Role of key endocannabinoids and their receptors in breast cancer

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Breast cancer stands as the leading cause of cancer-related deaths among women worldwide. Endocannabinoids and their exogenous analogs, e.g., tetrahydrocannabinol, exhibit antitumor effects in various animal models of cancer. However, several studies have shown that under certain conditions, treatment with cannabinoids can stimulate the proliferation of cancer cells in vitro and disrupt the immune system’s involvement in suppressing tumors. Additionally, conflicting reports exist regarding the antitumor role of endocannabinoid system in cancer. This review aims to consider the main mechanisms of action of key ligands and receptors of the endocannabinoid system within the context of breast cancer.

Full Text

Restricted Access

About the authors

Mikhail G. Akimov

Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences

Email: akimovmike@gmail.com
ORCID iD: 0000-0002-7467-4409

Cand. Sci. (Chemistry)

Russian Federation, Moscow

Polina V. Dudina

Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences

Email: polinadudkinz@gmail.com
ORCID iD: 0000-0001-6893-9100
Russian Federation, Moscow

Tatiana V. Vyunova

Life Improvement by Future Technologies “LIFT” Center

Author for correspondence.
Email: p2@list.ru
ORCID iD: 0000-0002-7273-5503

Cand. Sci. (Biology)

Russian Federation, Moscow

Allan V. Kalueff

Sirius University of Science and Technology; Almazov National Medical Research Centre; Saint Petersburg State University; Granov Russian Research Center of Radiology and Surgical Technologies; Ural Federal University

Email: avkalueff@gmail.com
ORCID iD: 0000-0002-7525-1950
SPIN-code: 4134-0515

Dr. Sci. (Biology)

Russian Federation, Sochi; Saint Petersburg; Saint Petersburg; Saint Petersburg; Yekaterinburg

Natalia M. Gretskaya

Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences

Email: natalia.gretskaya@gmail.com
ORCID iD: 0000-0002-1332-9396

Cand. Sci. (Chemistry)

Russian Federation, Moscow

Vladimir V. Bezuglov

Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences

Email: vvbez2013@yandex.ru
ORCID iD: 0000-0001-8439-8607

Dr. Sci. (Chemistry)

Russian Federation, Moscow

References

  1. Lord SJ, Kiely BE, Pearson SA, et al. Metastatic breast cancer incidence, site and survival in Australia, 2001–2016: a population-based health record linkage study protocol. BMJ Open. 2019;9(2): e026414. doi: 10.1136/bmjopen-2018-026414
  2. Sarfaraz S, Adhami VM, Syed DN, Afaq F, Mukhtar H. Cannabinoids for cancer treatment: progress and promise. Cancer Res. 2008;68(2):339–342. doi: 10.1158/0008-5472.CAN-07-2785
  3. Buczynski MW, Parsons LH. Quantification of brain endocannabinoid levels: methods, interpretations and pitfalls. Br J Pharmacol. 2010;160(3):423–442. doi: 10.1111/j.1476-5381.2010.00787.x
  4. Nomura DK, Long JZ, Niessen S, et al. Monoacylglycerol lipase regulates a fatty acid network that promotes cancer pathogenesis. Cell. 2010;140(1):49–61. doi: 10.1016/j.cell.2009.11.027
  5. Mock ED, Gagestein B, van der Stelt M. Anandamide and other N-acylethanolamines: A class of signaling lipids with therapeutic opportunities. Prog Lipid Res. 2023;89:101194. doi: 10.1016/j.plipres.2022.101194
  6. Soethoudt M, Grether U, Fingerle J, et al. Cannabinoid CB2 receptor ligand profiling reveals biased signalling and off-target activity. Nat Commun. 2017;8(1):13958. doi: 10.1038/ncomms13958
  7. Lowe H, Toyang N, Steele B, et al. The endocannabinoid system: a potential target for the treatment of various diseases. Int J Mol Sci. 2021;22(17):9472. doi: 10.3390/ijms22179472
  8. Vinod KY, Hungund BL. Role of the endocannabinoid system in depression and suicide. Trends Pharmacol Sci. 2006;27(10):539–545. doi: 10.1016/j.tips.2006.08.006
  9. Nagarkatti P, Pandey R, Rieder SA, et al. Cannabinoids as novel anti-inflammatory drugs. Future Med Chem. 2009;1(7):1333–1349. doi: 10.4155/fmc.09.93
  10. Ramer R, Wittig F, Hinz B. The endocannabinoid system as a pharmacological target for new cancer therapies. Cancers (Basel). 2021;13(22):5701. doi: 10.3390/cancers13225701
  11. Lu HC, Mackie K. Review of the endocannabinoid system. Biol Psychiatry Cogn Neurosci Neuroimaging. 2021;6(6):607–615. doi: 10.1016/j.bpsc.2020.07.016
  12. Basavarajappa BS. Critical enzymes involved in endocannabinoid metabolism. Protein and peptide letters. 2007;14(3):237–246. doi: 10.2174/092986607780090829
  13. Nyilas R, Dudok B, Urbán GM, et al. Enzymatic machinery for endocannabinoid biosynthesis associated with calcium stores in glutamatergic axon terminals. J Neurosci. 2008;28(5):1058–1063. doi: 10.1523/JNEUROSCI.5102-07.2008
  14. van der Stelt M, Trevisani M, Vellani V, et al. Anandamide acts as an intracellular messenger amplifying Ca2+ influx via TRPV1 channels. EMBO J. 2005;24(17):3026–3037. doi: 10.1038/sj.emboj.7600784
  15. Di Marzo V, Fontana A, Cadas H, et al. Formation and inactivation of endogenous cannabinoid anandamide in central neurons. Nature. 1994;372(6507):686–691. doi: 10.1038/372686a0
  16. Sugiura T, Kondo S, Sukagawa A, et al. 2-Arachidonoylgylcerol: A possible endogenous cannabinoid receptor ligand in brain. Biochem Biophys Res Commun. 1995;215(1):89–97. doi: 10.1006/bbrc.1995.2437
  17. De Petrocellis L, Melck D, Bisogno T, Di Marzo V. Endocannabinoids and fatty acid amides in cancer, inflammation and related disorders. Chemistry and Physics of Lipids. 2000;108(1–2):191–209. doi: 10.1016/S0009-3084(00)00196-1
  18. Almeida CF, Teixeira N, Correia-da-Silva G, Amaral C. Cannabinoids in breast cancer: differential susceptibility according to subtype. Molecules. 2021;27(1):156. doi: 10.3390/molecules27010156
  19. Tate JG, Bamford S, Jubb HC, et al. COSMIC: the catalogue of somatic mutations in cancer. Nucleic Acids Res. 2019;47(D1): D941–D947. doi: 10.1093/nar/gky1015
  20. Qamri Z, Preet A, Nasser MW, et al. Synthetic cannabinoid receptor agonists inhibit tumor growth and metastasis of breast cancer. Mol Cancer Ther. 2009;8(11):3117–3129. doi: 10.1158/1535-7163.MCT-09-0448
  21. Oka S, Kimura S, Toshida T, Ota R, Yamashita A, Sugiura T. Lysophosphatidylinositol induces rapid phosphorylation of p38 mitogen-activated protein kinase and activating transcription factor 2 in HEK293 cells expressing GPR55 and IM-9 lymphoblastoid cells. J Biochem. 2010;147(5):671–678. doi: 10.1093/jb/mvp208
  22. Lauckner JE, Jensen JB, Chen HY, et al. GPR55 is a cannabinoid receptor that increases intracellular calcium and inhibits M current. Proc Natl Acad Sci USA. 2008;105(7):2699–2704. doi: 10.1073/pnas.0711278105
  23. Ford LA, Roelofs AJ, Anavi-Goffer S, et al. A role for L-alpha-lysophosphatidylinositol and GPR55 in the modulation of migration, orientation and polarization of human breast cancer cells. Br J Pharmacol. 2010;160(3):762–771. doi: 10.1111/j.1476-5381.2010.00743.x
  24. Andradas C, Blasco-Benito S, Castillo-Lluva S, et al. Activation of the orphan receptor GPR55 by lysophosphatidylinositol promotes metastasis in triple-negative breast cancer. Oncotarget. 2016;7(30):47565–47575. doi: 10.18632/oncotarget.10206
  25. Nasser MW, Qamri Z, Deol YS, et al. Crosstalk between chemokine receptor cxcr4 and cannabinoid receptor CB2 in modulating breast cancer growth and invasion. PLoS ONE. 2011;6(9):e23901. doi: 10.1371/journal.pone.0023901
  26. Guzmán M. Cannabinoids: potential anticancer agents. Nat Rev Cancer. 2003;3(10):745–755. doi: 10.1038/nrc1188
  27. Laezza C, Pisanti S, Crescenzi E, Bifulco M. Anandamide inhibits Cdk2 and activates Chk1 leading to cell cycle arrest in human breast cancer cells. FEBS Lett. 2006;580(26):6076–6082. doi: 10.1016/j.febslet.2006.09.074
  28. Caffarel MM, Moreno-Bueno G, Cerutti C, et al. JunD is involved in the antiproliferative effect of Δ9-tetrahydrocannabinol on human breast cancer cells. Oncogene. 2008;27(37):5033–5044. doi: 10.1038/onc.2008.145
  29. Weitzman JB, Fiette L, Matsuo K, Yaniv M. Jund protects cells from p53-dependent senescence and apoptosis. molecular Cell. 2000;6(5):1109–1119. doi: 10.1016/S1097-2765(00)00109-X
  30. Pérez-Gómez E, Andradas C, Blasco-Benito S, et al. Role of cannabinoid receptor CB2 in HER2 pro-oncogenic signaling in breast cancer. J Natl Cancer Inst. 2015;107(6):djv077. doi: 10.1093/jnci/djv077
  31. Caffarel MM, Andradas C, Mira E, et al. Cannabinoids reduce ErbB2-driven breast cancer progression through Akt inhibition. Mol Cancer. 2010;9(1):196. doi: 10.1186/1476-4598-9-196
  32. Nithipatikom K, Gomez-Granados AD, Tang AT, et al. Cannabinoid receptor type 1 (CB1) activation inhibits small GTPase RhoA activity and regulates motility of prostate carcinoma cells. Endocrinology. 2012;153(1):29–41. doi: 10.1210/en.2011-1144
  33. Porter AC, Sauer JM, Knierman MD, et al. Characterization of a novel endocannabinoid, virodhamine, with antagonist activity at the CB1 receptor. J Pharmacol Exp Ther. 2002;301(3):1020–1024. doi: 10.1124/jpet.301.3.1020
  34. Benchama O, Tyukhtenko S, Malamas MS, et al. Inhibition of triple negative breast cancer-associated inflammation, tumor growth and brain colonization by targeting monoacylglycerol lipase. Sci Rep. 2022;12(1):5328. doi: 10.1038/s41598-022-09358-8
  35. Deng H, Li W. Monoacylglycerol lipase inhibitors: modulators for lipid metabolism in cancer malignancy, neurological and metabolic disorders. Acta Pharm Sin B. 2020;10(4):582–602. doi: 10.1016/j.apsb.2019.10.006
  36. Elbaz M, Ahirwar D, Ravi J, et al. Novel role of cannabinoid receptor 2 in inhibiting EGF/EGFR and IGF-I/IGF-IR pathways in breast cancer. Oncotarget. 2017;8(18):29668–29678. doi: 10.18632/oncotarget.9408
  37. Bisogno T, Katayama K, Melck D, et al. Biosynthesis and degradation of bioactive fatty acid amides in human breast cancer and rat pheochromocytoma cells. Eur J Biochem. 1998;254(3):634–642. doi: 10.1046/j.1432-1327.1998.2540634.x
  38. Gustafsson SB, Palmqvist R, Henriksson ML, et al. High tumour cannabinoid CB1 receptor immunoreactivity negatively impacts disease-specific survival in stage ii microsatellite stable colorectal cancer. PLOS One. 2011;6(8):e23003. doi: 10.1371/journal.pone.0023003
  39. Portella G, Laezza C, Laccetti P, et al. Inhibitory effects of cannabinoid CB1 receptor stimulation on tumor growth and metastatic spreading: actions on signals involved in angiogenesis and metastasis. FASEB J. 2003;17(12):1771–1773. doi: 10.1096/fj.02-1129fje
  40. Falasca M, Corda D. Elevated levels and mitogenic activity of lysophosphatidylinositol in k-ras-transformed epithelial cells. Eur J Biochem. 1994;221(1):383–389. doi: 10.1111/j.1432-1033.1994.tb18750.x
  41. Falasca M, Iurisci C, Carvelli A, et al. Release of the mitogen lysophosphatidylinositol from H-Ras-transformed fibroblasts; a possible mechanism of autocrine control of cell proliferation. Oncogene. 1998;16(18):2357–2365. doi: 10.1038/sj.onc.1201758
  42. Xiao Y, Chen Y, Kennedy AW, et al. Evaluation of plasma lysophospholipids for diagnostic significance using electrospray ionization mass spectrometry (ESI-MS) analyses. Ann NY Acad Sci. 2000;905(1):242–259. doi: 10.1111/j.1749-6632.2000.tb06554.x
  43. Moreno E, Cavic M, Krivokuca A, et al. The endocannabinoid system as a target in cancer diseases: are we there yet? Frontiers in Pharmacology. 2019;10:339. doi: 10.3389/fphar.2019.00339
  44. Zhou XL, Guo X, Song YP, et al. The LPI/GPR55 axis enhances human breast cancer cell migration via HBXIP and p-MLC signaling. Acta Pharmacol Sin. 2018;39(3):459–471. doi: 10.1038/aps.2017.157
  45. Alhouayek M, Masquelier J, Muccioli GG. Lysophosphatidylinositols, from cell membrane constituents to GPR55 ligands. Trends Pharmacol Sci. 2018;39(6):586–604. doi: 10.1016/j.tips.2018.02.011
  46. Navarro G, Varani K, Lillo A, et al. Pharmacological data of cannabidiol- and cannabigerol-type phytocannabinoids acting on cannabinoid CB1, CB2 and CB1/CB2 heteromer receptors. Pharmacol Res. 2020;159:104940. doi: 10.1016/j.phrs.2020.104940
  47. Balenga NAB, Aflaki E, Kargl J, et al. GPR55 regulates cannabinoid 2 receptor-mediated responses in human neutrophils. Cell Res. 2011;21(10):1452–1469. doi: 10.1038/cr.2011.60
  48. Kargl J, Balenga N, Parzmair GP, et al. The cannabinoid receptor CB1 modulates the signaling properties of the lysophosphatidylinositol receptor GPR55. J Biol Chem. 2012;287(53):44234–44248. doi: 10.1074/jbc.M112.364109
  49. Anavi-Goffer S, Irving AJ, Ross RA. Modulation of l-α-lysophosphatidylinositol/GPR55 MAP kinase signalling by CB2 receptor agonists: identifying novel GPR55 inhibitors. J Basic Clin Physiol Pharmacol. 2016;27(3):303–310. doi: 10.1515/jbcpp-2015-0142
  50. Anavi-Goffer S, Baillie G, Irving AJ, et al. Modulation of L-α-lysophosphatidylinositol/GPR55 mitogen-activated protein kinase (MAPK) signaling by cannabinoids. J Biol Chem. 2012;287(1):91–104. doi: 10.1074/jbc.M111.296020
  51. Zhang J, Medina-Cleghorn D, Bernal-Mizrachi L, et al. The potential relevance of the endocannabinoid, 2-arachidonoylglycerol, in diffuse large B-cell lymphoma. Oncoscience. 2016;3(1):31–41. doi: 10.18632/oncoscience.289
  52. Sailler S, Schmitz K, Jäger E, et al. Regulation of circulating endocannabinoids associated with cancer and metastases in mice and humans. Oncoscience. 2014;1(4):272–282. doi: 10.18632/oncoscience.33
  53. Suchopár J, Laštůvka Z, Mašková S, et al. Endocannabinoids. Ceska Gynekol. 2021;86(6):414–420. doi: 10.48095/cccg2021414

Copyright (c) 2024 ECO-vector LLC

License URL: https://eco-vector.com/for_authors.php#07

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 65565 от 04.05.2016 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies