, Tabatabaei D, Lai M-C. Review of clinical studies targeting inflammatory pathways for individuals with autism. Front Psychiatry. 2019;10:849. doi: 10.3389/fpsyt.2019.00849
  61. Heck DE. •NO, RSNO, ONOO–, NO+, •NOO, NOx — dynamic regulation of oxidant scavenging, nitric oxide stores, and cyclic GMP-independent cell signaling. Antioxid Redox Signal. 2001;3(2):249–260. doi: 10.1089/152308601300185205
  62. Hendren RL, James SJ, Widjaja F, et al. Randomized, placebo-controlled trial of methyl B12 for children with autism. J Child Adolesc Psychopharmacol. 2016;26(9):774–783. doi: 10.1089/cap.2015.0159
  63. Heo JH, Han SW, Lee SK. Free radicals as triggers of brain edema formation after stroke. Free Radic Biol Med. 2005;39(1):151–170. doi: 10.1016/j.freeradbiomed.2005.03.035
  64. Hu C-C, Xu X, Xiong G-L, et al. Alterations in plasma cytokine levels in Chinese children with autism spectrum disorder. Autism Res. 2018;11(7):989–999. doi: 10.1002/aur.1940.
  65. Hu VW. The expanding genomic landscape of autism: discovering the ‘forest’ beyond the ‘trees’. Future Neurol. 2013;8(1):29–42. doi: 10.2217/fnl.12.83
  66. Ivanov HY, Stoyanova VK, Popov NT, et al. Autism spectrum disorder — a complex genetic disorder. Folia med (Plovdiv). 2015;57(1):19–28. doi: 10.1515/folmed-2015-0015
  67. Jamain S, Betancur C, Giros B, et al. Genetics of autism: from genome scans to candidate genes. Med Sci (Paris). 2003;19(11): 1081–1090. (In French.) doi: 10.1051/medsci/200319111081
  68. James SJ, Cutler P, Melnyk S, et al. Metabolic biomarkers of increased oxidative stress and impaired methylation capacity in children with autism. Am J Clin Nutr. 2004;80(6):1611–1617. doi: 10.1093/ajcn/80.6.1611
  69. James SJ, Melnyk S, Fuchs G, et al. Efficacy of methylcobalamin and folinic acid treatment on glutathione redox status in children with autism. Am J Clin Nutr. 2009;89(1):425–430. doi: 10.3945/ajcn.2008.26615
  70. James SJ, Melnyk S, Jernigan S, et al. Abnormal transmethylation/transsulfuration metabolism and DNA hypomethylation among parents of children with autism. J Autism Dev Disord. 2008;38(10):1966–1975. doi: 10.1007/s10803-008-0591-5
  71. James SJ, Melnyk S, Jernigan S, et al. Metabolic endophenotype and related genotypes are associated with oxidative stress in children with autism. Am J Med Genet B Neuropsychiatr Genet. 2006;141B(8):947–956. doi: 10.1002/ajmg.b.30366
  72. Kealy J, Greene C, Campbell M. Blood-brain barrier regulation in psychiatric disorders. Neurosci Lett. 2020;726:133664. doi: 10.1016/j.neulet.2018.06.033
  73. Kondolot M, Ozmert EN, Ascı A, et al. Plasma phthalate and bisphenol a levels and oxidant-antioxidant status in autistic children. Environ Toxicol Pharmacol. 2016;43:149–158. doi: 10.1016/j.etap.2016.03.006
  74. Kontos HA. Oxygen radicals in cerebral ischemia: the 2001 Willis lecture. Stroke. 2001;32(11):2712–2716. doi: 10.1161/hs1101.098653
  75. Ladd-Acosta C, Hansen KD, Briem E, et al. Common DNA methylation alterations in multiple brain regions in autism. Mol Psychiatry. 2014;19(8):862–871. doi: 10.1038/mp.2013.114
  76. László A, Novák Z, Szőllősi-Varga I, et al. Blood lipid peroxidation, antioxidant enzyme activities and hemorheological changes in autistic children. Ideggyogy Sz. 2013;66(1–2):23–28.
  77. Li H, Horke S, Förstermann U. Oxidative stress in vascular disease and its pharmacological prevention. Trends Pharmacol Sci. 2013;34(6):313–319. doi: 10.1016/j.tips.2013.03.007
  78. Li W, Busu C, Circu ML, Aw TY. Glutathione in cerebral microvascular endothelial biology and pathobiology: implications for brain homeostasis. Int J Cell Biol. 2012;2012:434971. doi: 10.1155/2012/434971
  79. Mahadik SP, Scheffer RE. Oxidative injury and potential use of antioxidants in schizophrenia. Prostaglandins Leukot Essent Fatty Acids. 1996;55(1–2):45–54. doi: 10.1016/s0952-3278(96)90144-1
  80. Main PAE, Angley MT, O’Doherty CE, et al. The potential role of the antioxidant and detoxification properties of glutathione in autism spectrum disorders: a systematic review and meta-analysis. Nutr Metab (Lond). 2012;9:35. doi: 10.1186/1743-7075-9-35
  81. Masini E, Loi E, Vega-Benedetti AF, et al. An overview of the main genetic, epigenetic and environmental factors involved in autism spectrum disorder focusing on synaptic activity. Int J Mol Sci. 2020;21(21):8290. doi: 10.3390/ijms21218290
  82. Meguid NA, Ghozlan SAS, Mohamed MF, et al. Expression of reactive oxygen species-related transcripts in Egyptian children with autism. Biomark Insights. 2017;12:1177271917691035. doi: 10.1177/1177271917691035
  83. Melnyk S, Fuchs GJ, Schulz E, et al. Metabolic imbalance associated with methylation dysregulation and oxidative damage in children with autism. J Autism Dev Disord. 2012;42(3):367–377. doi: 10.1007/s10803-011-1260-7
  84. Menezo YJ, Silvestris E, Dale B, Elder K. Oxidative stress and alterations in DNA methylation: two sides of the same coin in reproduction. Reprod BioMed Online. 2016;33(6):668–683. doi: 10.1016/j.rbmo.2016.09.006
  85. Ming X, Stein TP, Brimacombe M, et al. Increased excretion of a lipid peroxidation biomarker in autism. Prostaglandins Leukot Essent Fatty Acids. 2005;73(5):379–384. DOI: 10.1016/j. plefa.2005.06.002
  86. Morris G, Anderson G, Dean O, et al. The glutathione system: a new drug target in neuroimmune disorders. Mol Neurobiol. 2014;50(3):1059–1084. doi: 10.1007/s12035-014-8705-x
  87. Nadeem A, Ahmad SF, Attia SM, et al. Dysregulated enzymatic antioxidant network in peripheral neutrophils and monocytes in children with autism. Prog Neuropsychopharmacol Biol Psychiatry. 2019;88:352–359. doi: 10.1016/j.pnpbp.2018.08.020
  88. Nagarajan RP, Patzel KA, Martin M, et al. MECP2 promoter methylation and X chromosome inactivation in autism. Autism Res. 2008;1(3):169–178. doi: 10.1002/aur.24
  89. Nardone S, Sams DS, Reuveni E, et al. DNA methylation analysis of the autistic brain reveals multiple dysregulated biological pathways. Transl Psychiatry. 2014;4(9):e433. doi: 10.1038/tp.2014.70
  90. Newschaffer CJ, Croen LA, Daniels J, et al. The epidemiology of autism spectrum disorders. Annu Rev Public Health. 2007;28: 235–258. doi: 10.1146/annurev.publhealth.28.021406.144007
  91. Nguyen A, Rauch TA, Pfeifer GP, Hu VW. Global methylation profiling of lymphoblastoid cell lines reveals epigenetic contributions to autism spectrum disorders and a novel autism candidate gene, RORA, whose protein product is reduced in autistic brain. FASEB J. 2010;24(8):3036–3051. doi: 10.1096/fj.10-154484
  92. Pangrazzi L, Balasco L, Bozzi Y. Oxidative stress and immune system dysfunction in autism spectrum disorders. Int J Mol Sci. 2020;21(9):3293. doi: 10.3390/ijms21093293
  93. Paşca SP, Nemeş B, Vlase L, et al. High levels of homocysteine and low serum paraoxonase 1 arylesterase activity in children with autism. Life Sci. 2006;78(19):2244–2248. doi: 10.1016/j.lfs.2005.09.040
  94. Ray PD, Huang B-W, Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal. 2012;24(5):981–990. doi: 10.1016/j.cellsig.2012.01.008
  95. Rose S, Melnyk S, Pavliv O, et al. Evidence of oxidative damage and inflammation associated with low glutathione redox status in the autism brain. Transl Psychiatry. 2012;2(7): e134. doi: 10.1038/tp.2012.61
  96. Rossignol DA, Frye RE. Mitochondrial dysfunction in autism spectrum disorders: a systematic review and meta-analysis. Mol Psychiatry. 2012;17(3):290–314. doi: 10.1038/mp.2010.136
  97. Schanen NC. Epigenetics of autism spectrum disorders. Hum Mol Genet. 2006;15(S2):R138–R150. doi: 10.1093/hmg/ddl213
  98. Schulz JB, Lindenau J, Seyfried J, Dichgans J. Glutathione, oxidative stress and neurodegeneration. Eur J Biochem. 2000;267(16):4904–4911. doi: 10.1046/j.1432-1327.2000.01595.x
  99. Shichiri M. The role of lipid peroxidation in neurological disorders. J Clin Biochem Nutr. 2014;54(3):151–160. doi: 10.3164/jcbn.14-10
  100. Siddiqui MF, Elwell C, Johnson MH. Mitochondrial dysfunction in autism spectrum disorders. Autism Open Access. 2016;6(5):1000190. doi: 10.4172/2165-7890.10001900
  101. Söğüt S, Zoroğlu SS, Ozyurt H, et al. Changes in nitric oxide levels and antioxidant enzyme activities may have a role in the pathophysiological mechanisms involved in autism. Clin Chim Acta. 2003;331(1–2):111–117. doi: 10.1016/s0009-8981(03)00119-0
  102. Srikantha P, Mohajeri MH. The possible role of the microbiota-gut-brain-axis in autism spectrum disorder. Int J Mol Sci. 2019;20(9):2115. doi: 10.3390/ijms20092115
  103. Tostes MHFS, Teixeira HC, Gattaz WF, et al. Altered neurotrophin, neuropeptide, cytokines and nitric oxide levels in autism. Pharmacopsychiatry. 2012;45(6):241–243. doi: 10.1055/s-0032-1301914
  104. Valiente-Pallejà A, Torrell H, Muntané G, et al. Genetic and clinical evidence of mitochondrial dysfunction in autism spectrum disorder and intellectual disability. Hum Mol Genet. 2018;27(5): 891–900. doi: 10.1093/hmg/ddy009
  105. Valko M, Leibfritz D, Moncol J, et al. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39(1):44–84. doi: 10.1016/j.biocel.2006.07.001
  106. Wang Q, Fan W, Cai Y, et al. Protective effects of taurine in traumatic brain injury via mitochondria and cerebral blood flow. Amino Acids. 2016;48(9):2169–2177. doi: 10.1007/s00726-016-2244-x
  107. Weissman JR, Kelley RI, Bauman ML, et al. Mitochondrial disease in autism spectrum disorder patients: a cohort analysis. PLoS One. 2008;3(11): e3815. doi: 10.1371/journal.pone.0003815
  108. Xu N, Li X, Zhong Y. Inflammatory cytokines: potential biomarkers of immunologic dysfunction in autism spectrum disorders. Mediators Inflamm. 2015;2015:531518. doi: 10.1155/2015/531518
  109. Yabuki M, Kariya S, Ishisaka R, et al. Resistance to nitric oxide-mediated apoptosis in HL-60 variant cells is associated with increased activities of Cu, Zn-superoxide dismutase and catalase. Free Radic Biol Med. 1999;26(3–4):325–332. doi: 10.1016/S0891-5849(98)00203-2
  110. Yenkoyan K, Harutyunyan H, Harutyunyan A. A certain role of SOD/CAT imbalance in pathogenesis of autism spectrum disorders. Free Radic Biol Med. 2018;123:85–95. doi: 10.1016/j.freeradbiomed.2018.05.070
  111. Yorbik O, Sayal A, Akay C, et al. Investigation of antioxidant enzymes in children with autistic disorder. Prostaglandins Leukot Essent Fatty Acids. 2002;67(5):341–343. doi: 10.1054/plef.2002.0439
  112. Yui K, Kawasaki Y, Yamada H, Ogawa S. oxidative stress and nitric oxide in autism spectrum disorder and other neuropsychiatric disorders. CNS Neurol Disord Drug Targets. 2016;15(5):587–596. doi: 10.2174/1871527315666160413121751
  113. Zilbovicius M, Meresse I, Chabane N, et al. Autism, the superior temporal sulcus and social perception. Trends Neurosci. 2006;29(7):359–366. doi: 10.1016/j.tins.2006.06.004
  114. Zoroglu SS, Armutcu F, Ozen S, et al. Increased oxidative stress and altered activities of erythrocyte free radical scavenging enzymes in autism. Eur Arch Psychiatry Clin Neurosci. 2004;254(3):143–147. doi: 10.1007/s00406-004-0456-7

Copyright (c) 2023 ECO-vector LLC



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 65565 от 04.05.2016 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies